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Enhancing multi‑UAV air combat 
decision making via hierarchical 
reinforcement learning
Huan Wang 1,2* & Jintao Wang 3

In the realm of air combat, autonomous decision-making in regard to Unmanned Aerial Vehicle (UAV) 
has emerged as a critical force. However, prevailing autonomous decision-making algorithms in this 
domain predominantly rely on rule-based methods, proving challenging to design and implement 
optimal solutions in complex multi-UAV combat environments. This paper proposes a novel approach 
to multi-UAV air combat decision-making utilizing hierarchical reinforcement learning. First, a 
hierarchical decision-making network is designed based on tactical action types to streamline the 
complexity of the maneuver decision-making space. Second, the high-quality combat experience 
gained from training is decomposed, with the aim of augmenting the quantity of valuable experiences 
and alleviating the intricacies of strategy learning. Finally, the performance of the algorithm is 
validated using the advanced UAV simulation platform JSBSim. Through comparisons with various 
baseline algorithms, our experiments demonstrate the superior performance of the proposed method 
in both even and disadvantaged air combat environments.

UAV have found widespread applications in diverse military domains such as surveillance, reconnaissance, and 
operations due to their agility, cost-effectiveness, and reduced risk of casualties. In recent years, drones have 
significantly influenced numerous military operations worldwide. Notably, substantial scientific efforts worldwide 
have been invested in UAV air combat decision-making technology research. For instance, in the United States, 
Psibernetix developed the “Alpha” AI, an artificial intelligence system that leverages genetic algorithms for air 
combat decision-making. This system triumphed over a retired United States Air Force colonel in simulated air 
combat scenarios1. Concurrently, the U.S. Defense Advanced Research Projects Agency (DARPA) initiated the 
Offensive Swarm Tactics (OFFSET) project, focusing on developing diverse swarm tactics for unmanned aircraft 
to support small ground forces in complex urban settings2. Additionally, the multinational Future Combat Air 
System (FCAS) project in Europe aims to bolster human-machine interaction, garnering participation from 
multiple nations. Russia’s Sukhoi Design Bureau has spearheaded the S-70 “Hunter” UAV and embarked on 
research on technology for cooperation between this UAV and the Su-57 fighter aircraft. Furthermore, researchers 
worldwide have explored various UAV air combat decision-making methodologies. McGrew et al.3 introduced 
dynamic programming to enhance efficiency in 1v1 air combat game decision-making, while Wu et al.4 proposed 
a fuzzy rule-based decision-making method that guides fighters to execute more tactically advantageous moves. 
However, the majority of these approaches rely on rule-based design, which faces challenges in solving complexity 
and designing rules for multi-UAV air combat environments.

Deep reinforcement Learning (DRL) techniques have gradually found applications in air combat decision-
making. DRL, a subset of machine learning methods, possesses strong adaptability and autonomous learning 
capabilities, without necessitating extensive professional background knowledge. we propose a hierarchical 
decision-making approach for multi-UAV air combat scenarios to improve the training efficiency. Our main 
contributions are as follows:

•	 A hierarchical decision network is designed to reduce the spatial dimensions of action decision making.
•	 we propose an empirical decomposition mechanism to break down complex task experiences for enhancing 

training efficiency.
•	 The performance of our algorithm under different JSBSIM simulation environments is evaluated.
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The subsequent sections of this paper are organized as follows: Section "Related work" provides a review of 
related work in the field. Section "Method" presents the framework of our method, delineating the hierarchical 
decision-making network and the experience decomposition mechanism tailored for the multi-UAV air combat 
environment. The experimental results and validation of the algorithm are detailed in Section "Experiment". 
Lastly, Section "Conclusion" presents the conclusions drawn from this study.

Related work
This paper primarily focuses on integrating hierarchical reinforcement learning techniques with the unique 
characteristics of the multi-UAV air combat environment to enhance decision-making efficiency. Currently, 
numerous scholars have conducted research on air combat decision-making. This section initially provide an 
overview of existing techniques in UAV air combat decision-making. Subsequently, it introduces relevant hier-
archical reinforcement learning techniques.

Air combat decision‑making techniques
Air combat decision-making stands as the pivotal challenge within the domain of UAV air combat games. Pres-
ently, decision-making theory rooted in the OODA(Observation, Orientation, Decision, Action) loop serves as 
a widely adopted framework. UAV formulate tactical decisions by assimilating information obtained from the 
battlefield environment, amalgamating it with their own state to generate strategic maneuvers. Scholars across 
various nations have proposed numerous method to address the air combat decision-making problem and these 
methods can be categorized based on their solution approaches into methods grounded in countermeasure 
theory, those based on expert systems, and heuristic learning methods.

The first category revolves around countermeasure theory. For instance, Wayne et al.5 introduced a “two 
target game” model that delineates both sides of an air battle, where each side can act as either the pursuing or 
fleeing party depending on the prevailing battlefield situation. Austin et al.6 proposed a matrix-based approach 
for maneuver decision-making. This methodology involves discretizing maneuvers into a maneuver library 
that comprises various basic maneuvers. Subsequently, it depicts all potential maneuver combinations between 
opposing sides using matrices. Finally, it solves the aircraft’s equation of motion through numerical integration 
to derive the optimal decision sequence.

The second category involves the expert system approach. For instance, Xi et al.7 incorporated the power 
potential field into the decision-making process for multi-UAV air combat, thereby enhancing cooperative 
performance in such scenarios. Zhou et al.8 developed a multi-UAV autonomous control algorithm based on 
the ant colony algorithm to enhance the success rate of UAV clusters in aerial combat. Yan et al.9 combined the 
collaborative particle swarm algorithm with collaborative functions and variables to address the constraint 
problem associated with simultaneous attacks by multiple UAV.

The third category comprises heuristic learning methods, with reinforcement learning being the most preva-
lent approach. This method emulates the neuron structure of the human brain in network topology, enabling 
the characterization of nonlinear and intricate relationships alongside corresponding learning capabilities. For 
instance, Zhou et al.10 proposed an improved method of situation assessment for the air combat environment. Sun 
et al.11 introduced a multi-intelligence hierarchical strategy gradient algorithm, achieving tactical strategies that 
surpass human expert cognition through self-game training. Shi et al.12 developed a proximal strategy optimiza-
tion algorithm tailored for air combat decision-making, thereby enhancing the decision-making performance 
of fighters in 3v3 air combat scenarios. Additionally, bionics-based algorithms13 find frequent application in the 
realm of air combat decision-making.

The three types of above methods have the following problems.

•	 Countermeasure theory-based methods pose challenges in solving and constructing models, and they are 
more suitable for simpler air combat scenarios such as like pursuit and interception.

•	 Methods grounded in expert systems heavily rely on the expertise and decision-making proficiency of spe-
cialists, demanding a high level of professional background from designers. However, when the air combat 
environment becomes intricate and variable, relying solely on expert knowledge may hinder optimal decision-
making.

•	 Research based on heuristic learning methods often focuses on simpler scenarios such as pursuit, interception, 
and one-on-one air combat, which may limit their applicability in complex air combat scenarios. While some 
studies have been extended to combat scenarios involving multiple aircraft, the adaptation to such intricate 
environments remains a challenge.

While certain studies have ventured into the realm of multi-UAV air combat, achieving desired training outcomes 
often proves challenging and may fall short of expectations. We propose an algorithm for multi UAV combat envi-
ronments, which does not rely on expert experience and uses empirical decomposition mechanism to improve the 
experience quality of the experience. In addition, we design a hierarchical decision network to solve the problem 
of large action dimension space and difficult decision-making of agents in complex UAV combat environments.

Hierarchical reinforcement learning
Hierarchical reinforcement learning stands as a significant branch within the field of reinforcement learning, 
drawing inspiration from the concept of solving complex problems by breaking them down into several subprob-
lems. This approach involves decomposing a complex problem into smaller, more manageable subtasks, thereby 
solving them sequentially through task decomposition to address the overarching complex issue. Current task 
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decomposition methods can be broadly categorized into two groups: (1) all subproblems collaborate to complete 
the decomposed task collectively; (2) the outcome of the prior subproblem serves as input for solving the sub-
sequent subproblem, resolving the problem in a hierarchical manner14–16. For instance, Wang et al.2 employed 
hierarchical reinforcement learning to tackle the mobile robot navigation problem, effectively addressing the 
limitations of conventional navigation methods in complex environments. Similarly, Yang et al.17 applied a 
hierarchical network multiagent learning framework to enhance decision-making in 3v3 football match environ-
ments, thereby raising the multiagent gaming confrontation level. Moreover, hierarchical reinforcement learning 
has found applications in diverse scenarios such as robotic arm control, StarCraft II gaming, and various other 
domains18,19.

Method
In this paper, we present a hierarchical reinforcement learning-based method for multi-UAV air combat decision-
making. This section focuses on outlining the design of our hierarchical decision-making approach for multi-
UAV air combat scenarios. Initially, we model the multi-UAV air combat scenario using a partially observable 
Markov process. Subsequently, we introduce a network framework tailored for hierarchical decision-making 
in multi-UAV air combat algorithms, leveraging hierarchical reinforcement learning technology to streamline 
the complexity involved in maneuver decision-making. Finally, we propose a decomposition transformation 
mechanism that aims to break down high-quality adversarial experiences. It also to augment the presence of 
high-quality adversarial experiences within the experience buffer, consequently enhancing the efficiency of 
strategy learning.

Decentralized partially observable markov decision processes (DEC‑POMDP)
In a multi-UAV air combat scenario, the UAV agent lack access to global information. This paper considers the 
multi-UAV air combat decision-making task as a DEC-POMDP, characterized by the tuple 〈S,A,P, r,Z,O, n, γ 〉 . 
Here, s ∈ S denotes the current state of the environment. At each time step, an agent g ∈ G ≡ {1, ...., n} selects 
an action ag ∈ A , collectively forming a joint action a ∈ A ≡ Ag , leading to changes in the environment via the 
state transition function P

(

s
′
|s, a

)

: S × A× S → [0, 1] governing state transitions. Throughout this process, 
all agents share a common reward function r(s, a) : S × A → R , with γ ∈ [0, 1) representing the discount 
factor.

In a partially observable environment, each agent receives an individual observation state denoted as o ∈ Z 
via the state transfer function O(s, a) : S × A → Z . Additionally, the action observation history for each agent 
can be represented as τ g ∈ T ≡ (Z × A)∗ , while the random strategy �g (ag |τ g ) : T × A → [0, 1] serves as a 
condition. The joint action-value function for the joint strategy � can be formulated as shown in Eq. (1).

where, Rt =
∑∞

i=0γ
irt+i represents the discount reward. The strategy learning of each agent in training takes 

only its own action observation history as input.

Overall structure of the proposed algorithm
The network framework of the hierarchical decision-making method for multi-aircraft air combat, designed 
in this paper, is illustrated in Fig. 1. The framework primarily consists of the experience buffer, flight action 
decision-making layer, attack action decision-making layer, environment interaction segment, and confrontation 

(1)Qπ (st , at) = Est+1:∞ ,at+1:∞ [Rt |st , at ],

Figure 1.   Framework of the hierarchical decision-making multi-UAV air combat method.
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experience decomposition and transformation segment. Training commences by extracting data samples from 
the experience buffer B to facilitate the training and updating of the two decision-making layers. Subsequently, 
the resulting flight action af  and attack action ai combine to form a set of actions that is inputted into the environ-
ment interaction segment. This segment updates the environment state based on the input action combination 
and generates single-step combat experiences that are deposited into πn and concurrently employed for flight and 
attack decision-making. Simultaneously, the segment produces observation states of  and oi , which are utilized 
in flight and attack action decision-making, as delineated in Eqs. (2) and (3).

where ⊙ denotes the elementwise product of the two arrays and N represents the total number of agents. The 
coefficient series ωm = (ωm,1, ...ωm,n, ...ωm,N ) corresponds to the current observation state ( o1, ..., on ) of each 
agent. When the distance between agent m and n falls below the attack range threshold, ωm,n = 1 . Conversely, 
if the distance exceeds this threshold, ωm,n = 0.

The experience decomposition segment decomposes the generated experience πn and stores it in the experi-
ence buffer B . The content within the experience buffer gradually undergoes replacement based on the degree 
of novelty once the buffer reaches full capacity, iteratively continuing until the training concludes.

The flight action and attack decision layers are designed based on the QMIX20 value decomposition network. 
The flight action decision layer trains the joint action value function Qtot

f

(

τf , af
)

 of the centralized flight action 
layer, while the attack action decision layer trains the joint action value function Qtot

i (τi , ai) specific to the attack 
action layer. Both action value functions can be expressed as the sum of individual intelligence value functions 
Qg (τ

j , aj , θ j) , as detailed in Eq. (4).

It is also necessary to ensure that Qtot satisfies Eq. (5).

We transform Eq. (5) to a monotonicity constraint as in Eq. (6), and implement it using a hybrid network. The 
loss function is given in Eq. (7).

where, b is the sample batch size for each training, ytot = r + γ ∗maxa′Q
tot
(

τ
′
, a

′
, s

′
; θ−

)

 , and θ− represents 
the target network parameters . Qn

f

(

of
n, af

n
)

 and Qn
i (oi

n, ai
n) represent the action value function of each agent 

for generating flying and attacking actions, which are calculated according to Eq. (1).

Hierarchical decision‑making network
Multi-UAV combat poses a complex challenge, necessitating optimal attack decision-making amid rapidly evolv-
ing battlefield conditions. This paper proposes to segregate the UAV decision control task into distinct flight 
actions af  and attack actions ai based on their specific characteristics. The flight maneuver entails controlling 
the UAV’s flight angle, speed, and altitude, which requires a comprehensive assessment of the global battlefield 
situation while evading enemy missiles. Conversely, the attack maneuver focuses solely on choosing whether to 
engage in an attack and the target for the attack, considering localized battlefield information. As depicted in 
Fig. 1, the flight action af  is generated by the flight decision layer, which encompasses heading, altitude, and speed 
decisions, necessitating a comprehensive array of battlefield information ( of  ). On the other hand, the attack action 
ai is produced by the attack decision layer, which determines whether to engage in an attack and the number of 
targets and solely considers information concerning nearby enemy aircraft and adjacent friendly forces ( oi ). The 
combination of flight and attack actions orchestrates the control of UAV to accomplish their air combat missions.

Empirical decomposition mechanisms
Winning in a multi-UAV game demands continuous, efficient maneuver decision-making by agents over 
extended periods. Traditional methods that directly train agents to accomplish complex tasks encounter two 
primary issues: (1) limited experience availability at the onset of training, leading to a scarcity of high-quality 
experience; (2) lengthy sequences of adversarial rounds resulting in inefficient direct learning training. To address 
these challenges, a prior study21 introduced the hindsight experience replay method, which utilizies random 

(2)of = {o1, ..., on},

(3)oi = ωm ⊙ of ,

(4)Qtot(τ , a) =

n
∑

j=1

Qj(τ
j , aj , θ j),

(5)argmax
a

Qtot(τ , a) =





argmaxa1 Q1(τ
1, a1)

...
argmaxanQn(τ

n, an)



,

(6)
∂Qtot

∂Qg
� 0,∀g ∈ G,

(7)L (θ) =

b
∑

i=1

[

(

ytoti − Qtot(τ , a, s; θ)
)2
]

,
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point decomposition for sampled data; however, the method neglects to consider the specific stage characteris-
tics of task experience. In this paper, we propose an enhanced experience decomposition technique, aiming to 
increase the initial training experiences while simultaneously reducing training complexity. Inspired by humans’ 
learning of complex tasks, our method decomposes intricate tasks into distinct learning stages, as depicted in 
Fig. 2. Initially, for each round of confrontation experience data, synchronized flag data point d is recorded. Bits 
set to 1 (e.g., di,dj,dk ) correspond to instances of downing enemy fighters, with the remaining bits being set to 
0. Subsequently, based on these flag data, bits set to 1 represent moments of enemy fighters being downed. The 
subsequent step involves decomposing the data into experiences 1, 2, and 3, contingent upon the position of 
the 1 bit in the flag data (e.g., ei , ej , ek ), and recalculating the associated rewards. Ultimately, both the original 
experience data and the decomposed experience data are stored in the experience buffer B for model training. 
This method not only expands the experience gained during each air combat round but also breaks down the 
complex battle process into several stages (destroying different numbers of fighters), thereby alleviating the 
learning complexity of the model in strategy adaptation.

In our method, both the flight decision network and the attack decision network utilize data from the experi-
ence buffer combined with Eq. (7) for updating and selecting their respective actions. These actions interact with 
the environment to generate new confrontation experiences through the ǫ−greedy algorithm, as illustrated in 
Eq. (8). The round experience πn derived from each confrontation round undergoes decomposition and trans-
formation, as detailed in Eq. (9), to yield a set πn

sub comprising subtarget experience data that are utilized for 
updating the experience buffer. In this formula, πj represents the experience set for the first j steps of the round 
experience πn , while dj signifies the flag data bit in the countermeasure data. dj = 1 denotes the moment when 
an enemy UAV has been shot down. Details of the proposed algorithm can be found in the file algorithm.pdf 
in supplementary material.

Experiment
The experimental setup in this paper is constructed using the JSBSim simulation platform. The experimental 
server utilized is equipped with an Intel Xeon Silver 4210R CPU, an NVIDIA GeForce RTX 3080 graphics card, 
and 64GB of memory.

Multi‑UAV combat scenario design
In the devised combat scenario, our UAV encounter enemy UAV while on patrol, initiating air combat within 
low-altitude airspace. The objectives include destroying the enemy aircraft, eliminating all enemy UAV, or deter-
mining the winner based on the surviving side with more UAV by the end of the combat period. The experimental 
sampling occurs at a step of 1 second, with each round of combat lasting 600 seconds. The initial distance between 
the two sides is approximately 8 kilometers, and the horizontal heading is set at 0◦ , incrementing in a clockwise 
direction. Details regarding the main performance and initial state configurations are shown in Table 1.

The Max ATA (Antenna Train Angle) is angle between the longitudinal axis of allied UAV’s flight and the 
radar sight line that detects enemy UAV.

Model building
Using the multi-UAV air combat method based on hierarchical reinforcement learning proposed in this paper to 
construct a reinforcement learning agent, the relevant elements involved in reinforcement learning are defined 
according to the method described in this paper.

•	 State space design
	   The status information encompasses details regarding both allied and enemy UAV, as well as launched mis-

siles. Owing to the constraints of radar detection range, certain information regarding the position, heading, 
or speed of enemy UAV or missiles might be unavailable. In such cases, the missing information is recorded 

(8)a =

{

argmaxaQ(o, a), ε,
randomaction, 1− ε,

}

.

(9)πn  → πn
sub : {πj|dj = 1, j ∈ [0, tround]},

Figure 2.   Schematic diagram of experience decomposition mechanisms.
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as zero. Additionally, all the data is descaled. Please refer to Table 2 for a comprehensive breakdown of the 
state space information.

The observed enemy UAV and enemy UAV missile information and the allied UAV state information men-
tioned in Table 2 are shared between UAVs. However, using all the shared information will reduce the training 
efficiency, so we propose hierarchical decision networks to share specific state information between UAVs for 
different action decisions. We select different state information for training based on the needs of different action 
decisions. For the flight action decision network, the global observable state information is shared as input so that 
the UAVs can decide the flight direction and avoid missiles according to the overall battlefield situation, while 
the attack action decision network uses the individual UAV observable state information as input to generate 
the optimal attack target.

•	 Action space design
	   In this paper, a UAV’s decision-making actions encompass both flight control actions and attack actions. 

Flight control maneuvers involve adjustments in heading, altitude, and speed, while attack maneuvers encom-
pass the decision of whether to initiate an attack and determining the number of enemy aircraft to engage. To 
diminish the spatial complexity of decision-making actions, this paper discretizes the flight control actions, 
as outlined in Table 3.

•	 Reward design
	   The reward structure comprises two components: the detection class reward, denoted as rd , and the attack 

class reward, denoted as ri . The flight decision network undergoes training using the combined sum of rd and 
ri , while the attack decision network is trained exclusively using the obtained attack reward, ri . The specific 
reward design categories are shown in Table 4.

•	 Network design
	   The neural network architecture devised in this paper comprises a two-layer parallel structure, specifically 

the flight and attack decision layer networks. Both networks share a similar structure, employing a double 
hidden layer network configuration. Prior to entering the network, the input states necessitate normalization. 
The hyperparameters governing these networks are detailed in Table 5.

Table 1.   Parameter and initial state of aircraft.

Categories Value range Categories Value range

Radar detection range [0,1800m] UAV speed range [50,300]m/s

Number of missiles 6 Missile range [0,1200]m

Initial speed 200m/s Initial height 2000m

Initial course (ally) 0
◦ Initial course (enemy) 180

◦

Max ATA​ 45
◦ Missile speed range [0,500]m/s

Table 2.   State space information.

Entity name State information Entity name State information

Ally Position, Course, Speed, Number of missiles Enemy Position, Course, Speed

Ally missle Position, Course, Speed Enemy missle Position, Course, Speed

Table 3.   Action space information.

Action Value Action Value

Course Turn left, Hold on, Turn Right Height Pull up , Hold on, Dive

Speed Decelerated fligh, Steady flight, Accelerated flight Attack Not attack, Target ID
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Training result
To validate the efficacy of the algorithms proposed in this paper, models developed using the design methodology 
described above were benchmarked against several baseline algorithms in a homogeneous adversarial environ-
ment. The comparison algorithms encompassed common multi-intelligence adversarial algorithms such as the 
VDN algorithm, COMA algorithm22, and QMIX algorithm. The experiments were conducted, and win rates 
and combat loss rates were measured. Combat loss rate indicates the percentage of lost UAV by the conclusion 
of the battle. The experiments were executed through 10 rounds of training in 4v4 and 8v8 combat scenarios. 
The outcomes of the training and comparison illustrated represented in Fig. 3. The depicted curves represent 
the average outcomes across multiple training rounds. The results show that the method proposed in this paper 
achieves notably superior win rates and reduced combat loss rates compared to the baseline comparison algo-
rithms. Additionally, the proposed method demonstrates faster convergence during training. Specifically, our 
method begins converging after 100 training rounds, while the QMIX and VDN methods converge after 300 
training rounds. Although the COMA method shows a convergence rate similar to our method, its convergence 
outcomes are inferior.

To evaluate the ultimate performance of the algorithms, experiments were carried out in 4v4 and 8v8 battle 
scenarios. The final models were trained using each algorithm for confrontation testing, with testing encompass-
ing a total of 100 rounds, and with 500 games conducted per round.Every rounds of testing use the random seeds 
in the range of 1-100 which generated by a random function. The average test results are presented in Table 6. 
Analyzing the table, it is evident that our method outperforms the comparison algorithms in terms of the win 
rate, the loss rate, and stability.

The experiments described above demonstrate that the method proposed in this paper outperforms other 
baseline comparison algorithms with regard to the confrontation win rate and combat loss rate. Moreover, the 
training convergence speed is rapid, and the performance exhibits relatively stable behavior. These findings col-
lectively validate the effectiveness of the algorithm.

Ablation studies
The algorithm presented in this paper enhances the QMIX algorithm in two aspects. To assess the impact of 
various mechanisms on the performance enhancement of the algorithm, ablation experiments are conducted. 
These experiments involve removing one improvement from the proposed algorithm at a time and comparing 
the training outcomes in 4v4 and 8v8 adversarial environments. The configurations of the three comparison 

Table 4.   Reward shaping.

Event Reward Event Reward

Kill 10 Missile escaped 2

Out − 2 Detect the enemy 3

Win 30 Lose − 30

Draw − 6

Table 5.   Neural network hyperparameters.

Parameter Value Parameter Value

Optimizer Adam Replay buffer Size 3000

Learn rate 3e−4 Discount factor 0.96

Batch size 300 Initial expert sample size 1000

Figure 3.   Algorithm comparison diagram. (a) Comparison chart of the win rate (4v4); (b) Comparison chart of 
the win rate (8v8); (c)Comparison chart of the combat loss rate (4v4); (d) Comparison chart of the combat loss 
rate (8v8).
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algorithms are outlined in Table 7, where � signifies the inclusion of the corresponding improvement mechanism, 
and × signifies its exclusion.

Figure 4 illustrates the comparison results of the ablation experiment algorithms. Specifically, Figure 4a and 
b depict the comparison of victory rates during the ablation experiment training process, while Figure 4c and d 
present the comparison of combat loss rates during the same training process.

The figures show that the impact of removing a specific improvement method varies. In terms of algorithm 
stability, both the Ours-noH and Ours-noET methods exhibit better stability than the QMIX method. Regard-
ing convergence speed, models trained by the Ours-noH and Ours-noET methods display faster convergence 
than those trained by the QMIX method. Notably, the Ours-noET algorithm shows the fastest convergence, 
while Ours-noH converges more slowly, indicating the importance of empirical decomposition for algorithm 
convergence speed.

Considering the win rate, both the Ours-noH and Ours-noET algorithms outperform the QMIX method, 
with the Ours-noET algorithm showing a slightly higher win rate. Concerning the battle loss rate, the Ours-noH 
and Ours-noET methods exhibit slightly lower rates than QMIX, suggesting that both the hierarchical decision 
network and empirical decomposition contribute similarly to reducing the combat loss rate.

In summary, the improvements introduced by this algorithm generally outperform the QMIX method across 
convergence speed, stability, the win rate, and the combat loss rate. These experiments validate the effectiveness 
of the algorithm in addressing multi-UAV combat decision-making problems.

Disadvantageous combat test
In real air combat, the quantity of enemy UAV is often uncertain, possibly resulting in situations where our side 
faces a disadvantage. To evaluate the effectiveness of the algorithm proposed in this paper in such scenarios, its 
performance was tested in various degrees of disadvantageous combat situations (5v8, 6v8, 7v8).

Figure 5 illustrates the results of the algorithm comparison test across various levels of disadvantageous 
combat environments (5v8, 6v8, 7v8). Our algorithm consistently outperforms others in terms of both the win 

Table 6.   Algorithm test results. Significant values are in bold.

Algorithm Win rate std Combat loss std

Ours(4v4) 0.647 0.036 0.695 0.020

QMIX(4v4) 0.588 0.103 0.725 0.055

VDN(4v4) 0.612 0.032 0.759 0.022

COMA(4v4) 0.516 0.028 0.809 0.015

Ours(8v8)  0.829 0.041 0.655 0.011

QMIX(8v8) 0.818 0.043 0.683 0.016

VDN(8v8) 0.730 0.034 0.690 0.014

COMA(8v8) 0.442 0.048 0.723 0.019

Table 7.   Ablation experiment setting.

Algorithm Hierarchical network Transformation

Ours � �

QMIX × ×

Ours-noH × �

Ours-noET � ×

Figure 4.   Ablation experiment results. (a) Comparison chart of the win rate (4v4); (b) Comparison chart of the 
win rate (8v8); (c) Comparison chart of the combat loss rate (4v4); (d) Comparison chart of the combat loss rate 
(8v8).
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rate and combat loss rate across all disadvantageous combat tests. Notably, even under the 6v8 disadvantage, 
our algorithm achieves a win rate close to 50% , while the other algorithms fall below this mark. As the disad-
vantage diminishes, our algorithm exhibits a linear increase in the win rate. Conversely, the QMIX method 
displays significant fluctuations as the level of disadvantage changes, while our algorithm maintains relatively 
stable performance. In summary, our method demonstrates the ability to reach a win rate that exceed 50% in 
disadvantageous confrontations (where the number of fighters is at least 75% of the enemy), highlighting the 
effectiveness of our algorithm in such scenarios.

Test with noise
In real air combat environments, the data collected by radar sensors is often affected by noise. If the collected 
state space data is affected by noise, it will directly affect the accuracy of the UAVs action decision. We test the 
performance of the proposed algorithm and the baseline algorithm under noise interference. In our tests, we 
add noise to the enemy missile position, course and speed information to simulate the situation where the radar 
is subjected to noise interference. The dp ∈ [−100m, 100m] is noise added to enemy missile position data, the 
dc ∈ [−10◦, 10◦] is noise added to enemy missile course data and the ds ∈ [−20m/s, 20m/s] is noise added to 
enemy missile course data. The test results are shown in Table 8.

As shown in Table 8, all algorithms show a significant degradation in performance due to the received noise 
interference, but our algorithm still outperforms the baseline algorithm.

Results analysis
Through a comprehensive analysis of the experimental outcomes, we outline the emergent strategies derived 
from the multi-UAV combat model, as depicted in Fig. 6. In the visual representation, the red side represents 
allied UAV, the blue side signifies enemy UAV, and the yellow circular area denotes the range of missile explo-
sion damage.

•	 Efficient attack
	   During the initial stages of training, the attack actions of allied UAV controlled by the decision model tend 

to be random, resulting in frequent ineffective attacks and a depletion of ammunition before the conclusion 
of the confrontation. As training progresses, a noticeable evolution in behavior emerges. By step 86, allied 
UAV begin to strategically time their missile launches, opting to deploy them when relatively close to enemy 

(a) (b)

Figure 5.   Comparison of disadvantageous combat results. (a) The win rate; (b) The combat loss rate.

Table 8.   Algorithm test results with noise. Significant values are in bold.

Algorithm Win rate std Combat loss std

Ours(4v4) 0.534 0.052 0.765 0.031

QMIX(4v4) 0.492 0.211 0.812 0.075

VDN(4v4) 0.514 0.082 0.839 0.041

COMA(4v4) 0.413 0.068 0.901 0.033

Ours(8v8)  0.709 0.058 0.765 0.031

QMIX(8v8) 0.712 0.093 0.793 0.042

VDN(8v8) 0.601 0.052 0.819 0.049

COMA(8v8) 0.304 0.067 0.841 0.056
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UAV, thereby improving the attack success rates. Conversely, at step 70, enemy UAV choose to launch missiles 
from maximum range positions.

•	 Disperse the formation
	   At step 148, the allied UAV positioned on the left side of the formation exhibit dispersal after missile 

launches, aiming to minimize the chances of being targeted by incoming missiles. Conversely, enemy fighters 
positioned on the right side of the formation are concentrated on the upper right side, significantly increasing 
their vulnerability to missile attacks. Consequently, the majority of the clustered red fighters shown in step 
194 are successfully shot down.

•	 High-speed circling to find a gaming advantage
	   In step 330 depicted in Fig. 6, allied UAV are observed circling rapidly in the upper middle position. This 

swift movement complicates the ability of the red fighters to find an optimal launching angle (restricted to a 
maximum of 45 degrees). Simultaneously, our fighters execute high-speed circling maneuvers in the upper 
right direction, positioning themselves behind the enemy and launching missiles at the most effective angle. 
Consequently, in step 330, the enemy UAV are successfully shot down. As the round concludes, the number 
of allied UAV overwhelmingly dominates, securing victory in the game.

Conclusion
This paper aims to enhance the decision-making efficiency in multi-UAV combat by integrating hierarchical 
decision-making principles with the experience decomposition and transformation method. It presents a novel 
multi-UAV combat decision-making approach based on hierarchical reinforcement learning, and the proposed 
method is evaluated through comparative experiments in 4v4 and 8v8 combat scenarios. Additionally, ablation 
experiments are designed to analyze the impact of distinct algorithmic enhancements on the performance, 
behaviors, and strategies of the model. The algorithm performance of the algorithm is further tested in various 
disadvantageous combat scenarios, and its behavioral strategies are summarized.

The experimental results highlight that the proposed method significantly improves the training speed and 
decision-making performance of the air combat model. This research provides valuable insights for designing 
decision-making methods tailored to more complex and realistic multi-UAV combat environments.

While the current focus is on enhancing training efficiency in multi-UAV combat, this study employs a 
relatively simplified simulation environment. Future research will involve designing more realistic simulation 
environments, that closely resemble actual air combat scenarios, to validate the algorithmic experiments.

Data availibility
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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