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Hippopotamus optimization 
algorithm: a novel nature‑inspired 
optimization algorithm
Mohammad Hussein Amiri 1, Nastaran Mehrabi Hashjin 1*, Mohsen Montazeri 1, 
Seyedali Mirjalili 2,4 & Nima Khodadadi 3

The novelty of this article lies in introducing a novel stochastic technique named the Hippopotamus 
Optimization (HO) algorithm. The HO is conceived by drawing inspiration from the inherent behaviors 
observed in hippopotamuses, showcasing an innovative approach in metaheuristic methodology. 
The HO is conceptually defined using a trinary‑phase model that incorporates their position 
updating in rivers or ponds, defensive strategies against predators, and evasion methods, which 
are mathematically formulated. It attained the top rank in 115 out of 161 benchmark functions 
in finding optimal value, encompassing unimodal and high‑dimensional multimodal functions, 
fixed‑dimensional multimodal functions, as well as the CEC 2019 test suite and CEC 2014 test suite 
dimensions of 10, 30, 50, and 100 and Zigzag Pattern benchmark functions, this suggests that the HO 
demonstrates a noteworthy proficiency in both exploitation and exploration. Moreover, it effectively 
balances exploration and exploitation, supporting the search process. In light of the results from 
addressing four distinct engineering design challenges, the HO has effectively achieved the most 
efficient resolution while concurrently upholding adherence to the designated constraints. The 
performance evaluation of the HO algorithm encompasses various aspects, including a comparison 
with WOA, GWO, SSA, PSO, SCA, FA, GOA, TLBO, MFO, and IWO recognized as the most extensively 
researched metaheuristics, AOA as recently developed algorithms, and CMA‑ES as high‑performance 
optimizers acknowledged for their success in the IEEE CEC competition. According to the statistical 
post hoc analysis, the HO algorithm is determined to be significantly superior to the investigated 
algorithms. The source codes of the HO algorithm are publicly available at https:// www. mathw orks. 
com/ matla bcent ral/ filee xchan ge/ 160088‑ hippo potam us‑ optim izati on‑ algor ithm‑ ho.

Abbreviations
MaxIter  Max number of iterations
BF  Benchmark Function
UM  Unimodal
MM  Multimodal
FM  Fixed-dimension Multimodal
HM  High-dimensional Multimodal
ZP  Zigzag Pattern benchmark test
TCS  Tension/Compression Spring
WB  Welded Beam
PV  Pressure Vessel
WFLO  Wind Farm Layout Optimization
F  Function
CEC  IEEE Congress on Evolutionary Computation
D  Dimension
C19  CEC2019
C14  CEC2014
CMA-ES  Evolution Strategy with Covariance Matrix Adaptation
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MFO  Moth-flame Optimization
AOA  Arithmetic Optimization Algorithm
TLBO  Teaching-Learning-Based Optimization
IWO  Invasive Weed Optimization
GOA  Grasshopper Optimization Algorithm
FA  Firefly Algorithm
PSO  Particle Swarm Optimization
SSA  Salp Swarm Algorithm
CD  Critical Difference
GWO  Gray Wolf Optimization
SCA  Sine Cosine Algorithm
WOA  Whale Optimization Algorithm
Best  The best result
Worst  The worst result
Std.  Standard Deviation
Mean  Average best result

Numerous issues and challenges in today’s science, industry, and technology can be defined as optimization 
problems. All optimization problems have three parts: an objective function, constraints, and decision  variables1. 
Optimization algorithms can be categorized in diverse manners for addressing such problems. Nonetheless, 
one prevalent classification method is based on its inherent approach to optimizing problems, distinguishing 
between stochastic and deterministic  algorithms2. Unlike stochastic methods, deterministic methods require 
more extensive information about the  problem3. However, stochastic methods do not guarantee finding a global 
optimal solution. In today’s context, optimization problems we often encounter are nonlinear, complex, non-dif-
ferentiable, piecewise functions, non-convex, and involve many decision  variables4. For such problems, employing 
stochastic methods for their solution tends to be more straightforward and more suitable, especially when we 
have limited information about the problem or intend to treat it as a black  box5.

One of the most important and widely used methods in stochastic approaches is metaheuristic algorithms. 
In metaheuristic algorithms, feasible initial solution candidates are randomly generated. Then, iteratively, these 
initial solutions are updated according to the specified relationships in the metaheuristic algorithm. In each step, 
feasible solutions with better costs are retained based on the number of search agents. This updating continues 
until the stopping iteration is satisfied, typically achieving a MaxIter such as the Number of Function Evalua-
tions (NFE) or reaching a predefined cost value set by the user for the cost function. Because of the advantages 
of metaheuristic algorithms, they are used in various applications, and the results show that these algorithms 
can improve efficiency in these applications. A good optimization algorithm is able to create a balance between 
exploration and exploitation, in the sense that in exploration, attention is paid to global search, and in exploita-
tion, attention is paid to local search around the obtained  answers6.

Numerous optimization algorithms have been introduced; however, introducing and developing a new, highly 
innovative algorithm are still deemed necessary, as per the No Free Lunch (NFL)  theorem7. The NFL theorem 
asserts that the superior performance of a metaheuristic algorithm in solving specific optimization problems does 
not guarantee similar success in solving different problems. Therefore, the need for an algorithm that demon-
strates improved speed of convergence and the ability to find the optimal solution compared to other algorithms 
is highlighted. The broad scope of utilizing metaheuristic optimization algorithms has garnered attention from 
researchers across multiple disciplines and domains. Metaheuristic optimization algorithms find applications in a 
wide range of engineering disciplines, including medical engineering problems, such as improving classification 
accuracy by adjusting hyperparameters using metaheuristic optimization algorithms and adjusting weights in 
neural  networks8 or fuzzy  systems9.

Similarly, these algorithms contribute to intelligent fault diagnosis and tuning controller  coefficients10 in 
control and mechanical engineering. In telecommunication engineering, they aid in identifying digital  filters11, 
while in energy engineering, they assist in tasks such as modeling solar  panels12, optimizing their placement, 
and even wind turbine  placement13. In civil engineering, metaheuristic optimization algorithms are utilized for 
structural  optimization14, while in the field of economics, they enhance stock portfolio  optimization15. Addition-
ally, metaheuristic optimization algorithms play a role in optimizing thermal systems in chemical  engineering16, 
among other applications.

The distinctive contributions of this research lie in developing a novel metaheuristic algorithm termed the HO, 
rooted in the emulation of Hippopotamuses’ behaviors in the natural environment. The primary achievements 
of this study work can be outlined as follows:

• The design of HO is influenced by the intrinsic behaviors observed in hippopotamuses, such as their position 
update in the river or pond, defence tactics against predators, and methods of evading predators.

• HO is mathematically formulated through a three-phase model comprising their position update, defence, 
and evading predators.

• To evaluate the effectiveness of the HO in solving optimization problems, it undergoes testing on a set of 161 
standard BFs of various types of UM, MM, ZP benchmark test, the CEC 2019, the CEC 2014 dimensions of 
10, 30, 50, and 100 to investigate the effect of the dimensions of the problem on the performance of the HO 
algorithm

• The performance of the HO is evaluated by comparing it with the performance of twelve widely well-kown 
metaheuristic algorithms.
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• The effectiveness of the HO in real-world applications is tested through its application to tackle four engineer-
ing design challenges.

The article is structured into five sections. The “Literature review’’ section focuses on related work, while 
the “Hippopotamus Optimization Algorithm” section covers the HO approach introduced, modelled, and HO’s 
limitations. The “Simulation results and comparison” section presents simulation results and compares the 
performance of the different algorithms. The performance of HO in solving classical engineering problems is 
studied in the “Hippopotamus optimization algorithm for engineering problems” section, and “Conclusions and 
future works” section provides conclusions based on the article’s findings.

Literature review
As mentioned in the introduction, it should be noted that optimization algorithms are not confined to a singular 
discipline or specialized research area. This is primarily because numerous real-world problems possess intricate 
attributes, including nonlinearity, non-differentiability, discontinuity, and non-convexity. Given these complexi-
ties and uncertainties, stochastic optimization algorithms demonstrate enhanced versatility and a heightened 
capacity to address such challenges effectively. Consequently, they exhibit a more remarkable ability to accom-
modate and navigate the intricacies and uncertainties inherent in these problems. Optimization algorithms 
often draw inspiration from natural phenomena, aiming to model and simulate natural processes. Physical laws, 
chemical reactions, animal behavior patterns, social behavior of animals, biological evolution, game theory 
principles, and human behavior have received significant attention in this regard. These natural phenomena 
serve as valuable sources of inspiration for developing optimization algorithms, offering insights into efficient 
and practical problem-solving strategies.

Optimization algorithms can be classified from multiple perspectives. In terms of objectives, they can be 
grouped into three categories: single-objective, multi-objective, and many-objective  algorithms17. From the 
standpoint of decision variables, algorithms can be characterized as either continuous or discrete (or binary). 
Furthermore, they can be subdivided into constrained and unconstrained optimization algorithms, depending 
on whether constraints are imposed on the decision variables. Such classifications provide a framework for 
understanding and categorizing optimization algorithms based on different criteria. From another perspective, 
optimization algorithms can be categorized based on their sources of inspiration. These sources can be classi-
fied into six main categories: evolutionary algorithms, physics or chemistry-based algorithms, swarm-based 
algorithms, human-inspired algorithms, mathematic-based algorithms, and game theory-inspired algorithms. 
While the first four categories are well-established and widely recognized, the mathematic-based and game 
theory-inspired categories may need to be more known.

Optimization algorithms that draw inspiration from swarm-based are commonly utilized to model the col-
lective behavior observed in animals, plants, and insects. For instance, the American Zebra Optimization Algo-
rithm (ZOA)18. The inspiration for ZOA comes from the foraging behavior of zebras and their defensive behav-
ior against predators during foraging. Similarly, the inspiration for Northern Goshawk Optimization (NGO)19 
comes from the hunting behavior of the Northern Goshawk. Among the notable algorithms in this category 
are Particle Swarm Optimization (PSO)20, Ant Colony Optimization (ACO)21, and Artificial Bee Colony (ABC) 
 algorithm22, Tunicate Swarm Algorithm (TSA)23, Beluga Whale Optimization (BWO)24, Aphid–Ant Mutual-
ism (AAM)25, artificial Jellyfish Search (JS)26, Spotted Hyena Optimizer (SHO)27, Honey Badger Algorithm 
(HBA)28, Mantis Search Algorithm (MSA)29, Nutcraker Optimization Algorithm (NOA)30, Manta Ray Foraging 
Optimization (MRFO)31, Orca Predation Algorithm (OPA)32, Yellow Saddle Goatfish (YSG)33, Hermit Crab 
Optimization Algorithm (HCOA)34, Cheetah Optimizer (CO)35, Walrus Optimization Algorithm (WaOA)36, 
Red-Tailed Hawk algorithm (RTH)37, Barnacles Mating Optimizer (BMO)38, Meerkat Optimization Algorithm 
(MOA)39, Snake Optimizer (SO)40, Grasshopper Optimization Algorithm (GOA)41, Social Spider Optimization 
(SSO)42, Whale Optimization Algorithm (WOA)43, Ant Lion Optimizer (ALO)44, Grey Wolf Optimizer (GWO)45, 
Marine Predators Algorithm (MPA)46 ,Aquila Optimizer (AO)47, Mountain Gazelle Optimizer (MGO)48, Artificial 
Hummingbird Algorithm (AHA)49, African Vultures Optimization Algorithm (AVOA)50, Bonobo Optimizer 
(BO)51, Salp Swarm Algorithm (SSA)52, Harris Hawks Optimizer (HHO)53, Colony Predation Algorithm (CPA)54, 
Adaptive Fox Optimization (AFO)55, Slime Mould Algorithm (SMA)3, Spider Wasp Optimization (SWO)56, Arti-
ficial Gorilla Troops Optimizer (GTO)57, Krill Herd Optimization (KH)58, Alpine Skiing Optimization (ASO)59, 
Shuffled Frog-Leaping Algorithm (SFLA)60, Firefly Algorithms (FA)61, Komodo Mlipir Algorithm (KMA)62, 
Prairie Dog Optimization (PDO)63, Tasmanian Devil Optimization (TDO)64, Reptile Search Algorithm (RSA)65, 
Border Collie Optimization (BCO)66, Cuckoo Optimization Algorithm (COA)67 and Moth-flame optimization 
algorithm (MFO)68 are novel optimization algorithm that has been introduced in recent years. They belong to 
the category of swarm-based optimization algorithms. These algorithms encapsulate the principles of swarm 
intelligence, offering effective strategies for solving optimization problems by emulating the cooperative and 
adaptive behaviors found in natural swarms.

Another category of optimization algorithms is based on the origin of inspiration from biological evolu-
tion, genetics, and natural selection. The genetic optimization algorithm (GA)69 is one of the most well-known 
algorithms in this category. Among the notable algorithms in this category are Memetic Algorithm (MA)70, Dif-
ferential Evolution (DE)71 Evolution Strategies (ES)72 Biogeography-Based Optimization (BBO)73, Liver Cancer 
Algorithm (LCA)74, Genetic Programming (GP)75, Invasive Weed Optimization algorithm (IWO)76, Electric 
Eel Foraging Optimization (EEFO)77, Greylag Goose Optimization (GGO)78 , and Puma Optimizer (PO)79. The 
Competitive Swarm Optimizer (CSO)80 is crafted explicitly for handling large-scale optimization challenges, 
taking inspiration from PSO while introducing a unique conceptual approach. In CSO, the adjustment of particle 
positions deviates from the inclusion of personal best positions or global best positions. Instead, it employs a 
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pairwise competition mechanism, allowing the losing particle to learn from the winner and adjust its position 
accordingly. The Falcon Optimization Algorithm (FOA)81 is inspired by the hunting behavior of falcons. The 
Barnacles Mating Optimizer (BMO)82 algorithm takes inspiration from the mating behavior observed in barna-
cles in their natural habitat. The Pathfinder Algorithm (PFA)83 is tailored to address optimization problems with 
diverse structures. Drawing inspiration from the collective movement observed in animal groups and the hierar-
chical leadership within swarms, PFA seeks to discover optimal solutions akin to identifying food areas or prey.

Optimization algorithms are based on the origin of physical or chemical laws. As the name of this category 
suggests, the concepts are inspired by physical laws, chemical reactions, or chemical laws. Some of the algorithms 
in this category include Simulated Annealing (SA)84, Snow Ablation Optimizer (SAO)85, Electromagnetic Field 
Optimization (EFO)86, Light Spectrum Optimization (LSO)87, String Theory Algorithm (STA)88, Harmony Search 
(HS)89, Multi-Verse Optimizer (MVO)90, Black Hole Algorithm (BH)91, Gravitational Search Algorithm (GSA)92, 
Artificial Electric Field Algorithm (AEFA)93 draws inspiration from the principles of Coulomb’s law governing 
electrostatic force. Magnetic Optimization Algorithm (MOA)94, Chemical Reaction Optimization (CRO)95 , Atom 
Search Optimization (ASO)96, Henry Gas Solubility Optimization (HGSO)97, Nuclear Reaction Optimization 
(NRO)98, Chernobyl Disaster Optimizer (CDO)99, Thermal Exchange Optimization (TEO)100, Turbulent Flow of 
Water-based Optimization (TFWO)101, Water Cycle Algorithm (WCA)102, Equilibrium Optimizer (EO)103, Lévy 
Flight Distribution (LFD)104, and Crystal Structure Algorithm (CryStAl)105 which takes inspiration from the 
symmetric arrangement of constituents in crystalline minerals like quartz.

Human-inspired algorithms derive inspiration from the social behavior, learning processes, and communi-
cation patterns found within human society. Some of the algorithms in this category include Driving Training-
Based Optimization (DTBO)106, Fans Optimization (FO)107, Mother Optimization Algorithm (MOA)108, Moun-
taineering Team-Based Optimization (MTBO)109, Human Behavior-Based Optimization (HBBO)110, Chef-Based 
Optimization Algorithm (CBOA)111 is the process of acquiring culinary expertise through training programs. 
Teaching–Learning-Based Optimization (TLBO)112, Political Optimizer (PO)113, In the War Strategy Optimiza-
tion (WSO)114 optimization algorithm, two human strategies during war, attack and defence, are modelled. EVo-
lutive Election Based Optimization (EVEBO)115, Distance-Fitness Learning (DFL)116, and Cultural Algorithms 
(CA)117. Supply–Demand-Based Optimization (SDO)118 is inspired by the economic supply–demand mechanism 
and is crafted to emulate the dynamic interplay between consumers’ demand and producers’ supply. The Search 
and Rescue Optimization Algorithm (SAR)119 takes inspiration from the exploration behavior observed during 
search and rescue operations conducted by humans. The Student Psychology Based Optimization (SPBO)120 
algorithm draws inspiration from the psychology of students who aim to enhance their exam performance and 
achieve the top position in their class. The Poor and Rich Optimization (PRO)121 algorithm is inspired by the 
dynamics between the efforts of poor and rich individuals to improve their economic situations. The algorithm 
mirrors the behavior of both the rich, who seek to widen the wealth gap, and the poor, who endeavor to accu-
mulate wealth and narrow the gap with the affluent.

Game-based optimization algorithms often model the rules of a game. Some of the algorithms in this category 
include Squid Game Optimizer (SGO)122, Puzzle Optimization Algorithm (POA)123, and Darts Game Optimizer 
(DGO)124.

Mathematical theories inspire mathematical algorithms. For example, Arithmetic Optimization Algorithm 
(AOA)125 ,the Chaos Game Optimization (CGO)126 is inspired by chaos theory and fractal configuration prin-
ciples. Another known algorithm in this category are Sine Cosine Algorithm (SCA)127, Evolution Strategy with 
Covariance Matrix Adaptation (CMA-ES)128, and Quadratic Interpolation Optimization (QIO).

Hippopotamus optimization algorithm
In this section, we articulate the foundational inspiration and theoretical underpinnings of the proposed HO 
Algorithm.

Hippopotamus
The hippopotamus is one of the fascinating creatures residing in  Africa129. This animal falls under the clas-
sification of vertebrates and specifically belongs to the group of mammals within the vertebrate  category130. 
Hippopotamuses are semi-aquatic organisms that predominantly occupy their time in aquatic environments, 
specifically rivers and ponds, as part of their  habitat131,132. Hippopotamuses exhibit a social behavior wherein they 
reside in collective units referred to as pods or bloats, typically comprising a population ranging from 10 to 30 
 individuals133. Determining the gender of hippopotamuses is not easily accomplished as their sexual organs are 
not external, and the only distinguishing factor lies in the difference in their weight. Adult hippopotamuses can 
stay submerged underwater for up to 5 min. This species of animal, in terms of appearance, bears resemblance to 
venomous mammals such as the shrew, but its closest relatives are whales and dolphins, with whom they shared 
a common ancestor around 55 million years  ago134.

Despite their herbivorous nature and reliance on a diet consisting mainly of grass, branches, leaves, reeds, 
flowers, stems, and plant  husks135, hippopotamuses display inquisitiveness and actively explore alternative food 
sources. Biologists believe that consuming meat can cause digestive issues in hippopotamuses. These animals 
possess extremely powerful jaws, aggressive temperament, and territorial behavior, which has classified them 
as one of the most dangerous mammals in the  world136. The weight of male hippopotamuses can reach up to 
9,920 pounds, while females typically weigh around 3,000 pounds. They consume approximately 75 pounds 
of food daily. Hippopotamuses engage in frequent conflicts with one another, and occasionally, during these 
confrontations, one or multiple hippopotamus calves may sustain injuries or even perish. Due to their large size 
and formidable strength, predators generally do not attempt to hunt or attack adult hippopotamuses. However, 
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young hippopotamuses or weakened adult individuals become vulnerable prey for Nile crocodiles, lions, and 
spotted  hyenas134.

When attacked by predators, hippopotamuses exhibit a defensive behavior by rotating towards the assailant 
and opening their powerful jaws. This is accompanied by emitting a loud vocalization, reaching approximately 
115 decibels, which instils fear and intimidation in the predator, often deterring them from pursuing such a risky 
prey. When the defensive approach of a hippopotamus proves ineffective or when the hippopotamus is not yet 
sufficiently strong, it retreats rapidly at speeds of approximately 30 km/h to distance itself from the threat. In 
most cases, it moves towards nearby water bodies such as ponds or  rivers136.

Inspiration
The HO draws inspiration from three prominent behavioral patterns observed in the life of hippopotamuses. 
Hippopotamus groups are comprised of several female hippopotamuses, hippopotamus calves, multiple adult 
male hippopotamuses, and a dominant male hippopotamus (the leader of the herd)136. Due to their inherent 
curiosity, young and calves hippopotamuses often display a tendency to wander away from the group. As a con-
sequence, they may become isolated and become targets for predators.

The secondary behavioral pattern of hippopotamuses is defensive in nature, triggered when they are under 
attack by predators or when other creatures intrude into their territory. Hippopotamuses exhibit a defensive 
response by rotating themselves toward the predator and employing their formidable jaws and vocalizations 
to deter and repel the attacker (Fig. 1). Predators such as lions and spotted hyenas possess an awareness of this 
phenomenon and actively seek to avoid direct exposure to the formidable jaws of a hippopotamus as a precaution-
ary measure against potential injuries. The final behavioral pattern encompasses the hippopotamus’ instinctual 
response of fleeing from predators and actively seeking to distance itself from areas of potential danger. In such 
circumstances, the hippopotamus strives to navigate toward the closest body of water, such as a river or pond, 
as lions and spotted hyenas frequently exhibit aversion to entering aquatic environments.

Mathematical modelling of HO
The HO is a population-based optimization algorithm, in which search agents are hippopotamuses. In the HO 
algorithm, hippopotamuses are candidate solutions for the optimization problem, meaning that the position 
update of each hippopotamus in the search space represents values for the decision variables. Thus, each hip-
popotamus is represented as a vector, and the population of hippopotamuses is mathematically characterized 
by a matrix. Similar to conventional optimization algorithms, the initialization stage of the HO involves the 
generation of randomized initial solutions. During this step, the vector of decision variables is generated using 
the following formula:

where χi  represents the position of the i th candidate solution, r is a random number in the range of 0 to 1, and 
lb  and ub  denote the lower and upper bounds of the j th decision variable, respectively. Given that N  denotes 
the population size of hippopotamuses within the herd, and m represents the number of decision variables in 
the problem, the population matrix is formed by Eq. (2).

(1)χi : xi,j = lbj + r.
(

ubj − lbj
)

, i = 1, 2, . . . ,N , j = 1, 2, . . . ,m

Figure 1.  (a–d) shows the defensive behavior of the hippopotamus against the  predator136.
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Phase 1: The hippopotamuses position update in the river or pond (Exploration). Hippopotamus herds are 
composed of several adult female hippopotamuses, calves hippopotamuses, multiple adult male hippopota-
muses, and dominant male hippopotamuses (the leader of the herd). The dominant hippopotamus is determined 
based on the objective function value iteration (The lowest for the minimization problem and the highest for the 
maximization problem). Typically, hippopotamuses tend to gather in close proximity to one another. Dominant 
male hippopotamuses protect the herd and territory from potential threats. Multiple female hippopotamuses 
are positioned around the male hippopotamuses. Upon reaching maturity, male hippopotamuses are ousted 
from the herd by the dominant male. Subsequently, these expelled male individuals are required to either attract 
females or engage in dominance contests with other established male members of the herd in order to establish 
their own dominance. Equation (3) expresses the mathematical representation of the position of male hippo-
potamus members of the herd in the lake or pond.

In Eq. (3) χimhippo  represents male hippopotamus position, Dhippo  denotes the dominant hippopotamus 
position (The hippopotamus that has the best cost in the current iteration). −→r 1,...,4 is a random vector between 
0 and 1, r5 is a random number between 0 and 1 (Eq. 4), I1 and I2 is an integer between 1 and 2 (Eqs. 3 and 6). 
mG i  refers to the mean values of some randomly selected hippopotamus with an equal probability of including 
the current considered hippopotamus ( χi ) and y1 is a random number between 0 and 1 (Eq. 3). In Eq. (4) ̺ 1 and 
̺2 are integer random numbers that can be one or zero.

Equations (6) and (7) describe female or immature hippopotamus position ( χiFBhippo  ) within the herd. Most 
immature hippopotamuses are near their mothers, but due to curiosity, sometimes immature hippopotamuses are 
separated from the herd or away from their mothers. If T is greater than 0.6, it means the immature hippopotamus 
has distanced itself from its mother (Eq. 5). If r6 , which is a number between 0 and 1 (Eq. 7), is greater than 0.5, 
it means the immature hippopotamus has distanced itself from its mother but is still within or near the herd, 
Otherwise, it has separated from the herd. This behavior of immature and female hippopotamuses is modelled 
according to Eqs. (6) and (7). h1 and h2 are numbers or vectors randomly selected from the five scenarios in the 
h  equation. In Eq. (7)  r7 is a random number between zero and one. Equations (8), (9) describe male and female 
or immature hippopotamus position update within the herd. Fi  is objective function value.

(2)χ =

















χ1
...
χi
...

χN

















N×m
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x1,1 · · · v1,j · · · x1,m
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. . .
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. ...
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N×m

(3)χi
Mhippo : xMhippo

i,j = xi,j + y1.
(

Dhippo− I1xi,j
)

fori = 1, 2, . . . ,

[

N

2

]

andj = 1, 2, . . . ,m

(4)h =



















I2 ×
−→r 1 + (∼ ̺1)

2×−→r 2 − 1
−→r 3

I1 ×
−→r 4 + (∼ ̺2)

r5

(5)T = exp
(

−
t
T

)

(6)χi
FBhippo : xFBhippo

i,j =

{

xi,j + h1.
(

Dhippo− .I2MG i
)

T > 0.6

� else

(7)� =

{

xi,j + k2.
(

MG i −Dhippo
)

r6 > 0.5

lbj + r7.
(

ubj − lbj
)

else

fori = 1, 2, . . . ,

[

N

2

]

andj = 1, 2, . . . ,m.

(8)χi =

{

χi
MhippoF

Mhippo
i < Fi

χi else
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Using h  vectors, I1 and I2 scenarios enhance the global search and improves exploration in the proposed 
algorithm. It leads to a better global search and enhances the exploration process in the proposed algorithm.

Phase 2: Hippopotamus defence against predators (Exploration). One of the key reasons for the herd living of 
hippopotamuses can be attributed to their safety and security. The presence of these large and heavy-weighted 
herding’s of animals can deter predators from approaching them closely. Nevertheless, due to their inherent curi-
osity, immature hippopotamuses may occasionally deviate from the herd and become potential targets for Nile 
crocodiles, lions, and spotted hyenas, given their relatively lesser strength in comparison to adult hippopota-
muses. Sick hippopotamuses, similar to immature ones, are also susceptible to being preyed upon by predators.

The primary defensive tactic employed by hippopotamuses is swiftly turning towards the predator and emit-
ting loud vocalizations to deter the predator from approaching them closely (Fig. 2). During this phase, hip-
popotamuses may exhibit a behavior of approaching the predator to induce its retreat, thus effectively warding 
off the potential threat. Equation (10) represents the predator’s position in search space.

where −→r 8 represents a random vector ranging from zero to one.

Equation (11) indicates the distance of the ith hippopotamus to the predator. During this time, the hip-
popotamus adopts a defensive behavior based on the factor FPredator j  to protect itself against the predator. If 
FPredator j  is less than Fi  , indicating the predator is in very close proximity to the hippopotamus, in such a case, 
the hippopotamus swiftly turns towards the predator and moves towards it to make it retreat. If  FPredator j  is 
greater, it indicates that the predator or intruding entity is at a greater distance from the hippopotamus’s territory 
Eq. (12). In this case, the hippopotamus turns towards the predator but with a more limited range of movement. 
The intention is to make the predator or intruder aware of its presence within its territory.

χi
HippoR is a hippopotamus position which was faced to predator. −→RL is a random vector with a Levy distribution, 

utilized for sudden changes in the predator’s position during an attack on the hippopotamus. The mathematical 
model for the random movement of Lévy  movement46 is calculated as Eq. (13). w  and v  are the random numbers 

(9)χi =

{

χi
FBhippoF

FBhippo
i < Fi

χi else

(10)Predator : Predator j = lbj +−→r 8.
(

ubj − lbj
)

, j = 1, 2, . . . ,m.

(11)
−→
D =

∣

∣Predator j − xi,j
∣

∣

(12)χi
HippoR : xHippoRi,j =











−→
RL⊕ Predator j,+

�

f
(c−d×cos(2πg))

�

.
�

1
−→
D

�

FPredator j < Fi

−→
RL⊕ Predator j,+

�

f
(c−d×cos(2πg))

�

.

�

1

2×
−→
D+

−→r 9.

�

FPredator j ≥ Fi,

fori =
[

N

2

]

+ 1,

[

N

2

]

+ 2, . . . ,N andj = 1, 2, . . . ,m

Figure 2.  Graphic representation of the phase 2.
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in [0,1], respectively; ϑ is a constant ( ϑ = 1.5), Ŵ is an abbreviation for Gamma function and σw  can be obtained 
by Eq. (14).

In Eq. (12) f  is a uniform random number between 2 and 4, c  is a uniform random number between 1 and 
1.5 and D is a uniform random number between 2 and 3. g  represents a uniform random number between − 1 
and 1. −→r 9 is a random vector with dimensions 1×m .

According to the Eq. (15), if FHippoR
i  is greater than F  , it means that the hippopotamus has been hunted 

and another hippopotamus will replace it in the herd, otherwise the hunter will escape and this hippopotamus 
will return to the herd. Significant enhancements were observed in the global search process during the second 
phase. The first and second phases complement each other and effectively mitigate the risk of getting trapped 
in local minima.

Phase 3: Hippopotamus Escaping from the Predator (Exploitation). Another behavior of a hippopotamus in 
the face of a predator is when the hippopotamus encounters a group of predators or is unable to repel the preda-
tor with its defensive behavior. In this situation, the hippopotamus tries to move away from the area (Fig. 3). 
Usually, the hippopotamus tries to run to the nearest lake or pond to avoid the harm of predators because spotted 
lions and hyenas avoid entering the lake or pond. This strategy leads to the hippopotamus finding a safe position 
close to its current location and modelling this behavior in Phase Three of the HO results in an enhanced ability 
for exploitation in local search. To simulate this behavior, a random position is generated near the current loca-
tion of the hippopotamuses. This behavior of the hippopotamuses is modelled according to Eqs. (16–19). When 
the newly created position improves the cost function value, it indicates that the hippopotamus has found a safer 
position near its current location and has changed its position accordingly. t  denotes the current iteration, while 
T  represents the MaxIter.

(13)Levy(ϑ) = 0.05×
w× σw

|v|
1
ϑ

(14)σw =





Ŵ(1+ ϑ)sin
�

πϑ
2

�

Ŵ
�

(1+ϑ)
2

�

ϑ2
(ϑ−1)

2





1
ϑ

(15)χi =

{

χi
HippoRF

HippoR
i < Fi

χiF
HippoR
i ≥ Fi

(16)lblocalj =
lbj
t
, ublocalj =

ubj
t
, t = 1, 2, . . . ,T

(17)χi
HippoE : xHippoE

i,j = xi,j + r10..

(

lbj local + s1.
(

ubj local − lbj local
))

Figure 3.  Drawing a Hippopotamus Escaping from the Predator.
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In Eq. (17), χiHippoE  is the position of hippopotamus which was searched to find the closest safe place. s1 is 
a random vector or number that is randomly selected from among three scenarios s  Eq. (18). The considered 
scenarios ( s  ) lead to a more suitable local search or, in other words, result in the proposed algorithm having a 
higher exploitation quality.

In Eq. (18) −→r 11 represents a random vector between 0 and 1, while r10 (Eq. 17) and r13 denote random num-
bers generated within the range of 0 and 1. Additionally, r12 is a normally distributed random number.

In the HO algorithm to update the population, we did not divide the population into three separate categories 
of immature, female, and male hippopotamus because although dividing them into separate categories would be 
better modelling of their nature, it would reduce the performance of the optimization algorithm.

Repetition process, and flowchart of HO
After completing each iteration of the HO algorithm, all population members are updated based on Phases 1 to 
3 this process of updating the population according to Eqs. (3–19) continues until the final iteration.

During the execution of the algorithm, the best potential solution is consistently tracked and stored. Upon 
the completion of the entire algorithm, the best candidate, referred to as the dominant hippopotamus solution, 
is unveiled as the ultimate solution to the problem. The HO’s procedural details are shown in Fig. 4 flowchart 
and Algorithm 1’s pseudocode.

Algorithm 1.  Pseudo-code of HO.

Computational complexity of HO
In this subsection, the HO computational complexity analysis is discussed. The total computational complexity 
of HO is equal to O

(

Nm
(

1+ 5×T

2

))

. The Nm  represents the computational complexity of the initial assign-
ment of the algorithm, which is the same for all metaheuristic optimization algorithms. The computational 
complexity of the initial phase in HO is denoted as NmT  . The computational complexity of the second phase 
in HO is NmT

2  . Finally, the computational complexity of the third phase is NmT  . Therefore, the total compu-
tational complexity of the main loop is Nm 5×T

2 .
Regarding competitor algorithms, WOA, GWO, SSA, PSO, SCA, FA, GOA, CMA-ES, SSA, MFO, and IWO 

have a time complexity equal to O(Nm(1+ T )) and TLBO and AOA have a computational complexity equal to 
O(Nm(1+ 2T )). Nevertheless, in order to ensure equitable comparative analysis, we standardized the popula-
tion size for each algorithm within the simulation study, thereby ensuring uniformity in the total count of func-
tion evaluations across all algorithms utilized. Other algorithms with higher time complexity were introduced, 
for instance, CGO, which exhibits a computational complexity of O(Nm(1+ 4T )).

i = 1, 2, . . . ,N , j = 1, 2, . . . ,m

(18)s =







2×−→r 11 − 1
r12
r13

(19)χi =

{

χi
HippoEF

HippoE
i < Fi

χiF
HippoE
i ≥ Fi
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Limitation of HO
The initial constraint of the HO, akin to all metaheuristic algorithms, lies in the absence of assurance regarding 
attaining the global optimum due to the stochastic search procedure. The second constraint stems from the NFL, 
implying the perpetual potential for newer metaheuristic algorithms to outperform HO. A further constraint 
involves the inability to assert HO as the preeminent optimizer across all optimization endeavors.

Simulation results and comparison
In this study, we juxtapose the efficacy of results attained through HO with a dozen established metaheuris-
tic algorithms such as SCA, GWO, WOA, GOA, SSA, FA, TLBO, CMA-ES, IWO, MFO, AOA, and PSO. The 
adjustment of control parameters is detailed as per the specifications outlined in Table 1. This section presents 
simulation studies of the HO applied to various challenging optimization problems. The effectiveness of the 
HO in achieving optimal solutions is evaluated using a comprehensive set of 161 standard BFs. These functions 
encompass UM, high-dimensional, FM, and the CEC 2014, CEC 2019, ZP, and 4 engineering problems.

To enhance the performance of functions F1 to  F2343, CEC 2019 test set, ZP, and engineering problems 
algorithms 30 independent runs encompassing 30,000 NFE and 60,000 NFE for CEC 2014 test set. The HO’s 
population number is maintained at a constant of 24 members for AOA and TLBO set 30 and other algorithms 
is 60, and the MaxIter is set on 500 and 1000 (CEC 2014). A comprehensive set of six statistical metrics, namely 
mean, best, worst, Std., median, and rank, are utilized for presenting the optimization outcomes. The mean index 

Figure 4.  HO’s flowchart.
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is particularly employed as a pivotal ranking parameter for evaluating the efficacy of metaheuristic algorithms 
across each BF.

The specifications of the software and machines used for simulation are as follows; Core (TM) i3-1005G1 
CPU processor with 1.20GHz with 8G for main memory and MacBook Air M1 with 8G for main memory.

Evaluation Unimodal benchmark functions
The assessment of functions was conducted, and the outcomes are presented in Table 2. Figure 6, shows conver-
gence of the three most effective algorithms for optimizing F1-F23. This evaluation is to determine the ability 
of the algorithms to local search on seven separate UM functions, shown as F1-F7. The HO achieved global 
optimum for F1-F3 and F5-F6 a feat unattained by any of the 12 algorithms subjected to evaluation. Its perfor-
mance in optimizing the F4 surpassed the others significantly. In a competitive scenario involving the F6, global 
optimum was achieved alongside four additional algorithms. Lastly, noteworthy superiority in performance was 
demonstrated by the HO for the F7. HO has consistently converged to zero Std. for F1- F4 and F6. For F7, the Std. 
is 4.10E-05, while for F5, it stands at 0.36343. The HO has the lowest Std. compared to the investigated algorithms.

Evaluation benchmark function high‑dimensional multimodal
The outcomes of F8-F13 which were HM function using algorithms are presented in Table 3. The objective 
behind choosing these functions was to assess algorithm’s global search capabilities. The HO outperformed all 
other algorithms in F8 by a significant margin. In F9, it achieved global optimum along with the WOA, which 
indicates outstanding performance compared to other algorithms. For F10, it outperformed all other algorithms. 
F11 converged to global optimum alongside the TLBO, demonstrating superior performance compared to other 
algorithms. In F12, GOA outperformed HO and TLBO and ranked first. In F13, HO obtained the first rank. For 
F8, the HO’s Std. is notably lower than the investigated algorithms. The F13 Std. is 0.012164, the lowest after the 
CMA-ES algorithm. This suggests that the HO demonstrates resilience in effectively addressing these functions 
(Fig. 6).

Table 1.  Assigned values to the control parameters of competitor algorithms.

Algorithm Parameter Value

GWO Convergence parameter ( a) Linear reduction from 2 to 0

SCA A 2

WOA

Convergence parameter ( a) Linear reduction 2 to 0

Parameter r A random vector between 0 and 1

Parameter l A random vector between -1 and 1

PSO

Velocity limit 10% of dimension range

Cognitive and social constant (C1,C2)=(2,2)

Topology Fully connected

Inertia weight Linear reduction from 0.9 to 0.1

GOA

l 1.5

f 0.5

cmin 0.00004

cmax 1

SSA
Initial speed ( v0) 0

Leader position update probability 0.5

FA

Alpha ( α) 0.2

Beta ( β) 1

Gamma ( γ) 1

TLBO
Teaching factor ( TF) round(1+rand)

Rand A random number between 0 and 1

CMA-ES
σ (0) 0.5

µ ⌊�\2⌋

AOA
a 0

µ 0.5

IWO

Minimum number of seeds ( Smin) 0

Maximum number of seeds ( Smax) 5

Initial value of standard deviation 1

Final value of standard deviation 0.001

Variance reduction exponent 2

MFO
b 1

r Linear reduction -1 to -2
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Evaluation fixed‑dimension multimodal benchmark function
The objective was to examine the algorithm’s capacity to achieve a harmonious equilibrium between exploration 
and exploitation while conducting the search procedure on F14-F23. Results are reported in Table 4. HO per-
formed best for F14-F23. The HO achieves a significantly lower Std. especially for F20-F22. The findings suggest 
that HO, characterized by its strong capability to balance exploration and exploitation, demonstrates superior 
performance when addressing FM and MM functions.

Figure 5 displays box plot diagrams depicting the optimal values of the objective function obtained from 30 
separate runs for F1-F23, utilizing a set of HO and 12 algorithms.

Evaluation of the ZP
Kudela and Matousek introduced eight novel challenging benchmark functions, presenting a formidable chal-
lenge for bound-constrained single-objective optimization. These functions are crafted on the foundation of a 
ZP characterized by their non-differentiable nature and remarkable multimodality, and introduced functions 
incorporate three adjustable parameters, allowing for alterations in their behavior and level of  difficulty137. Table 5 
presents the results for eight ZP (ZP-F1 to ZP-F8). In ZP-F1 and ZP-F2, WOA outperformed HO and TLBO 
and ranked first. The HO exhibited superior performance across ZP-F3 to ZP-F8, achieving global optimum for 
the objective function in ZP-F3 and ZP-F8. HO outperformed all investigated algorithms for ZP-F3 and ZP-F4. 
Furthermore, the HO achieved a remarkable result by achieving global optimum for ZP-F5 and ZP-F6 across all 
criteria. In the case of ZP-F7, HO was in close competition with the GWO algorithm and secured the first rank 
by achieving global optimum. A similar success was observed for the ZP-F8 function, where HO competed with 
the AOA algorithm and achieved global optimum (Fig. 6).

In addition, when examining the boxplot diagrams in Fig. 7, it is evident that the HO consistently demon-
strated a lower Std. than other algorithms. Figure 8, covering ZP-F1 to ZP-F8, demonstrates that the HO performs 
much faster than its competitors and reaches an unattainable optimal solution for other investigated algorithms.

Evaluation of the CEC 2019 test suite
CEC 2019 test BFs include ten complex functions described  in138. The details of optimization are reported in 
Table 6. C19–F1 and C19–F10 functions from the CEC 2019 test designed for single-objective real parameter 
optimization. They aim to find the best possible outcome globally. These functions are ideal for assessing how well 
algorithms can perform in a thorough search for the best solution. The HO achieved the top rank in C19-F2–C19-
F4 and C19-F7 functions. In C19-F1, it notably outperformed other algorithms across all criteria except the Best 
criterion Similar outcomes were observed in C19-F2, which ranked first with 3 top algorithms in converges (HO, 
PSO and SSA). The GWO achieved the top rank in C19-F1. In the case of C19-F3, HO secured the first position 
with a Std. better than that of the SSA algorithm. For C19-F4, both the Best and Mean criteria demonstrated 
significantly superior values compared to other algorithms. In C19-F5 CMA-ES surpassed of all algorithms.

The GOA achieved the top rank in C19-F6. In C19-F7 and C19-F9, it surpassed PSO by a slight margin, and 
in C19-F8 and C19-F10, it had a slight edge over the TLBO, respectively. Notably, in C19-F7, it outperformed 
PSO by a considerable margin. Finally, in C19-F8, HO emerged as the best across all criteria except the Best 
criterion while the TLBO found optimal value of C19-F8. In the box plots of Fig. 9, it is obvious that the HO has 
a dispersion of almost 0 in C19-F1 to C19-F4. Additionally, C19-F5 and C19-F6 have a much lower Std. than 
investigated algorithms. In the convergence plots of Fig. 10, we observe the excellent performance of the HO in 
achieving the optimal solution.

Evaluation of the CEC 2014 test suite
The CEC 2014 test suite encompasses a total of 30 standard BFs. These functions are categorized into UM func-
tions (C14–F1 to C14–F3), MM functions with subcategories (C14–F4 to C14–F16), hybrid functions (C14–F17 
to C14–F22), and composition functions (C14–F23 to C14–F30)139. The assessment of the HO is documented 
for CEC 2014 across varying dimensions (10, 30, 50, and 100) by employing 12 different algorithms. The results 
of this evaluation are presented in Table S1-S3 within the supplementary, accompanied by graphical representa-
tions depicted in Fig. S2-S9, illustrating the boxplots and convergence (The top 3 algorithms) diagrams HO has 
achieved the first rank in 83 out of 120 functions in finding optimal value. In the function (D = 30), C14-F13 
had Std. worse than the first rank algorithm with a difference of 0.1 but better than the known GWO, GOA, and 
CMA-ES algorithms. The same happened in the functions (D = 50) C14-F13 and (D = 100) C14-F5.

In functions (D = 30) C14-F13, (D = 50) C14-F13, and (D = 100) C14-F5 had a slight difference with the first 
ranking algorithm only in the Std. value. In the function (D = 50), C14-F29 ranked second compared to the PSO 
algorithm and was not good in Std. and Best compared to the top 3 algorithms. C14–F4 and C14–F30 present 
ideal choices for assessing the proficiency of metaheuristic algorithms in local search and exploitation due to their 
absence of local optima. These functions possess a single extremum, prompting a focal objective of assessing the 
metaheuristic algorithms’ efficacy in converging towards the global optimum during optimization endeavours.

Statistical analysis
To thoroughly evaluate the efficacy of the HO, we conduct a comprehensive statistical analysis by comparing it 
with the reviewed algorithms. The Wilcoxon nonparametric statistical signed-rank  test140 checks if there’s a big 
difference between pairs of data (See Table 7) It ranks the differences in size (ignoring whether they are positive 
or negative) and calculates a number based on those ranks. This number helps determine if the differences are 
likely due to chance or if they’re significant. A small p-value means there’s likely a big difference between the 
paired data. A big p-value means we can’t be sure there’s a significant difference.
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Figure 5.  Boxplot illustrating the performance of the HO in comparison to competing algorithms for 
optimizing BFs (F1-F23).
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Figure 5.  (continued)
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Figure 5.  (continued)
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Table 5.  Evaluation outcomes for the objectives specified in the ZP.

F M

Optimization Algorithms

HO WOA GWO SSA PSO SCA FA GOA TLBO CMA-ES MFO AOA IWO

ZP-F1

Mean 5.81E-66 3.70E-63 126.21 401.46 103.82 599.72 499.05 295.46 7.60E-39 570.29 394.48 0.20819 483.88

Best 5.47E-72 0 8.54E-27 302.31 72.97 390.51 383.14 227.12 5.90E-40 488.94 326.44 5.30E-05 428.22

Worst 6.08E-65 9.86E-62 686.76 528.15 132.22 821.23 576.72 414.65 7.28E-38 630.04 529.95 0.59081 574.49

Std 1.51E-65 1.80E-62 194.58 53.315 16.449 111.11 44.155 46.643 1.55E-38 34.272 45.389 0.16611 39.582

Median 1.17E-67 3.29E-65 20.172 390.45 100.2 613.96 501.48 290.25 3.14E-39 570.84 388.78 0.1819 478.19

Rank 1 2 6 9 5 13 11 7 3 12 8 4 10

ZP-F2

Mean 2.86E-65 9.29E-64 0.057452 411.24 167.96 464.66 1.36E-39 946.55 694.82 524.24 673.65 0.24434 919.95

Best 2.50E-71 0 6.23E-27 326.33 118.88 181.41 3.70E-40 843.24 579.84 328.51 518.82 0.00025022 680.28

Worst 4.92E-64 1.78E-62 1.7235 500.21 244.4 707.21 5.42E-39 1065.3 808.5 640.74 861.43 0.62708 1094.2

Std 9.69E-65 3.28E-63 0.31468 40.297 27.671 140.48 1.12E-39 58.929 66.872 63.56 70.097 0.17334 82.853

Median 3.14E-67 3.24E-65 4.47E-26 407.95 164.04 470.97 9.71E-40 943.5 681.74 543.1 672.55 0.23486 914.94

Rank 1 2 4 7 6 8 3 13 11 9 10 5 12

ZP-F3

Mean 1.66E-60 1.57E-54 55.432 549.6 305.04 548.83 491.76 543.73 493.46 702.89 387.35 536.12 0.17836

Best 0 2.26E-70 5.29E-27 520.92 223.48 125.47 474.81 461.05 389.78 674.68 356.77 478.31 6.41E-05

Worst 1.97E-59 4.25E-53 622.76 572.28 405.51 601.45 502.87 609.37 576.5 640.74 444.61 586.16 0.49694

Std 4.60E-60 7.77E-54 134.96 13.521 46.236 105 7.7342 33.124 43.534 12.79 18.204 22.927 0.13407

Median 3.78E-64 3.18E-66 14.392 548.5 306.76 577.19 491.54 548.19 491.79 703.89 386.52 535.44 0.18738

Rank 1 2 4 12 5 11 7 10 8 13 6 9 3

ZP-F4

Mean 8.84E-52 15.063 13.2 580.13 240.08 281.78 565.75 486.58 485.52 659.77 399.81 0.31674 460.65

Best 0 3.83E-69 9.80E-27 407.46 168.95 20.976 555.51 422.48 404 633.74 351.62 0.0081653 417.49

Worst 2.65E-50 220.31 47.416 606.17 308.15 596.39 569.78 564.8 543.55 678.56 467.78 0.63772 526.23

Std 4.84E-51 46.111 11.422 36.235 34.131 220.52 2.9162 30.404 33.984 10.471 28.016 0.17113 26.368

Median 1.09E-63 5.73E-66 14.42 588.77 235.18 189.01 566.01 483.73 485.59 661.44 396.32 0.35609 458.52

Rank 1 4 3 12 5 6 11 10 9 13 7 2 8

F M

Optimization Algorithms

HO WOA GWO SSA PSO SCA FA GOA TLBO CMA-ES MFO AOA IWO

ZP-F5

Mean 0 273.38 464.21 1718.6 1297 1467.7 1766.1 1047.9 1496.1 2480.4 1573.9 11.263 1724.3

Best 0 0 47.775 1583.7 1148.2 607.85 1527 867.71 1298.4 2380.2 1231.4 3.30E-06 1606.1

Worst 0 1366.9 1747.3 1955.4 1545 1970.3 1939.1 1465.7 1664.3 2531.1 1793.3 41.375 1856

Std 0 463.47 531.54 94.576 93.791 358.18 99.787 144.98 80.878 35.674 119.7 10.591 73.998

Median 0 3.55E-15 195.54 1703.1 1276.3 1599.3 1750.6 1009.5 1480.4 2478 1596.1 8.8444 1720.1

Rank 1 3 4 10 6 7 12 5 8 13 9 2 11

ZP-F6

Mean 0 2.37E-16 28.129 1301.6 962.94 683.03 1413.4 1364.8 1497.9 2480.4 1384.8 0.0099571 1522.5

Best 0 0 2.84E-14 1118.9 771.93 171.18 1213.9 1229.3 1117.4 2303.3 1250.7 1.44E-11 1353.3

Worst 0 3.55E-15 141.92 1530.8 1323.8 1889.9 1559.3 1577.3 1952.8 2500 1499.8 0.13786 1672.1

Std 0 9.01E-16 44.749 101.86 120.91 404.33 74.498 95.834 191.33 47.699 72.837 0.02644 76.638

Median 0 0 7.99E-14 1289.6 943.67 619.83 1414.6 1353.6 1482 2445.1 1376.6 0.00019612 1530.1

Rank 1 2 4 7 6 5 10 8 11 13 9 3 12

ZP-F7

Mean 1.28E-12 66.15 2.30E-10 4009.7 3401.1 204.52 4485.6 4362.2 3278.3 4756.4 3913.5 0.047242 4391.5

Best 0 0 7.67E-11 3885.1 3250.3 0.38829 4382.1 4273.7 0 4464.1 3831.7 0 4293.2

Worst 1.92E-11 1984.5 3.93E-10 4148.9 3531.1 1016.7 4604.8 4583.2 4209.2 4864.5 4040.4 1.0943 4556

Std 4.16E-12 362.32 7.44E-11 70.365 68.54 197.33 47.575 83.923 1162.8 103.69 41.426 0.2002 57.296

Median 0 0 2.40E-10 4012.9 3405 154.3 4482.8 4329.8 3563.4 4798.3 3916 8.64E-05 4388.1

Rank 1 4 2 9 7 5 12 10 6 13 8 3 11

ZP-F8

Mean 2.2833 304.89 1805 1193 1686.4 1256.1 1780.1 1680.8 549.37 2522.8 533.77 4.5963 1804.4

Best 0 273.11 1687.5 1102.7 1366.5 1130.3 1578.5 1451.6 537.65 2425.3 507.73 1.55E-08 1643

Worst 68.5 429.47 1961.5 1279.8 2049.9 1369.1 2012.8 1824.7 552.32 2574.5 702.13 31.634 2006.8

Std 12.506 46.077 68.209 53.834 182.4 59.606 103.17 84.747 3.1924 103.69 39.594 8.7473 79.751

Median 0 277.4 1794.4 1198.8 1680.1 1249 1795 1661.2 549.77 2527.3 523.8 0.0024046 1800.5

Rank 1 3 12 6 9 7 10 8 5 13 4 2 11

Sum rank 8 22 39 72 49 62 76 71 61 99 61 30 78

Mean rank 1 2.7500 4.875 9 6.1200 7.7500 9.5000 8.8750 7.6250 12.375 7.6250 3.7500 9.7500

Total rank 1 2 4 10 5 8 11 9 6 13 7 3 12
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Figure 6.  Convergence curves of the top three algorithms in each benchmark functions (F1- F23).
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Figure 6.  (continued)
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Figure 6.  (continued)
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Figure 7.  Boxplot illustrating the performance of the HO in comparison to competing algorithms for ZP.
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Figure 8.  Convergence curves of the top three algorithms in each function in ZP.
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Figure 9.  Boxplot illustrating the performance of the HO in comparison to competing algorithms for 
optimizing CEC 2019.



30

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5032  | https://doi.org/10.1038/s41598-024-54910-3

www.nature.com/scientificreports/

The Friedman test is indeed a non-parametric statistical test used to determine if there are statistically sig-
nificant differences among multiple related groups (Table 8). This research divided the benchmark functions into 
seven distinct groups to ensure the test’s reliability. The initial group consists of functions delineated in Tables 2, 
3, 4, encompassing unimodal, multimodal, and composition functions (F1-F23). The second group comprises the 
category of ZP functions illustrated in Table 5, while the third group is formed by CEC 2019 functions illustrated 
in Table 6. The fourth, fifth, sixth, and seventh groups included CEC 2014 functions in different dimensions, 
respectively (Table S1-S3)141.

A post-hoc Nemenyi test was utilized to delve deeper into the distinctions among the algorithms. If the null 
hypothesis is rejected, a post-hoc test can be conducted. The Nemenyi test is employed when conducting pairwise 
comparisons among all algorithms. The performance disparity between two classifiers is deemed significant if 
their respective average ranks exhibit a difference equal to or exceeding the CD (Eq. 20)141.

N represents the number of BFs in each group, k represents the number of algorithms under comparison and 
in each group, we selected the top 10 algorithms for comparison. At a significance level of α = 0.05 , the critical 
value for 10 algorithms, the associated CD for each group has been specified in Fig. 11. To identify distinctions 
among the ten algorithms, the CD derived from the Nemenyi test was employed. The CD diagrams depicted in 
Fig. 11 offer straightforward and intuitive visualizations of the outcomes from a Nemenyi post-hoc test. This test 
is specifically designed to assess the statistical significance of differences in average ranks among a collection of 
ten algorithms, each evaluated on a set of seven groups.

(20)CD = qα

√

k(k + 1)

6N

Figure 9.  (continued)
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Figure 10.  Convergence curves of the top three algorithms in each function in CEC 2019.
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Following the revelation of notable variations in performance among various algorithms, it becomes impera-
tive to identify which algorithms exhibit significantly different performances compared to HO. HO is regarded 
as control algorithm in this context. Figure 11 displays the average ranking of each method across seven groups, 
with significance levels of 0.05 in 30 distinct runs. HO demonstrates significant superiority over algorithms whose 
average ranking exceeds the threshold line indicated in the figure. In group 1, HO held the first rank in all groups 
and exhibited significant superiority over TLBO, CMA-ES, GWO, WOA respectively. Moving to group 2, WOA 
secured the second position after HO and could significantly outperform AOA, GWO, and PSO while in group 
3, PSO attained the second position following HO and TLBO, SSA, and GOA are ranked 3, 4, and 5, respectively. 
In group 4, TLBO outperforms algorithm PSO, and consequently, we observe the placement of algorithms, HO, 
TLBO, PSO, CMA-ES, SSA but within group 5, the PSO algorithm performs better than the TLBO algorithm. 
As a result, the arrangement or ranking of algorithms within this group is as follows: HO, PSO, TLBO, GOA, 
CMA-ES. Continuing, in group 6, it is observable that HO outperforms the other algorithms, and furthermore, 
the sequence of algorithms is as follows: PSO, TLBO, SSA, GOA, GWO. Lastly in group, the line-up of algorithms 
is as follows: HO, TLBO, PSO, CMA-ES, SSA.

A post-hoc analysis determines that if the disparity in mean Friedman values between the two algorithms falls 
below the CD threshold, there is no notable distinction between them; conversely, if it surpasses the CD value, 
a significant difference between the algorithms exists. In Table 9, a comparison has been conducted between 
12 algorithms and HO across all seven BF groups. Algorithms that are not significantly different from the HO 
algorithm are highlighted with a red mark. Conversely, algorithms that are deemed significantly different from the 
HO algorithm are highlighted with a green mark in this table. In accordance with Table 9, none of the examined 
algorithms in this article can serve as a substitute for algorithm HO. This observation underscores the necessity 
of the existence of algorithm HO, which can potentially address limitations not covered by other algorithms.

Figure 10.  (continued)
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Sensitivity analysis
HO is a swarm-based optimizer that conducts the optimization procedure through iterative calculations. Hence, 
it is anticipated that the hyperparameters N  (representing the population size) and T  (indicating the total num-
ber of algorithm iterations) will influence the optimization performance of HO. Consequently, the sensitivity 
analysis of HO to hyperparameters N  and T  is provided in this subsection. To analyze the sensitivity of HO to 
hyperparameter N  , the proposed algorithm is employed for different values of N  , specifically 20, 30, 50, and 
100. This variation in N  is utilized to optimize functions from F1 to F23 BFs.

The optimization results are provided in Table 10, and the convergence curves of HO under this analysis 
are depicted in Fig. 12. What is evident from the analysis of HO’s sensitivity to the hyperparameter N  is that 
increasing the searcher agents improves HO’s search capability in scanning the search space, which enhances the 
performance of the proposed algorithm and reduces the values of the objective function.

To analyze the sensitivity of the proposed algorithm to hyperparameter T  , HO is utilized for different values 
of T  , specifically 200, 500, 800, and 1000. These variations in T  are employed to optimize functions from F1 
to F23 BFs. The optimization results are provided in Table 11, and the convergence curves of HO under this 
analysis are depicted in Fig. 13. According results, it is observed that higher values of T  provide the algorithm 
with increased opportunities to converge to superior solutions, primarily due to enhanced exploitation ability. 
Hence, it is evident that as the values of T  increase, the optimization process becomes more efficient, leading to 
decreased values of the objective function.

According to Tables 10 which iteration hyperparameter is kept constant and Table 11 which population 
parameter is held constant, the performance of the HO algorithm improves with an increase in population and 
iteration, except for F8 as shown in Table 11. Based on the results, it is observed that the algorithm is less sensi-
tive to changes in the iteration hyperparameter (Table 12).

Algorithms

Functions

Unimodal
High-
multimodal Fixed CEC 2019 ZP CEC 2014 (10) CEC 2014 (30) CEC 2014 (50)

CEC 2014 
(100)

HO vs. SSA 1.46E-22 2.38E-14 4.20E-13 4.93E-18 8.86E-20 4.23E-18 3.39E-18 4.12E-18 7.00E-18

HO vs. WOA 1.66E-22 3.19E-09 5.70E-14 1.80E-20 1.35E-17 2.46E-20 4.84E-20 5.80E-21 4.12E-20

HO vs. GWO 1.34E-21 3.09E-06 1.17E-13 2.27E-19 4.89E-18 7.82E-19 1.08E-19 1.17E-19 6.35E-19

HO vs. PSO 1.61E-22 9.78E-10 4.85E-14 6.41E-18 3.61E-18 1.09E-17 3.99E-18 3.24E-17 8.30E-18

HO vs. SCA 1.02E-22 3.99E-15 2.63E-24 2.80E-21 1.42E-19 9.24E-21 1.14E-21 1.08E-21 4.00E-22

HO vs. FA 8.07E-24 2.43E-16 1.27E-18 6.34E-20 2.50E-20 2.04E-19 1.11E-20 4.03E-21 5.14E-21

HO vs. GOA 4.05E-23 3.78E-15 2.41E-26 8.42E-20 1.03E-19 2.22E-18 6.09E-19 4.04E-19 1.19E-18

HO vs. TLBO 3.30E-21 0.17E-5 2.52E-12 5.28E-19 6.88E-19 1.34E-17 3.52E-18 1.00E-17 3.65E-18

HO vs. CMA-ES 5.64E-24 3.74E-17 1.10E-12 5.78E-20 3.84E-21 8.70E-18 3.14E-19 1.06E-20 6.30E-21

HO vs. MFO 5.07E-24 6.95E-19 1.97E-13 4.88E-19 6.07E-19 2.23E-19 7.26E-20 3.36E-20 1.11E-20

HO vs. AOA 6.93E-22 1.60E-08 1.72E-25 9.53E-21 6.91E-18 5.14E-22 1.34E-21 2.94E-21 4.77E-21

HO vs. IWO 2.85E-23 2.57E-15 1.31E-17 2.20E-20 1.08E-20 7.73E-20 1.03E-19 6.96E-20 4.36E-20

Table 7.  Wilcoxon signed-rank test results.

Table 8.  Friedman mean rank test results.

Algorithms

Functions

F1-F23 ZP CEC 2019 CEC 2014 (10) CEC 2014 (30) CEC 2014 (50) CEC 2014 (100)

HO 2.2468 2.0335 2.1434 2.0226 2.0284 2.0217 2.0256

WOA 4.693 4.966 8.5141 8.8319 7.1239 8.434 6.8774

GWO 4.53 7.1087 7.1867 6.9419 6.5996 7.3247 6.0552

SSA 4.8758 9.5542 6.2015 6.424 5.646 5.9983 6.0104

PSO 6.3291 7.3217 4.6159 5.8865 3.9804 3.7454 3.9899

SCA 9.4641 8.2399 9.4312 8.9309 9.298 9.517 9.2506

FA 10.005 9.824 7.3172 7.3571 7.1632 8.7833 8.1341

GOA 8.9501 8.3386 6.9473 6.7838 5.6549 6.3476 6.0404

TLBO 3.8652 7.3906 6.2127 4.2202 5.5663 5.696 6.0148

CMA-ES 4.4836 10.278 7.3832 6.1895 5.7586 7.7156 7.4959

MFO 6.9976 8.0348 7.055 7.1332 7.0379 7.6824 7.3757

AOA 6.3965 6.5091 8.3732 9.1576 7.9849 9.2846 8.2072

IWO 7.7272 9.9419 8.303 7.7436 6.9385 7.6078 6.2446
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Figure 11.  Nemenyi test for top ten algorithms in each group with α = 0.05.
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Hippopotamus optimization algorithm for engineering problems
In this section, the effectiveness of the HO is evaluated in relation to its ability to address practical optimization 
problems in four of problem distinct engineering design challenges. The HO is employed to solve these prob-
lems, utilizing a total of 30,000 evaluations. The statistical outcomes obtained using various methodologies are 
showcased in Table 13. Additionally, Fig. 18 illustrates the boxplots of the algorithms.

TCS design
This problem’s primary aim entails minimizing the mass associated with the spring, as illustrated in Fig. 14, 
considering whether it is stretched or compressed. In order to achieve optimal design, it is important to ensure 

Table 9.  Nemenyi’s statistical test for seven groups of BFs (Control Algorithm: HO).

Algorithms

Functions

F1-F23 ZP CEC 2019 CEC 2014 (10) CEC 2014 (30) CEC 2014 (50) CEC 2014 (100)

HO vs. WOA ❌ ❌ ✅ ✅ ✅ ✅ ✅
HO vs. GWO ❌ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. SSA ❌ ✅ ❌ ✅ ✅ ✅ ✅
HO vs. PSO ✅ ✅ ❌ ✅ ❌ ❌ ❌
HO vs. SCA ✅ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. FA ✅ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. GOA ✅ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. TLBO ❌ ✅ ❌ ❌ ✅ ✅ ✅
HO vs. CMA-ES ❌ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. MFO ✅ ✅ ✅ ✅ ✅ ✅ ✅
HO vs. AOA ✅ ❌ ✅ ✅ ✅ ✅ ✅
HO vs. IWO ✅ ✅ ✅ ✅ ✅ ✅ ✅

Table 10.  Findings from the sensitivity analysis of HO concerning parameter N .

Objective Functions

Number of population members

20 30 50 100

F1 0 0 0 0

F2 0 0 0 0

F3 0 0 0 0

F4 0 0 0 0

F5 15.4682 2.0125 7.0959E-06 1.4080E-06

F6 0 0 0 0

F7 4.3541E-05 3.8741E-05 2.5178E-05 2.1020E-05

F8 − 9265.3130 − 9282.0349 − 9543.2299 − 9778.5922

F9 0 0 0 0

F10 4.4409E-16 4.4409E-16 4.4409E-16 4.4409E-16

F11 0 0 0 0

F12 3.1556E-28 1.5705E-32 1.5705E-32 1.5705E-32

F13 1.5802E-24 1.3498E-32 1.3498E-32 1.3498E-32

F14 0.9980 0.9980 0.9980 0.9980

F15 3.0749E-04 3.0749E-04 3.0749E-04 3.0749E-04

F16 − 1.0316 − 1.0316 − 1.0316 − 1.0316

F17 0.3979 0.3979 0.3979 0.3979

F18 3 3 3 3

F19 − 3.8628 − 3.8628 − 3.8628 − 3.8628

F20 − 3.3210 − 3.3220 − 3.3220 − 3.3220

F21 − 10.1532 − 10.1532 − 10.1532 − 10.1532

F22 − 10.4029 − 10.4029 − 10.4029 − 10.4029

F23 − 10.5364 − 10.5364 − 10.5364 − 10.5364
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Figure 12.  The convergence curves of HO during the investigation of sensitivity analysis regarding parameter 
N .
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Figure 12.  (continued)
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Figure 12.  (continued)
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wave frequency, deflection limits, and stress are met. The mathematical representation of this engineering design 
can be described by the equation in  Supplementary142. Based on the obtained outcomes, the HO has successfully 
obtained the optimal solution. Simultaneously, it ensures compliance with the specified constraints, as detailed 
in the  references45,102,142–145. The optimal solutions achieved through the utilization of HO for this particular 
problem are { z1 = 0.051689714188651, z2 = 0.356733450209264, z3 = 11.288045038991518}.

WB design
The objective is to minimize the cost associated with the welding beam. This objective is achieved 
by simultaneously addressing seven constraints. The problem concerning the design of a welded 
beam is visually depicted in Fig.  15. The optimal design problem for the welded beam is formulated 
as described in  Supplementary49. The HO has the capability to identify the most favourable value for 
the optimization variables. Statistical analysis determined that that the HO exhibits superior perfor-
mance. The optimal solutions achieved through the utilization of HO for this particular problem are 
{ z1 = 0.205729639786079, z2 = 3.470488665628001, z3 = 9.036623910357633, z4 = 0.205729639786079}.

PV design
The primary objective revolves around minimizing the overall cost associated with the tank under pressurized 
conditions, considering factors such as forming techniques, welding methods, and material costs, as depicted 
in Fig. 16. The design process involves considering four variables and four constraints. The PV design prob-
lem is formulated as described in  Supplementary49 .According to the reported results, the HO outperformed 
other methods. The optimal solutions achieved through the utilization of HO for this particular problem are 
{ z1 = 13.4141563816526, z2 = 7.3495109848502, z3 = 42.0984455958549, z4 = 176.6365958424392 }. Further 
details regarding these constraints can be found in  references69  and145.

WFLO
We’re figuring out where to place wind turbines on a 10 × 10 grid. We have 100 different options for where to 
put the turbines. We can have anywhere from 1 to 39 turbines in the wind farm. We’re simulating wind coming 
from 36 different directions, all at a steady speed of 12 m per second. The objective is to minimize expenditures, 
maximize the aggregate power output, reduce acoustic emissions, and optimize various performance and cost-
related  metrics13 (Fig. 17). The attributes of the wind turbine are documented in Table 12. The formulation of 
WFLO problem is articulated as follows:

Table 11.  Findings from the sensitivity analysis of HO concerning parameter T .

Objective Functions

Maximum number of iteration

200 500 800 1000

F1 0 0 0 0

F2 0 0 0 0

F3 1.5456E-41 0 0 0

F4 1.6531E-66 0 0 0

F5 20.9691 13.3132 5.4924 3.3495

F6 0 0 0 0

F7 2.6782E-04 7.1535E-05 7.0243E-05 1.5269E-05

F8 − 9.7163E + 03 − 9.5356E + 03 − 9.8802E + 03 − 9.2684E + 03

F9 0 0 0 0

F10 4.4409E− 16 4.4409E-16 4.4409E-16 4.4409E-16

F11 0 0 0 0

F12 1.2730E-10 3.3597E-24 1.5705E-32 1.5705E-32

F13 3.5137E-08 7.2720E-21 1.3498E-32 1.3498E-32

F14 0.9980 0.9980 0.9980 0.9980

F15 3.0749E-04 3.0749E-04 3.0749E-04 3.0749E-04

F16 − 1.0316 − 1.0316 − 1.0316 − 1.0316

F17 0.3979 0.3979 0.3979 0.3979

F18 3 3 3 3

F19 − 3.8628 − 3.8628 − 3.8628 − 3.8628

F20 − 3.3220 − 3.3220 − 3.3220 − 3.3220

F21 − 10.1532 − 10.1532 − 10.1532 − 10.1532

F22 − 10.4029 − 10.4029 − 10.4029 − 10.4029

F23 − 10.5364 − 10.5364 − 10.5364 − 10.5364
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Figure 13.  The convergence curves of HO during the investigation of sensitivity analysis regarding parameter 
T .
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Figure 13.  (continued)
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Figure 13.  (continued)
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Herein, z  represents a vector comprising design variables, while Ptotal  denotes the aggregate power out-
put generated by a wind farm. The computation of the Cost  function can be derived according to the method 
described  in146 (Fig. 18).

The HO demonstrating superior performance compared to alternative approaches.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors. 
Informed consent was not required as no human or animals were involved.

Conclusions and future works
In this paper, we introduced a novel nonparametric optimization algorithm called the Hippopotamus Optimiza-
tion (HO). The real inspiration behind the HO is to simulate the behaviors of hippopotamuses, incorporating 
their spatial positioning in the water, defense strategies against threats, and evasion techniques from predators. 
The algorithm is outlined conceptually through a trinary-phase model of their position update in river and 
pound, defense, and evading predators, each mathematically defined. In light of the results from addressing 
four distinct engineering design challenges, the HO has effectively achieved the most efficient resolution while 
concurrently upholding adherence to the designated constraints. The acquired outcomes from the HO were 
compared with the performance of 12 established metaheuristic algorithms. The algorithm achieved the high-
est ranking across 115 out of 161 BFs in finding optimal value. These benchmarks span various function types, 
including UM and HM functions, FM functions, in addition to the CEC 2019 test suite and CEC 2014 dimensions 
encompassing 10, 30, 50, and 100, along with the ZP.

The results of CEC 2014 test suite indicate that the HO swiftly identifies optimal solutions, avoiding entrap-
ment in local minima. It consistently pursues highly optimal solutions at an impressive pace by employing 
efficient local search strategies. Furthermore, upon evaluation using the CEC 2019 test, it can be confidently 
asserted that the HO effectively finds the global optimal solution. Additionally, in the ZP, the HO demonstrates 
significantly superior performance compared to its competitors, achieving an optimal solution that remains 
unattainable for other investigated algorithms. Moreover, the observed lower Std. than that of the other investi-
gated algorithms suggests that the HO displays resilience and efficacy in effectively addressing these functions.

Considering the outcomes derived from tackling four unique engineering design challenges, the HO has 
effectively demonstrated the most efficient resolution while maintaining strict adherence to the specified con-
straints. The application of the Wilcoxon signed test, Friedman and Nemenyi post-hoc test confirms that the HO 
displays a remarkable and statistically significant advantage over the algorithms under investigation in effectively 
addressing the optimization problems scrutinized in this study. The findings indicate that Ho exhibits lower 
sensitivity to changes in the iteration hyperparameter than the population hyperparameter.

The suggested methodology, HO, presents numerous avenues for future research exploration. Particularly, 
an area ripe with potential is the advancement of binary and multi-objective variants based on this proposed 
methodology. Furthermore, an avenue worth investigating in forthcoming research involves employing HO in 
optimizing diverse problem sets across multiple domains and real-world contexts.

(21)Minimizie : F(z) =
Cost
Ptotal

(22)Cost = NT (
2

3
+

1

3
e−0.00174N 2

T )

Table 12.  The attributes of the wind turbine.

Parameter Value

Thrust coefficient ( CT) 0.88

Ground surface roughness ( h0) 0.3

Hub height ( h) 60 m

Rotor diameter ( D0) 40 m

Turbine efficiency ( η) 40%

Air density ( ρair) 1.225 kg/m3

Wind speed ( V0) 12 m/s

Wind directions (degree) {10°, 20°, 30°,…,360°}
wind direction angle w.r.t. + x (East)
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Figure 14.  TCS.

Figure 15.  WB.

Figure 16.  PV.

Figure 17.  WFLO with HO.
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