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Projected population exposure 
to heatwaves in Xinjiang Uygur 
autonomous region, China
Diwen Dong 1,2,4,5, Hui Tao 2* & Zengxin Zhang 2,3

The intensification of heatwaves dues to climate change is a significant concern, with substantial 
impacts on ecosystems and human health, particularly in developing countries. This study utilizes 
NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) and projected 
population data accounting for China’s population policies to project changes in various grades of 
heatwaves (light, moderate, and severe) and the population exposure to heatwaves (PEH) in Xinjiang 
under three shared socioeconomic pathways (SSP1–2.6, SSP2-4.5, and SSP5-8.5). The results show 
that the number of days and intensity of heatwaves in Xinjiang are projected to increase. Heatwaves 
occurring in Xinjiang will predominantly be severe heatwaves (SHW) in the long-term under the 
SSP5-8.5 scenario, and the number of SHW days projected to increase by 62 ± 18.4 days compared to 
the reference period. Changes in heatwaves are anticipated to influence PEH, estimating population 
exposure to light, moderate, and severe heatwaves (LPEH, MPEH, and SPEH) at 534.6 ± 64 million, 
496.2 ± 43.5 million, and 1602.4 ± 562.5 million person-days, respectively, in the long-term under 
the SSP5-8.5 scenario. The spatial distribution of PEH is projected to be consistent with that of the 
reference period, with high values persisting in Urumqi, Kashgar and Hotan. Changes in PEH are 
primarily driven by climate effects, followed by interactive effects, while population effects contribute 
the least. Therefore, mitigating climate change is crucial to reduce the PEH in Xinjiang.

Heatwaves are extreme weather events that have negative impacts on the human health and social economy1,2. For 
example, the European heatwave in the summer of 2003 caused in excess of 70,000 deaths3. In 2017, exceptional 
heatwaves in China killed over 16 thousand lives and resulted in economic losses estimated at approximately 61.3 
billion RMB4. Numerous studies have shown that these catastrophic consequences would consistently increase 
with climate change5. The Intergovernmental Panel on Climate Change (IPCC) states that the risks associated 
with climate change are determined not only by the hazards but also by the exposure to those hazards6. Therefore, 
projecting changes in heatwaves and population exposure to heatwaves (PEH) is critical to developing policies 
for heatwave mitigation and adaptation.

Population exposure is commonly considered a function of both climate and population7. Numerous stud-
ies have investigated the impacts of various extreme weather events, including droughts8, floods9, extreme 
precipitation10, and heatwave11 on human health using population exposure as the metric. These studies have 
consistently emphasized significant increase in population exposure to extreme events in the future. For instance, 
Chen et al.12 find significant increase in population exposure to extreme precipitation across global lands, with 
projections of increase by at least 50% in the future under the Shared Socioeconomic Pathway (SSP) 5–8.5 
scenario. Additionally, Wang et al.13 indicate that global urban population exposure to heatwaves will escalate 
under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Changes in population exposure depend 
on climate change and the size and distribution of population14. However, some previous studies have ignored 
population changes and relied on static population data for projecting changes in population exposure. For 
instance, Sun et al.15 use regional climate model, COSMO-CLM, with 2010 population data to assess population 
exposure to drought in the Haihe River Basin in a warming world. Lyon et al.16 quantify population exposure 
to contiguous heatwave regions over the US from 2031 to 2055, based on climate model projections and static 
population in 2015. This approach may potentially influence the accuracy of population exposure assessment 
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since both climate change and population are critical factors influencing exposure17. Thus, taking population 
changes into account when projecting changes in PEH will produce more reliable estimates.

The threat of heatwaves to human health seems almost unavoidable18. As global warming continues, the 
threat is projected to increase19. Populations living in developing countries are more susceptible to the effect of 
heatwaves than those in developed countries due to population growth rates and economic levels20,21. As the most 
populous developing country in the world, China is particularly susceptible to climate extremes22,23. China has 
experienced severe heatwaves, resulting in substantial human and socioeconomic losses over recent decades24. 
Previous studies have indicated that heatwaves tend to have more severe impacts on economically advanced and 
densely populated regions25. Previous researches on heatwaves in China have predominantly focused on Eastern 
and Southern China because of the high population density and economic development of these regions26,27. 
Such as Zhang et al.28 quantify future changes in heatwaves in Eastern China and find that the frequency, dura-
tion, and magnitude of heatwaves would increase approximately 5, 4, and 20 times, respectively, compared with 
the period 1986–2005. Although the sparsely populated Northwest China is particularly sensitive to the effects 
of heatwaves, limited attention has been paid to the region. People in Northwest China may be more vulnerable 
than those in Eastern China and Southern China due to the backward economy and limited healthcare services29. 
Recent studies have suggest that global warming will lead to the increase in heatwaves across China, with the 
Northwest region experiencing the most significant rise30. Due to climate factors, the characteristics of heat-
waves in Northwest China is significantly different from those in Eastern China and Southern China, rendering 
climate change policies suitable for the latter regions unsuitable for the former31. Therefore, the in-depth study 
of heatwaves in Northwest China is necessary to provide decision makers with accurate information on regional 
climate policies for adaptation and mitigation.

Xinjiang, located in Northwest China, serves as the core area for the ‘Belt and Road’32. As the important part 
of the Central Asia arid zone, Xinjiang’s fragile ecosystem and agriculture-based economy make it particularly 
sensitive to climate change33. Over the past few decades, frequent heatwaves have occurred in most regions of 
Xinjiang34. In the summer of 2015, Xinjiang suffered an unprecedented heatwave. This led to a reduction in crop 
yields and quality, and an increase in the number of patients suffering from airway diseases and cerebrovascular 
diseases35. According to studies investigating future changes of heatwaves in China, Xinjiang is projected to 
suffer more frequent and intense heatwaves in the twenty-first century36. Although the population density in 
Xinjiang is lower than that of most parts of China, its rapid population growth and concentrated distribution 
pattern are projected to more people will be affected by frequent heatwaves. In general, the combination of high 
temperatures and high relative humidity increases the perceived temperature on the human body28. However, 
most existing studies that project heatwaves have only considered air temperature36,37. Since the mid-1980s, Xin-
jiang’s climate has undergone the shift from warm-dry to warm-humid, and neglecting relative humidity when 
identifying heatwaves in Xinjiang may lead to an underestimation of their intensity and impacts38. Therefore, 
for the comprehensive projection of variations in heatwaves and PEH in Xinjiang, it is crucial to consider the 
combination of air temperature and relative humidity.

This study focuses on the future changes of different grades of heatwaves and associated population exposure 
in Xinjiang under different scenarios. The specific objectives of this study are: (1) to evaluate the simulation capa-
bility of 16 climate models to reproduce the interannual variability and spatial pattern of heatwaves in Xinjiang 
during the reference period, (2) to project changes in the number of days and relevant population exposure for 
different grades of heatwaves under three SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), and (3) to reveal 
the relative importance of climate, population and their interactions on changes in exposure. The results of this 
study can provide a scientific basis for the development of disaster prevention and mitigation policies in arid 
regions in response to future climate change.

Data and methods
Study area
Xinjiang is the largest province in China, with a total area of 1.66 million km2 (Fig. 1). Situated in the hinterland 
of the Eurasian continent, it is an important part of the Central Asia arid zone. The region is far from the source 
of water vapor and has a typical temperate continental climate. The unique mountain-basin system in Xinjiang 
renders its climate complex and very sensitive to climate change39.

According to data from the seventh national census conducted in 2020, the population in Xinjiang is recorded 
at 25.85 million. Influenced by natural factors, the spatial distribution of population in Xinjiang is highly uneven, 
with typical characteristics of population distribution in arid zone40. More than 90% of the population is distrib-
uted in oases, with higher population density distribution in regions such as Urumqi, Yili and Kashgar.

Dataset
The observational daily maximum temperature and relative humidity in this study are obtained from the gridded 
daily scale dataset of CN05.1, which are provided by National Climate Center, China Meteorological Administra-
tion. The dataset is constructed by anomaly approach method based on 2416 meteorological stations in China, 
with the spatial resolution of 0.25° × 0.25°. The dataset has been quality controlled and widely applied as the 
reference to evaluate and calibrate model simulations41.

The climate models dataset are derived from the latest version of the NASA Earth Exchange Global Daily 
Downscaled Projections dataset (NEX-GDDP-CMIP6, https://​www.​nccs.​nasa.​gov/​servi​ces/​data-​colle​ctions/​
land-​based-​produ​cts/​nex-​gddp-​cmip6). The dataset is based on output from the CMIP6, using downscaling and 
bias correction/spatial disaggregation method to obtain high-resolution daily gridded meteorological dataset 
with the resolution of 0.25° × 0.25°42. The dataset has been used extensively in regional studies of extreme weather 
events43,44. In this study, we use 16 climate models to project heatwaves in Xinjiang (Table 1). The multi-model 

https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
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ensemble (MME) approach can effectively reduce the uncertainty of the simulations45. Therefore, in order to 
improve the accuracy and reliability of projection, the MME of 16 climate models is used in this study.

The population data from 2021 to 2100 are taken from the Provincial and gridded population projection for 
China under shared socioeconomic pathways from 2010 to 2100 (https://​doi.​org/​10.​6084/​m9.​figsh​are.c.​46057​
13). The dataset is produced taking into account the population policies implemented in China in recent years 
(fertility promoting policies and population ceiling restrictions of megacities), and is the high-resolution gridded 
data (1 km × 1 km) that better matches the actual situation in China46. The population datasets are upscaled to 
the precision of 0.25° by summation method to match with the climate data.

Methods
Definition of heatwaves
Considering the impact of heatwaves on human health, the heatwave index (HI), which combines air tempera-
ture and relative humidity, is utilized in this study as an indicator for identifying heatwaves47. The HI can be 
calculated as follows:

In which TI denotes the torridity index of the current day, TI′ is the critical value of torridity index, TIi rep-
resents the torridity index of the i-th day before the current day, ndi is the number of days from the i-th day to 
the current day, and N is the duration of hot weather process (days).

The TI can be obtained as follows:

(1)HI = 1.2× (TI − TI′)+ 0.35

N−1∑

i=1

1/ndi(TIi − TI′)+ 0.15

N−1∑

i=1

1/ndi + 1.

Figure 1.   Overview of the study area. (a) Topography of Xinjiang. (b) Spatial distribution of population density 
in 2000. (c) Population in Xinjiang from 2000 to 2100. The maps in figure are created using ArcGIS v10.6 
(https://​www.​esri.​com/).

Table 1.   Details of the selected NEX-GDDP-CMIP6 models.

Id Model name Country Id Model name Country

1 ACCESS-CM2 Australia 9 INM-CM5-0 Russia

2 ACCESS-ESM1-5 Australia 10 IPSL-CM6A-LR France

3 CanESM5 Canada 11 MIROC6 Japan

4 CMCC-ESM2 Italy 12 MPI-ESM1-2-HR Germany

5 EC-Earth3 Sweden 13 MPI-ESM1-2-LR Germany

6 EC-Earth3-Veg-LR Sweden 14 MRI-ESM2-0 Japan

7 GFDL-ESM4 USA 15 NorESM2-LM Norway

8 INM-CM4-8 Russia 16 NorESM2-MM Norway

https://doi.org/10.6084/m9.figshare.c.4605713
https://doi.org/10.6084/m9.figshare.c.4605713
https://www.esri.com/
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where Tmax is the daily maximum temperature (℃), RH represents the daily relative humidity (%).
The critical value of torridity ( TI′ ) is used to determine if the weather is hot. If TI exceeds TI′ , it indicates that 

the day is hot weather. TI′ is calculated using the quantile method with the following formulas:

where Q̂i

(
p
)
 represents the i-th quantile value, p is the quantile (0.5 in this study), n is the length of TI series, j 

is the j-th TI , X denotes the sample sequence of the TI in ascending order.
According to the magnitude of the HI, Heatwaves are graded into light, moderate, and severe heatwaves 

(LHW, MHW, and SHW). The classification standard is shown in Table 2.

Metrics of model performance
The interannual variability skill score (IVS)48 is used to evaluate the interannual variability of the simulations 
compared to the observations, which is expressed as:

where STDo and STDm are the interannual standard deviations of the observation and simulations, respectively.
To evaluate the performance of the model in reproducing the spatial pattern of heatwaves, the Distance 

between Indices of Simulation and Observation (DISO)49 is used. For the observed values (A = (a1, a2,…, an)) 
and the model-simulated values (B = (b1, b2,…, bn)), the DISO can be calculated as follows:

where a and b is the mean of A and B, respectively. The values of IVS and DISO closer to 0 indicate that the 
model is better model performance.

Weighting methodology
MME is used with no rules for determining the number of models to be used, and variations in model weighting 
schemes are used in different studies50. Based on the overall performance of the model simulations, to give the 
highest weight to the best performing models, this study uses performance weighting to generate MME. The 
weights then have the value:

(2)TI = 1.8× Tmax − 0.55× (1.8× Tmax − 26)× (1− 0.6)+ 32RH ≤ 60%,

(3)TI = 1.8× Tmax − 0.55× (1.8× Tmax − 26)× (1− RH)+ 32RH > 60%,

(4)Q̂i

(
p
)
= (1− γ )X(j) + γX(j+1),

(5)j = int
(
p× n+

(
1+ p

)
/3
)
,

(6)γ = p× n+
(
1+ p

)
/3− j,

(7)IVS =

(
STDm

STDo
−

STDo

STDm

)2

,

(8)DISO =

√
(R − 1)2 + (AE)2 + (RMSE)2,

(9)R =

∑n
i=1 (ai − a)

(
bi − b

)
√∑n

i=1(ai − a)2
√∑n

i=1

(
bi − b

)2 ,

(10)AE =
1

n

n∑

i=1

(bi − ai),

(11)RMSE =

√√√√ 1

n

n∑

i=1

(bi − ai)
2
,

Table 2.   Classification of heatwaves.

Grades Heatwave index

Light heatwave (LHW) 2.8 ≤ HI < 6.5

Moderate heatwave (MHW) 6.5 ≤ HI < 10.5

Severe heatwave (SHW) HI ≥ 10.5
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where Si is the sum of the rankings of the model’s simulated interannual variability and spatial patterns.

Population exposure to heatwaves
Population exposure to heatwaves (PEH) is defined as the number of people exposed to heatwaves, is generally 
calculated by multiplying the population in each grid cell by the number of heatwave days14. Therefore, the unit 
of PEH is person-days. This study focuses on PEH for three periods including near-term (2021–2040), mid-
term (2041–2060), and long-term (2081–2100) under three SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5).

According to the definition of PEH, changes in PEH are affected by climate effect, population effect and 
interactive effect. To evaluate the impact of these effects on future PEH changes, we calculate the relative con-
tribution of each effect according to the approach of Jones et al.14. The relative contribution of each effect is 
calculated as follows:

where Pr is the population from the base-year of 2000 (person), Hr indicate the annual days of heatwave (days) 
in the reference period (1995–2014), �H and �P are the change in the number of heatwave days and population 
in the future period compared to the reference period. CRcli , CRpop , and CRint represent the contribution rates 
of changes in the climate, population, and their interactions, respectively.

Results
Changes in historical heatwaves and population exposure
The spatial distribution of heatwave days for different grades during the reference period is presented in Fig. 2a–c. 
The observational results show that the spatial distribution of heatwaves is closely associated with the topographic 
features, mainly distributed in basin areas. LHW exhibit the broadest spatial extent and the greatest number of 
days (Figs. 2a). The number of LHW days ranges from about 0–23 days, with only some regions of Turpan and 
the Kumtag desert having more than 19 days. MHW affect smaller geographical area compared to LHW, with 
the number of heatwave days varying from 0 to 18 days (Figs. 2b). Regions with high values of MHW continue 
to be predominantly located in Turpan and the Kumtag Desert. As heatwave severity increase, the number of 
heatwave days decreases, and the affected area shrinks further. The affect area of SHW is reduced, particularly in 
the Junggar Basin (Figs. 2c). The number of SHW days is distributed between 0 and 14 days, and the area with 
more than 12 days is only distributed in Turpan. In summary, the heatwaves in Xinjiang during the reference 
period are dominated by LHW and MHW, and the high value regions of different grades of heatwaves are located 
in Turpan, Hami, and the Kumtag Desert.

The combination of different grades of heatwave days and population produces the PEH for the reference 
period (Fig. 2d–f). The results show that the population exposure to light, moderate, and severe heatwave (LPEH, 
MPEH, and SPEH) amount to 85.1 million, 42.1 million, and 20.5 million person-days, respectively. Notably, 
the spatial pattern of heatwave and PEH are significantly differs due to the effect of the spatial distribution of 
population. High PEH values are not in regions with frequent heatwaves, but mainly in densely populated regions 
such as Urumqi, Kashgar and Hotan.

Model performance evaluation
Before projecting the possible future changes of heatwaves in Xinjiang, the simulation capability of 16 climate 
models is evaluated by comparing the number of simulated heatwave days with observations during the reference 
period. As shown in Fig. 3a, the regions in Xinjiang with the highest number of heatwave days are located in the 
Tuha Basin and Kumutag Desert, and the mountainous regions have never experienced heatwaves. The spatial 
pattern of the model simulation is close to that of the observations. However, compared with observations, the 
results of the model simulations are overestimated or underestimated in some regions. To assess the reliability of 
models, we quantify the ability of individual models to reproduce the interannual variability and spatial patterns 
of heatwaves in Xinjiang using IVS and DISO, respectively.

As can be seen in Fig. 4, the simulation ability of the models varies in different aspects, with models excelling 
in simulating interannual variability not necessarily performing better in capturing spatial patterns. Compared 
to observations, GFDL-ESM4 and MIROC6 are the optimal models for simulating interannual variability and 
spatial patterns, respectively. In order to assess the comprehensive performance of individual models, a composite 

(12)Wi =
Ri∑N
i=1 Ri

,

(13)Ri =

∑N
i=1 Si

Si
,

(14)CRcli =
Pr ×�H

Hr ×�P + Pr ×�H +�H ×�P
× 100%,

(15)CRpop =
Hr ×�P

Hr ×�P + Pr ×�H +�H ×�P
× 100%,

(16)CRint =
�H ×�P

Hr ×�P + Pr ×�H +�H ×�P
× 100,
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ranking of is obtained from their performance in both interannual variability and spatial patterns. Smaller 
ranking values indicate better model performance. As shown in Table 3, there is substantial variation in the 
comprehensive performance of models. The highest ranked model is CanESM5, which accordingly is given the 
highest weight of 0.209 in the combining models.

Figure 5 compares the performance of MME and each model within the ensemble in simulating the spatial 
patterns and interannual variability of heatwaves. The blue dashed line and the red dotted line represent the IVS 

Figure 2.   Spatial distribution of different grades of heatwave days and population exposure to heatwaves in 
Xinjiang during the historical period.

Figure 3.   Spatial distribution of (a) observed heatwaves and (b–q) simulated heatwaves for the period 
1995–2014.
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Figure 4.   IVS and DISO values for 16 climate models.

Table 3.   Weights and ranks of 16 climate models.

ID Model name Rank of IVS Rank of DISO Sum of the ranks Weights

1 ACCESS-CM2 16 6 22 0.038

2 ACCESS-ESM1-5 13 8 21 0.040

3 CanESM5 2 2 4 0.209

4 CMCC-ESM2 15 14 29 0.029

5 EC-Earth3 8 11 19 0.044

6 EC-Earth3-Veg-LR 11 4 15 0.056

7 GFDL-ESM4 7 1 8 0.104

8 INM-CM4-8 10 3 13 0.064

9 INM-CM5-0 3 13 16 0.052

10 IPSL-CM6A-LR 12 7 19 0.044

11 MIROC6 1 16 17 0.049

12 MPI-ESM1-2-HR 4 5 9 0.093

13 MPI-ESM1-2-LR 14 15 29 0.029

14 MRI-ESM2-0 6 12 18 0.046

15 NorESM2-LM 5 9 14 0.060

16 NorESM2-MM 9 10 19 0.044

Figure 5.   Scatter diagram of the model performance.
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and DISO values of the MME, respectively. Models positioned to the left of the blue dashed line exhibit better 
performance than the MME in reproducing interannual variability, while models below the red dashed line dem-
onstrate superior performance in capturing spatial patterns. The results show that, among the 16 models, only 
CanESM5 and GFDL-ESM4 outperform MME in simulating the interannual variability of heatwaves. The MME 
outperforms the rest of the models, except CanESM5 and MIROC6, in reproducing spatial patterns. Therefore, 
the MME excels over most models and will be used in this study to represent changes in heatwave projections.

Projected changes in heatwave
In comparison to the reference period, the number of different grades of heatwave days is anticipated to increase 
in the future under three SSP scenarios (Fig. 6). The count of LHW days continues to increase under the SSP1-2.6 
and SSP2-4.5 scenarios, with the substantial increase of 7.8 ± 1.1 days (MME ± one standard deviation) in the 
long-term under the SSP2-4.5 scenario (Fig. 6a). Both MHW (Fig. 6b) and SHW (Fig. 6c) days exhibit consist-
ent increase under each scenario. The largest increase is in the long-term under the SSP5-8.5 scenario, with 
an increase of 9.8 ± 1.7 days and 62 ± 18.4 days, respectively. It is worth noting that in the long-term under the 
SSP5-8.5 scenario, heatwaves in Xinjiang may no longer be dominated by LHW and MHW, but by SHW. This 
suggests that Xinjiang is projected to experience more frequent and intense heatwaves.

The spatial distribution of the variations in heatwave days is crucial for gaining the deeper understanding 
of the future changes of heatwaves in Xinjiang. Here, the model agreement is denoted by the number of models 
that have the same sign for changes in heatwave days with the MME results. Compared to the reference period, 
the number of LHW days increased in most regions of Xinjiang (Fig. 7). Under future scenarios, the greater 
increases in the number of LHW days are mainly located at the margins of the Tarim Basin and in the northern 
part of the Junggar Basin, where fewer LHW days occurred during the reference period. Notably, in the long-
term under the SSP5-8.5 scenario, there is a substantial decrease in the number of LHW days, predominantly 
located in the Tuha Basin and the Tarim Basin. In general, areas with large variations in the number of LHW 
days exhibit higher model agreement.

The number of MHW days is projected to increase in most of Xinjiang under future scenarios compared to 
the reference period, except for decrease in MHW days in parts of the Tuha Basin in the long-term under the 
SSP5-8.5 scenario (Fig. S1). Different from LHW and MHW, the number of days of SHW will increase in almost 
all regions (Fig. S2). Not only is the increase in the number of SHW days significant, but the regions experiencing 
the greatest increase are primarily located in the regions with the highest number of heatwaves during the refer-
ence period. Regions with large increases in the number of MHW and SHW days have high model agreement. 
In summary, in comparison to the reference period, the area of heatwaves in Xinjiang is expanding, the number 
of heatwave days is increasing, and the severity of heatwaves is intensifying under different SSP scenarios.

Estimation of population exposure to future heatwaves
To evaluate the population exposed to heatwaves under different SSP scenarios, we calculate PEH for different 
grades by combining the number of heatwave days with the projected population. Illustrated in Fig. 8, under the 
SSP1-2.6 scenario, the maximum of LPEH (Fig. 8a), MPEH (Fig. 8b), and SPEH (Fig. 8c) occurs in the mid-term, 
reaching 388.5 ± 62.9 million (MME ± one standard deviation), 236.1 ± 50.9 million, and 205.2 ± 57.1 million 
person-days, respectively. Under the SSP2-4.5 and SSP5-8.5 scenarios, the different grades of PEH continued 
to increase over time. Furthermore, SPEH exceeded the sum of LPEH and MPEH in the long-term under the 
SSP5-8.5 scenario, at 1602.4 ± 562.5 million person-days.

The spatial patterns of the projected PEH resemble those of the reference period, indicating significant spatial 
divergence. Regions with high value of LPEH during the future period align with those in the reference period, 
primarily located in Urumqi, Kashgar and Hotan (Fig. 9). In addition, regions that experienced no LPEH dur-
ing the reference period are projected to exhibit LPEH in the future, such as Kizilsu and the southern parts of 
Yili. It is important to note that while the total LPEH in the projection period is greater than that during the 
reference period, not all regions. LPEH decreases in most regions of Xinjiang, and the regions that increase are 
mainly located in regions with larger LPEH during the reference period, with high model agreement for this 
change (Fig. 10). The regions with LPEH decreases are more extensive in the long-term under the SSP1-2.6 and 
SSP5-8.5 scenarios. Correspondingly, the population in most regions of Xinjiang reduces in comparison to the 
reference period in the long-term under the SSP1-2.6 and SSP5-8.5 scenarios (Fig. 11).

Figure 6.   Projected changes in the (a) light heatwaves, (b) moderate heatwaves and (c) severe heatwaves from 
the MME under different SSP scenarios, relative to the reference period (1995–2014). The colored bars are based 
on MME, and error bars indicate the standard deviations of the multi-model ensemble projections.
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The spatial patterns of projected MPEH (Fig. S3) and SPEH (Fig. S4) are similar to those of the projected 
LPEH, with nearly identical distributions in both high and low value regions. Compared to the reference period, 
not only the range of MPEH (Fig. S5) and SPEH (Fig. S6) will expand, but exposure will increase in most regions. 
In summary, it is projected that more people will be affected by the serious heatwave. The increase in PEH will 
pose serious threat to future ecosystems and social development. In order to mitigate this threat, it is crucial to 
understand the effects of changes in PEH.

Relative contributions of climate and population changes
Changes in PEH are influenced by climate, population and their interactions. To investigate the relative impor-
tance of each factor, we assessed the change in PEH and the relative contribution of the factors for each future 
period compared to the reference period under different SSP scenarios (Fig. 12 and Table 4). Compared to the 
reference period, the largest increase in LPEH occurred in the long-term under the SSP2-4.5 scenario, amounting 
to 528.8 ± 64.4 million person-days. The factor contributing significantly to the increase is the interactive effect, 
with a contribution of approximately 42.8%, followed by the climate effect, with approximately 35.8%, and lastly, 
the population effect, with approximately 21.4%. MPEH and SPEH increase the largest in the long-term under 

Figure 7.   Spatial distribution of projected relative changes of light heatwaves days for different SSP scenarios 
compared to the reference period. The dotted areas denote regions where at least 75% of models agree with 
MME on the sign of the change.

Figure 8.   Population exposure of (a) light heatwaves, (b) moderate heatwaves and (c) severe heatwaves under 
different SSP scenarios. The colored bars are based on MME, and error bars indicate the standard deviations of 
the multi-model ensemble projections.
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the SSP5-8.5 scenario, amounting to 433.5 ± 44.6 million and 1561.1 ± 562.5 million person-days, respectively. 
The major factor contributing to this change is the climate effect, with contribution of about 53.1% and 64.7%, 
respectively. In summary, the primary driver of PEH changes in Xinjiang are climate effects, followed by interac-
tive effects, with population effects contributing the least.

Conclusion and discussion
Xinjiang is an important part of the global arid zone, experiences frequent heatwaves. The frequency of heat-
waves in Xinjiang has significantly increased with climate change, posing the serious threat to human health51. 
Therefore, projecting the impact of heatwaves on human health in Xinjiang is the crucial and pressing task. In 
considering the effects of heatwaves on human health, it is essential to not only focus on the heatwaves but also 
population dynamic. Currently, most population data used in projecting future population exposure studies do 
not account for changes in China’s population policy, potentially leading to biased projections52. To enhance 
the accuracy of PEH projections, we utilize the dataset that incorporates recent changes in China’s population-
related policies, including population ceiling restrictions in megacities and fertility promotion, to project PEH 
in Xinjiang. Therefore, this study aims to provide the first comprehensive evaluation of the variation in PEH in 
Xinjiang under climate change by integrating heatwaves and population changes, and to quantitatively assess the 
contribution of each factor to changes in PEH. The results of this study provide a scientific basis for mitigating 
heatwave hazards and formulating sustainable development policies.

The spatial distribution of heatwaves in Xinjiang is closely related to topographic features and is predomi-
nantly distributed in basin areas, such as the Junggar Basin, the Tarim Basin and the Tuha Basin. This is primarily 
due to the geographical characteristics of the basins, which contribute to the occurrence and intensification of 
heatwaves. For instance, the lower elevation, higher temperatures and humidity of these basins render those 
regions susceptible to heatwaves. The topography of the basins restricts air circulation, leading to the trapping of 
heat and further intensification of heatwaves. Additionally, the predominantly desert and semi-desert land cover 
types in these areas make them more prone to heatwaves. During the reference period, heatwaves in Xinjiang are 
dominated by LHW and MHW. This is consistent with the results obtained by Liu et al.53 who examined various 
grades of heatwaves in China. In terms of area affected, LHW is the largest, followed by MHW, and SHW is the 
smallest, with the most significantly change in Yili.

The spatial distribution of PEH is significantly different from that of heatwaves. Regions with higher number 
of heatwave days do not necessarily have higher PEH or may not have it, such as the Kumtag Desert. The spatial 

Figure 9.   Spatial distribution of population exposure to light heatwaves in future periods under different SSP 
scenarios.
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distribution of PEH is determined by both heatwaves and population, and the geographical distribution pattern 
of the Mountain-Desert-Oasis system determines that the population of Xinjiang is mainly concentrated in 
oases54. Therefore, regions with higher PEH values are mainly located in densely populated areas such as Urumqi, 
Kashgar and Hotan. Since most areas in Xinjiang are susceptible to heatwaves, the spatial distribution of PEH 
depends mainly on that of population.

By evaluating the simulation ability of individual models, it is found that GFDL-ESM4 and MIROC6 are 
optimal models for capturing interannual variability and spatial patterns of heatwaves in Xinjiang, respectively. 
However, the highest overall ranking among the ensemble models is CanESM5. Weighting individual model 
members within the ensemble based on their performance is considered as a way to reduce uncertainty55. Con-
sidering the differences in model performance, and in order to provide more reasonable projections, we evaluate 
the simulation capabilities of the MME. The comparison reveals that the overall simulation capability of MME 
outperforms all the remaining models in the ensemble except CanESM5. Individual model projections are 
affected by higher internal climate variability making the projections more uncertain than MME56. Therefore, 
in order to provide more reasonable information and uncertainty in the projection, this study relies on MME to 
project future heatwaves and PEH variations in Xinjiang.

Compared with the reference period, the total number of heatwave days in Xinjiang is projected to increase, 
aligning with findings from previous studies37,57. However, using only air temperature to identify heatwaves in 
their study ignored the effect of relative humidity on human health. The combination of high temperatures and 
high relative humidity can influence the heat dissipation capabilities of the human body. Relying on temperature 
may lead to an underestimation of the impact of the environment on human health58. Although the majority 
of heatwaves in Xinjiang are categorized as dry heatwaves, the consideration of combined air temperature and 
relative humidity are necessary under the climate become wetter59,60. In addition, different from the finding that 
the increase in heatwaves grows sequentially from SSP1-2.6 to SSP5-8.5, the increase in LHW and MHW in the 
long-term under the SSP5-8.5 scenario is smaller than that of under the SSP2-4.5 scenario61. This discrepancy is 
primarily attributed to the substantial increase in SHW. Consequently, the heatwaves in Xinjiang are projected 
to be more serious in the long-term under the SSP5-8.5 scenario.

Figure 10.   Spatial distribution of projected relative changes in population exposure to light heatwaves for 
different SSP scenarios compared to the reference period. The dotted areas denote regions where at least 75% of 
models agree with MME on the sign of the change.
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Spatially, the region affected by heatwaves in Xinjiang is projected to expand under different SSP scenarios. 
Despite the overall expansion of heatwaves, the mountains regions remain unaffected by heatwave in all scenarios. 
This inconsistent with previous studies projecting heatwaves in China that found heatwaves in the mountains 
of Xinjiang in the future36. The discrepancy arises from the chosen method for identifying heatwaves. Our 
study calculated the HI for samples with daily maximum temperatures exceeding 33 ℃, effectively excluding 
colder regions where heatwaves are less likely to occur. Consistent with previous studies projecting an increase 
in heatwave severity across most regions of Xinjiang57, our findings project that most regions of Xinjiang will 
experience frequent SHW in the long-term under the SSP5-8.5 scenario. Furthermore, regions with decrease in 
the number of LHW days are characterized by an increase in MHW and SHW.

Climate change and population growth are projected to result in an increase in PEH in Xinjiang. The maxi-
mum values of PEH occur in the mid-term under the SSP1-2.6 scenario. This may be due to the SSP1-2.6 scenario 
represents a sustainable development scenario, which is characterized by slower population growth and lower 
greenhouse gas emissions62. Different grades of PEH continue to increase over time and reach the maximum in 
the long-term under the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario, future fertility rate is 
moderate due to the effect of two-child policy, while the SSP5-8.5 scenario exhibits lower fertility46. Thus, the 
contribution of population effects to changes in PEH is consistently higher under the SSP2-4.5 scenario than 
SSP5-8.5. Compared with SSP5-8.5, Xinjiang has more population but less PEH under the SSP2-4.5 scenario. 
The results suggest that changes in PEH in Xinjiang are more sensitive to climate change than to variations in 
population.

Figure 11.   Spatial distribution of projected relative population changes for different SSP scenarios compared to 
the reference period.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4570  | https://doi.org/10.1038/s41598-024-54885-1

www.nature.com/scientificreports/

In terms of spatial distribution, the spatial pattern of PEH during the projection period mirrors that observed 
in the reference period. High PEH values are still in the densely populated areas such as Hotan, Kashgar and 
Urumqi. Although the total PEH during the projection period exceeds that of the reference period, spatially, 
many regions show a decrease in PEH compared to the reference period. Under the SSP1-2.6 scenario, PEH 
decreases in many regions, but the number of heatwave days does not reduce in these regions. Thus, the decrease 
in PEH under the SSP1-2.6 scenario is mainly the result of lower fertility and mortality rates63. However, the 
reduction in population is not only related to fertility and mortality rates, but also to migration. Under the SSP5-
8.5 scenario, with social and economic development, population concentrates in cities. Therefore, under the 
SSP5-8.5 scenario, the total number is increasing, although exposure is projected to decrease in many regions. 
Changes in PEH are influenced by climate, population and their interactions. Understanding the relative impor-
tance of factors influencing changes in PEH is crucial for developing climate change adaptation and mitigation 
policies in the study area. Since the primary driver of PEH change in Xinjiang is climate effect. Thus, consistent 
with the findings of Li et al.64, climate mitigation is particularly important in order to reduce population exposure 
to unprecedented heatwaves.

Figure 12.   Decomposition of the changes in population exposure to heatwaves in future period under different 
SSP scenarios. The colored bars are based on MME, and error bars indicate the standard deviations of the multi-
model ensemble projections.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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