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Quality assessment 
and community detection methods 
for anonymized mobility data 
in the Italian Covid context
Jules Morand 1,2*, Shoichi Yip 1, Yannis Velegrakis 1,3, Gianluca Lattanzi 1,2, 
Raffaello Potestio 1,2 & Luca Tubiana 1,2

We discuss how to assess the reliability of partial, anonymized mobility data and compare two 
different methods to identify spatial communities based on movements: Greedy Modularity Clustering 
(GMC) and the novel Critical Variable Selection (CVS). These capture different aspects of mobility: 
direct population fluxes (GMC) and the probability for individuals to move between two nodes (CVS). 
As a test case, we consider movements of Italians before and during the SARS-Cov2 pandemic, using 
Facebook users’ data and publicly available information from the Italian National Institute of Statistics 
(Istat) to construct daily mobility networks at the interprovincial level. Using the Perron-Frobenius 
(PF) theorem, we show how the mean stochastic network has a stationary population density state 
comparable with data from Istat, and how this ceases to be the case if even a moderate amount of 
pruning is applied to the network. We then identify the first two national lockdowns through temporal 
clustering of the mobility networks, define two representative graphs for the lockdown and non-
lockdown conditions and perform optimal spatial community identification on both graphs using 
the GMC and CVS approaches. Despite the fundamental differences in the methods, the variation of 
information (VI) between them assesses that they return similar partitions of the Italian provincial 
networks in both situations. The information provided can be used to inform policy, for example, to 
define an optimal scale for lockdown measures. Our approach is general and can be applied to other 
countries or geographical scales.

Diffusion processes in human society depend on the complex structure of the underlying network of interactions. 
In principle, these can be studied at the individual scale, where each node corresponds to an agent, for example 
through social experiments recording the contacts of a group of people via special devices. This was done e.g. in a 
summer camp for children in  Italy1 or with primary and high-school students in  France2–4. Such data can then be 
used to generate a time-dependent network of contacts that can be later used to simulate the diffusion of an epi-
demic and study how it propagates at the scale of  individuals5,6. At larger scales, privacy concerns and pragmatic 
necessities make it preferable to turn towards the use of aggregated data and meta-population network  models7,8, 
where nodes represent groups of people, administrative territories or States. This can be done for example at a 
 national9 or international level 10,11, or at multiple levels through the usage of multi-scale information on people’s 
 mobility12. Meta-population models are often informed by anonymized data such as airplane  traffic10,11 or social 
network location  data13. The contact networks can also be inferred from the infectious process through a Bayes-
ian  approach14,15. The typical approach in these studies consists in mapping interactions and circulations onto 
time-series of weighted directed graphs and in finding relevant patterns in such complex, dynamical, networks.

Identifying mobility patterns can be particularly important in the case of an epidemic, such as the recent 
SARS-CoV-2  pandemic16, as they provide valuable information to model its spreading. To minimize the impact 
of an epidemic governments must take far-reaching decisions with large impacts on the lives of their citizens. 
Some prevalent measures deployed during the pandemic to contain it were the adoption of personal protection 
devices such as face  masks17,18 or contact tracing aimed at identifying and confining infectious  subjects19–24. Yet, 
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the most common measure adopted and experienced across the world was the use of various forms of general 
lockdown to dampen the large-scale  contagion25–30.

While lockdowns are certainly effective in reducing people’s mobility, as proven by several  studies31–34, and 
thus curbing the rise of infections, their imposition severely affects the lives and health of  citizens35–37. The 
extent of their deployment thus needs to be optimized both in space and time to minimize the number of people 
affected, while guaranteeing the safety of the population. Mobility patterns obtained through spatial community 
identification can provide useful insights in this direction. It is then crucial to take advantage of a data-driven 
approach to suggest the most relevant scale for partitioning of a territory. Here, we show how this optimal scale 
can be captured through a temporal and spatial clustering approach on a data-driven meta-population model 
based on anonymized aggregated data.

As a case study, we analyze the mobility network of the Italian population during the COVID-19 crisis 
between January 2020 and May 2022: a period including large and diverse variations in mobility fluxes. Italy was 
the first European country to impose a national lockdown and has seen the implementation of three nationwide 
lockdowns: between March and April 2020, in January 2021, and in April 2021. Detailed studies have been carried 
out on the initial propagation of the epidemic in  Italy38,39, on the first  confinement40 and its  relaxation41, discuss-
ing the necessity and the implementation of such restrictive measures. After the first phase of the pandemic, the 
Italian government delegated part of the responsibility of restrictions to regional governments, which were forced 
to curb the movements of their citizens whenever the effective reproduction number Rt (i.e. the average number 
of new infections caused by a single infected individual at time t) went above  142–44. Imposing regional lockdowns 
instead of national ones is a sensible strategy. However, it is not guaranteed that existing administrative regions 
correspond to the best subdivisions of a state to control the spread of epidemics. Statistical approaches, like 
community clustering, can be used to analyze mobility data in order to identify the best areas or macroregions 
that should be monitored together. The results obtained by community identification algorithms depend on the 
quality of the available –in general partial and anonymized – data, on the adopted algorithm and its parameters, 
and on the observable being optimised. In this study, we propose a pipeline to assess the robustness of partial 
and anonymized mobility data by leveraging the Perron-Frobenius theorem for stochastic matrices and identify 
spatial communities using two different methods: the recently introduced Critical Variable Selection (CVS)45 
scheme, based on an information-theoretical optimization, and the Greedy Modularity Clustering (GMC), based 
on graph theory.

GMC, based on modularity (a quantity computed from the degree of the nodes) only account for informa-
tion coming from the first neighbors in the network, while CVS is based on a distance matrix between any pair 
of nodes. Furthermore, in our approach we base GMC on the fluxes of people moving between provinces, and 
CVS on a distance matrix that captures the probability for an individual to travel between any two provinces, 
accounting for all possible trajectories between them.

The proposed method is generic to any temporal weighted directed graph and can be applied to other coun-
tries, at different geographical scales, and also to similar networks (e.g. biological networks) to find temporal 
features and to cluster their nodes and their complexity.

To test our approach we consider the case of Italy between February 2020 and May 2022 and estimate the 
mobility network of the Italian population at the level of provinces (small administrative regions between munici-
palities and regions) thanks to Facebook (FB) data obtained through META’s Data for Good  program46. While 
these datasets are perhaps too sparse to be used in the analysis and simulation of detailed epidemic  scenarios47, 
due also to excessive  pruning48, they are still sufficient for our analysis, as the resulting networks are strongly 
connected. Furthermore, our approach allows one to get at least a qualitative idea of the impact pruning has had 
on the mobility networks, by comparing the stationary population density vector corresponding to a stochastic 
process based on the average mobility network with the density vector obtained through third-party data. In this 
study, we used as a reference the data from the official projected census for January 1st,  202049 from the Italian 
National Institute of Statistics  (Istat50).

The manuscript is organized as follows. In section “Transition matrices” we define the averaged daily mobil-
ity matrices. In section “Homogeneity and representativeness of FB data” we discuss data validation, show that 
the average population density obtained from the FB data is in good agreement with the one from Istat and how 
pruning severely affects this agreement. In section “Temporal clustering” we perform a temporal clustering of 
the mobility matrices to identify the lockdown periods. This allows us both to perform a second check on the 
quality of the data and to define too representative matrices for these two periods to be used to perform the spatial 
clustering. This is done in section “Optimal spatial clustering” where we compare the results from community-
clustering and CVS. An analysis based on variation of information shows that the two methodologies are in good 
agreement. The details of the algorithms and data are reported in Materials and Methods.

Results
Our approach to characterize the behavior of the Italian population is based on movement data between prov-
inces. These are administrative entities in between regions and municipalities, usually containing between one 
and three hundred thousand people, with those corresponding to major cities such as Rome, Naples, Milan, 
Turin, and Palermo having more than a million  inhabitants50.

As explained in detail in the Methods section Datasets , we consider 106 provinces (see Table of Appendix 
A.) and extrapolate the movement of their respective populations from FB users’ data provided by META’s data 
for good  program46. The dataset we used provides the number of FB users in each province i, ni , as well as the 
number of users moving between two provinces (or within a province), nij(t) , every 8 h in the period between 
January 2020 and May 2022. More details about the data and their treatment can be found in SI Appendix I.
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Transition matrices
The data from META allow us to compute the 8-h transition rate between two provinces i and j, defined as 
follows:

Note that the denominator ensures that, for every province i, 
∑

j �ij = 1 , thereby guaranteeing that � can be used 
as a stochastic matrix. To remove seasonal fluctuations in � (day vs. night, weekdays vs. weekends) we redefine 
� as the daily transition rate between provinces averaged over the 3 days before and 3 days after, see Materials 
and Methods section “Stochastic transition matrices”. This gives us weekly-averaged daily transition matrices. 
Finally, we also make use of the mean transition matrix over the whole period, �.

To get an idea of what the data look like, the time evolution of one link �ij , reporting the mobility from the 
province of Agrigento ( i = AG ) to that of Caltanissetta ( j = CL ), is plotted in Fig. 1a. Daily averaged values are 
reported in blue, weekly averaged ones in red, and the corresponding entry in the mean transition matrix � in a 
black dashed line. The lockdown periods are indicated by grey-shaded vertical bars. Seasonal effects are clearly 
visible from the comparison of the daily data and the corresponding weekly averaged ones. A subset of weekly-
averaged daily transition rates between different provinces is reported in Fig. 1b. The directed graph associated 
with � is displayed in Fig. 1c.

Homogeneity and representativeness of FB data
We assume that the FB users in the database are homogeneously distributed across provinces, and move in a 
manner that is on average similar to that of the rest of the population. To validate these assumptions we proceed 
as follows.

First, we monitor the fraction of FB users over the total population of the province according to Istat; this 
ratio is defined as ni/nIstati  , where ni =

〈
nhi
〉
 is the number of FB users in province i averaged over the whole 

time series. The results, reported in Fig. 2a, show that in all provinces this fraction remains between 3% and 7% , 
and that FB users are roughly homogeneously distributed across the country.

A more quantitative validation of both assumptions can be obtained by considering the population density 
vectors obtained both from the official census of Istat in 2020 and from FB users’ data. These are defined as 
follows:

The populations ni can be obtained from either: Istat data, ρIstat or the FB population dataset ρFB . The above 
normalization, Eq. (2), sets |ρ| = 1 and allows us to compare the different vectors. In addition, it is possible to 
compare another population density vector, ρ∗ , obtained from the mean matrix � extracted from the FB move-
ment dataset.

(1)�ij(t) =
nij(t)∑
j nij(t)

.

(2)

ρ =

(
n1

ntot
, . . . ,

nN

ntot

)T

where n1, . . . nN are the populations of the N provinces, and ntot =

N∑

i=1

ni is the total population.

b)

a) c)

Figure 1.  (a) AG→ CL (Agrigento to Caltanissetta provinces) link vs time. Daily average probability (blue) and 
7-day rolled-average probability (red), and overall probability averaged in time (black dashed line). (b) Examples 
of some representative weekly rolled-average transition probability links. (c) Representation of the directed 
graph defined by the Matrix � (Eq. 4). Arrows represent the mean probability links, �ij , between Italian 
provinces i and j, and are scaled in size and color according to the value of the link (from gold to dark blue). 
Self-links �ii are not shown. The size of the nodes is proportional to the population (vector ρ∗ of Fig. 2b).
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In the graph described by � there is a non-zero probability to reach any node from any other one in a finite 
number of steps, that is, the graph is strongly connected and aperiodic, and random walks over it are ergodic. 
The Perron-Frobenius (PF) theorem then ensures that � has a non-degenerate highest eigenvalue. With our 
normalisation of � this is �∗ = 1 , and its associated left eigenvalue ρ∗ is the only stationary state of the system, 
satisfying: ρ∗

i �ij = �jiρ
∗
j .

Therefore, any non-trivial distribution vector over the nodes of our network will converge to ρ∗ after a 
sufficiently long time (see SI Appendix C). If the movements described by � are consistent with the Istat 
population data, the stationary density vector ρ∗ must be in good agreement with the Istat density vector ρIstat . 
This is indeed the case, as shown in Fig. 2b,c.

Figure 2, panel b) displays the population density vectors ρFB and ρ∗ , on a log-log scale against ρIstat . The 
provinces are sorted from least to most populated according to Istat data. We see a good agreement within the 
FB data themselves, which is also a benchmark of our extraction and preparation of the data.

Moreover, the standard deviations of ρFB and ρ∗ from the Istat vector (panel c) of Fig. 2) are in very good 
quantitative agreement with the Istat data. However, we notice that the most populated provinces, Rome, Milan, 
Naples, and Turin, (RM, MI, NA, TO) are slightly overestimated and that the less populated provinces are slightly 
underestimated especially by the ρ∗ vector. This can be explained by the fact that all links with less than 10 people 
are ignored for privacy reasons.

In the last row of Fig. 2, panels d), e), f) show the validity of the method: using a pruned mean mobility 
matrix, we see its stationary PF vector deviating more from the National data. The pruning consists in removing 
all links of the mean matrix corresponding to transition probabilities below 2, 75.10−4 , as shown on the graph 
representation on panel d). The pruned matrix is then normalised to be stochastic, and the PF stationary vector, 
ρ
∗
pruned , is computed. We see it on panel e) compared to ρ∗ and ρIstat . In panel f) we compare the standard 

deviation of the two PF vectors with respect to the Istat one. We see a clear deviation of the PF vector from the 
Istat vector when using the pruned (less detailed) matrix. The PF method completely breaks off if the graph is no 
longer strongly connected. This result is presented in Appendix C of the SI, Fig. SI.2, where we report the results 

d) e) f)

a) b) c)

Figure 2.  (a) Fraction of FB users that have shared their location over the official province population obtained 
from the Istat 2020 census, ni/nIstati  , for each province i. (b) Comparison of the different population density 
vectors from FB and Istat data: ρFB and ρ∗ are plotted against ρIstat . (c) Standard deviation of the vectors ρFB and 
ρ
∗ from the ρIstat vector. (d) Representation of the directed mobility graph without links smaller than a cutoff of 

probability 2.75 · 10−4 , normalised so that the corresponding pruned matrix is a stochastic matrix. The size of 
the nodes is proportional to the Perron-Fobenius first left eigenvector, ρ∗

pruned , of the pruned matrix. (e) ρ∗
pruned 

together with ρ∗ versus ρIstat (f) The standard deviation of ρ∗ and ρ∗
pruned from ρIstat . With higher values of the 

cutoff the graph becomes only weakly connected and the assumptions for PF break. (see also Fig. SI.2. Appendix 
C.).
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from a progressive pruning up to the breaking point. It is interesting to note not only the increasing deviation 
from the Istat data but also how some nodes, not necessarily the most or least populated ones, become large 
sinks or sources of the diffusive process.

Finally, we note that a weaker check can be done internally, using the vector ρFB provided by META and 
comparing it against the stationary population density vector ρ∗ . Increasing the pruning, the difference between 
the two populations will increase.

Having validated the FB data, we can proceed to extract the information contained in the time series of 
weekly-averaged daily transition matrices. First of all, we notice that diagonal elements �ii ≥ 0.9 , meaning 
that most movements happen within provinces. Second, and most notably, we find that while the time series 
of the probability to move between different provinces can vary by an order of magnitude, as shown in Fig. 1b, 
the movement pattern of single provinces can be brought to collapse on two master curves with an appropriate 
re-scaling, see SI, Appendix D and E, and in particular Figs. SI.4 and SI.5.

Temporal clustering
In order to use movement data to identify spatial communities, we first need to identify the confined and 
unconfined periods, as the mobility was considerably reduced during lockdown periods compared to the rest 
of our 2-year time window. This also provides a further quality check for the data contained in the transition 
matrices �(t).

To do identify the lockdowns, we cluster the daily movement matrices into two groups based on the distance 
induced by the matrix-matrix scalar product, as described in the Materials and Methods section “Temporal 
clustering method”. The results are reported in Fig. 3c, where each matrix is represented by the average probability 
for people to move out of their province at time t:

(3)�Pout� (t) =
1

N

N∑

i=1

1−�ii(t) = 1−
1

N
Tr (�(t)).

Figure 3.  Left panels: (a,d) Spatial community clustering obtained with Greedy Modularity and, (b,e) Critical 
Variable Selection. Panels (a), (b) report the communities identified by the two methods during the non-
confined periods. Panels (d), (e), during confinement. Grey lines represent the borders of the provinces while 
bold black lines delimit administrative regions. Right panels: (c) Temporal clustering: Mean mobility 〈Pout〉(t) 
versus time. The light blue dots and dark red stars illustrate the two temporal clusters of transition matrices 
series. Gray-shaded areas represent national confinement periods. (f) Variation of Information VI between the 
different partitions of Italy presented above, VI is here divided by log(N) to provide a 0 to 1 scale.
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The two temporal clusters C0 and C1 are represented by light blue dots and dark red stars, respectively, and the 
latter clearly identifies the first two national lockdown periods, delimited by the vertical shaded areas. Although 
the third lockdown period is not identified by the clustering, we argue that this is because it has not been strictly 
imposed, nor was it effectively respected, as it can also be seen from the mobility plots of Figs. 3c and SI.2.

FB data thus entails mobility features that are in agreement with the history of the Italian government’s deci-
sions and their repercussions on the population’s behaviour, validating their usage in modeling epidemics and 
social phenomena more in general.

Optimal spatial clustering
We can now perform a spatial clustering of the most representative matrices of the two temporal clusters obtained 
for the confined and unconfined situations.

To this aim, we define for each of the two temporal clusters ( Ck , k = 0, 1):

• The mean transition matrices �Ck ,
• The most representative transition matrices �̃Ck,
• The most representative current matrices JCk= �̃CkρIstat.

We then use two different methods to perform and optimise the clustering:

• The Greedy Modularity Communities method uses the flux of people moving between nodes, JCk . This 
corresponds to the probability for a randomly picked Italian to be in a province, ρIstat multiplied by the 
probability of moving. This approach maximises the modularity (section Greedy modularity communities 
method (GMC)) of a clustering, resulting in partitions whose clusters have higher fluxes within themselves 
than between different clusters. It is important to note that modularity only uses information about nodes 
directly connected by an edge (first neighbors).

• The Critical Variable Selection method is based on a distance matrix between any pair of nodes in the 
network. This includes pairs that are not directly connected. This matrix is computed starting from the 
transition probability �̃Ck . Each entry of �̃Ck gives the probability for a person picked in a node A to travel to 
any neighbor node B, without multiplying it by the population density of A. �̃Ck is transformed into a distance 
matrix by taking into account all possible paths leading from any node A to any node B, including those 
paths that traverse other  nodes51 (Section Effective distance matrix between nodes). The optimal clustering 
maximizes the relevance, a quantity introduced in information theory (Section Critical Variable Selection 
method). CVS identifies the partition that minimizes information loss with respect to a full description of 
the  dataset45.

The details of both strategies are reported in the Materials and Methods section Spatial clustering and a graph 
representation of the most representative matrix in each case can be found in Figs. S8 and S9 of Appendix H of SI. 
We observe here that, although in principle geographically distant provinces could be grouped together (e.g. in 
the case of highly connected cities such as Rome, Naples, Milan, and Turin), the clusters found by both methods 
are composed of physically proximal provinces, which can be reached one from the another without having to 
cross other clusters. This is a non-trivial result, as neither method relies on the notion of geographical distance.

Non confined
Figure 3a,b represent the clustering of the most representative matrix of the unconfined temporal cluster ( C0 in 
blue in the top panel of Fig. 3c corresponding to an ‘ordinary’ Italian mobility situation; the top map is obtained 
employing the greedy modularity method, while the bottom one makes use of the CVS approach.

The two methods return slightly different partitions: for the greedy modularity (top), the Italian provinces 
are grouped in 11 clusters corresponding to well-defined geographical areas, while 16 groups are found using 
the CVS scheme. Apart from a few border cases, the clusterings seem to reproduce well some known cultural 
and commercial ‘blocks’ within the Country. For example, the green cluster corresponds to the Triveneto area 
(that is Veneto, Friuli-Venezia Giulia, and Trentino-Alto Adige), while Sardinian provinces are fully grouped in 
their own cluster. The time series of outward and inward probabilities for each province are also displayed in the 
supporting information (Fig. SI.5.) for each optimal spatial cluster obtained with the greedy modularity method. 
We further computed the mobility Z-score for each province and found it to correlate, at least qualitatively, with 
their touristic vocation, with more touristic provinces showing the highest Z-score, see Fig. SI.6.

Confined
Things change dramatically when the matrix representing the confined case, C1 : cluster 1, in red in Fig. 3c, is 
considered. Fig. 3d,e display the corresponding clustering, in the left panel using GMC and in the right one 
using CVS. In this case, the optimal clustering produces 23 spatial clusters with the former approach and 30 
with the latter. Both of them predict more clusters, as expected when mobility is reduced. By analyzing the most 
representative matrices as directed graphs, one can also see that the one for the confined case presents fewer 
links than the one for non-confined mobility and that some provinces become singletons in the optimal spatial 
clustering, see supporting information Appendix H: Figs. SI.8 and SI.9.
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Comparison between the partitions obtained from GMC and CVS
In both the unconfined and confined case, GMC and CVS provide comparable results, as can be seen from 
Fig. 3a,b,d,e, with mostly local changes. In particular, the isolated provinces in the confined case (off-white in 
Fig. 3d–e are the same according to both strategies.

We quantify the similarity between the partitions found through GMC and CVS by measuring the Variation 
of Information (VI) between them. This observable quantifies the amount of information needed to pass from 
one partition to another and has been adopted for example in the context of subfamily classification of protein 
in  phylogenomics52. Importantly, VI defines a metric in the space of all possible partitions of a given set of N 
 objects53,54. When normalized by dividing it by the logarithm of the number of elements in the set, it assesses 
how ‘close’, in terms of information, two partitions are on a scale from 0, for identical partitions to 1, the distance 
between a partition composed of N singletons and one including single cluster (the two extreme cases). We report 
its formal definition in Material and Methods 3.4.5.

Figure 3f shows the value of VI for the different partitions of Italy presented above. We normalize VI by 
dividing it by log(N) with N = 106 . On this scale, we see that VI = 0.14 between the greedy community and CVS 
clustering during the non-confined period and VI = 0.11 in the confined one. For comparison the VI between 
the 20 administrative regions and unclustered 106 provinces is 0.38, highlighting how seemingly small changes 
in VI can correspond to large reorganizations of the partition. It is then interesting to observe that the VI between 
the non-confined CVS/GMC clusterings and the unclustered provinces are both higher than 0.38. This is due 
to our clustering methods identifying fewer macroregions than the administrative Italian regions. The fact that 
the VI between the administrative regions and GMC is between 0.17 and 0.2 for confined and non-confined 
cases, while that between the administrative regions and the CVS is 0.2 and 0.16 is in agreement with the fact 
that our partitions identify macroregions that have large overlaps with the administrative ones, as seen in Fig. 3.

Looking at the local differences between the partitions identified by GMC and CVS can also provide useful 
information. We take as an example the unconfined clustering of Fig. 3a,b. The main differences are in the 
north-east (Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia), Adriatic coast (Marche, Abruzzo, Molise), and 
the South (Calabria and Sicily). For each of these macroareas, GMC creates a single cluster, while CVS creates 
multiple smaller ones. To understand the origin of these discrepancies, we also computed GMC based on the 
transition matrix �̃C0 , removing one of the different assumptions between the two methods. The result, reported 
in Fig. SI.10, shows that in this case GMC divides Friuli from Veneto and Calabria from Sicily like CVS, but 
keeps the Adriatic coast in a single cluster (in brown in Fig. 3a). By looking at the nodes connections reported 
in Fig. SI.10 the reasons becomes apparent. The nodes forming the Adriatic cluster are disposed on a single line. 
Modularity thus tends to cluster them together, while CVS tends to separate them into chunks of similar size.

Conclusions
Picking the period 2020-2022 in Italy as a test case, we proposed a method to assess the quality of anonymized 
mobility data, identify spatial communities based both on Greedy Modularity Clustering and on the novel Critical 
Variable Selection method, and discussed how to extract information on the data based on their differences.

We showed how movement data from social networks (here META Data for good program) can be validated 
by considering the associated average transition matrix between nodes as the generator of a Markov jump 
process and comparing the corresponding stationary density vector with the population density vector obtained 
from the official census, or as an internal check with the population density available from the social network 
data itself. This criterion can in principle be extended to infer a corrected mobility matrix that reproduces the 
official census while remaining as close as possible to the starting one, leveraging an approach tested on in-silico 
generated gene-expression  networks55. This could be particularly interesting as a way to infer the probability of 
small links in the mobility network. While these are in general not included in publicly-available mobility data 
in order to be compliant with privacy regulations, their absence can considerably reduce the usefulness of said 
data for modeling epidemic  processes47,48. This problem will be tackled in a future study.

By considering the distance between transition matrices, we performed a temporal clustering to distinguish 
the lockdown periods from the rest. This successfully identifies the first two national lockdowns, which were 
strictly enforced by the Italian Government, and allowed us to define two representative mobility networks, one 
for the confined (lockdown) situation, and one for the unconfined case. We spatially clustered them according 
to GMC and CVS, comparing the results obtained from these methods. This comparison is important as GMC 
and CVS employ different algorithms and optimize different quantities (as detailed in 6.2). GMC is based 
on graph theory and identifies clusters so that the flux of people moving within them is higher than the flux 
between clusters. CVS identifies an optimal partition in terms of relevance, an information-theoretical quantity. 
Furthermore, GMC is limited to first-neighbor nodes, while CVS is based on a distance matrix defined between 
any pair of nodes in the network and based on all paths leading from one to the other.

Despite those fundamental differences, our results show that the two methodologies return comparable 
results, with only local variations, as captured by  the VI measure. Analyzing these variations can provide 
further insights into mobility networks. In practice, the choice between GMC and CVS should be dictated by 
considerations on the kind of movements that one wants to cluster and the difference between the two clusterings 
highlights relevant differences in the identified communities, providing useful information to decision-makers.

Finally, we highlight that since our methodology is completely general, these strategies can be applied to other 
countries and other scales, as well as different problems relying on temporal varying networks. For example, 
identifying temporal and spatial clusters in the interaction networks between biomolecules is important to 
correlate their physical properties to their biological  functions56, while clustering dynamic protein-protein 
interaction  networks57 or gene regulation  networks58 can provide relevant information on biochemical patterns 
within the cell as well as the co-regulation of genes, both of which are of fundamental interest for modern 
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biological and pharmacological research. Dynamical networks are also extremely relevant in brain modeling, 
where the activation patterns between neurons are assumed to codify thoughts, memories, and  reactions59. 
Mapping and understanding different patterns of activation is the focus of considerable research  interest60.

Materials and methods
Datasets
Facebook movement data
The Facebook (FB) movement data were taken from META’s Data for Good program. The database records the 
number of people going from province i to province j, updated every 8 h, for Italian users who allowed FB to 
share such information with the app on their device; the time frame covered goes from March 1st, 2020 to May 
22nd, 2022 (811 days). The database has been completely anonymized by  META61. In particular, all links between 
two provinces containing less than 10 people are ignored.

The FB movement data are available both on a grid with cells of roughly 600× 600 meters, which is the 
minimum tile size allowed for privacy protections (Bing tile level  1662), and at the scale of Italian provinces, 
administrative entities in between municipalities and regions. In this study we concentrate on the province 
level: the list of 106 provinces used was the official one in 2016 except for the provinces of Sud Sardinia (SU) 
and Cagliari (CA) which were merged into one node (CA), in order to get inter-compatibility of administrative 
regions between datasets from FB, Istat, and ISS. A map (Fig. SI.1 top right) and a table of these provinces can 
be found in the section “Result”. of supporting information. The appendix I of supporting information describes 
in detail the workflow of the data preparation.

In this database the FB data reports for each 8 h period (labeled by h):

• The number of FB users moving from province i to province j at time h, nhij (called ncrisis in the original 
dataset).

• The total number of FB users in province i at time h, nhi .

Istat and ISS data
The FB data cover only a fraction of the Italian population (namely those individuals who employ the FB app 
on mobile devices and have enabled their location sharing) and does not provide direct information on the 
population of each province, the amount of COVID cases registered there, nor the duration of confinement 
periods. The population of each province i, nIstati  , was obtained from  Istat50, the Italian National Institute of 
Statistics. We used the most recent database available before the pandemic, released on January 1st, 2020. For 
simplicity, we assumed that the population remained constant during the period of study: this is an acceptable 
approximation, given that the global growth rate of the Italian population for that period is roughly −0.4%63 and 
this fluctuation is negligible for our analysis.

The dates of the national confinements implemented by the Italian government are the  following44,64,65: from 
10/03/2020 to 16/05/2020; from 21/12/2020 to 06/01/2021; from 15/03/2021 to 05/04/2021.

The three periods are indicated by the grey-shaded areas in Figs.  1, 2 and 3. The confinement and 
de-confinement were progressive processes e.g. at first not all provinces were confined: only 2 days after the 
initial, local lockdown the measure was applied to the whole Country. Hence, we chose the temporal boundary 
of the lockdowns such that the periods correspond to the situation where the whole Country was confined, 
particularly periods in which any movement between provinces was prohibited. At smaller scales, national 
confinements were characterized by rigid restrictions on  mobility44.

Stochastic transition matrices
Using the data described in section “Facebook movement data”, we built the transition matrices between 
provinces. As described below, these are averaged daily and over the whole period.

Mean transition matrix over the whole period
FB data allowed us to define a mean transition matrix � between nodes as follows:

The denominator in Eq. (4) normalizes the matrix such that the elements in each row sum to one: 
∑N

j �ij = 1,∀i , 
thus ensuring that � is a stochastic matrix.

Daily transition matrix
FB data were used to generate a daily transition matrix representing the link between provinces for each day, 
indexed by t. The time evolution of the mobility network was monitored by constructing a time series of transition 
matrices as follows:

(4)�ij =

∑
h n

h
ij∑

j

∑
h n

h
ij

where
∑

h

is the sum over all 8-hour-slots during the whole data period.

(5)�ij(t) =

∑
h∈[t−ǫ,t+δ] n

h
ij∑

j

∑
h∈[t−ǫ,t+δ] n

h
ij

where
∑

h∈[t−ǫ,t+δ]

is the sum over all 8-hour-slots in [t − ǫ, t + δ].



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4636  | https://doi.org/10.1038/s41598-024-54878-0

www.nature.com/scientificreports/

Using Eq. (5) we constructed two different daily time series, one averaged every 24 h, ǫ = 0 , and δ = 24  h, and 
one based on a weekly rolling average, ǫ = 72   h days, δ = 96 h (in between 3 days before and 3 days after day 
t). The weekly averaged one correspond to the average of data provided by ISS.

Temporal clustering method
To perform the temporal clustering of the transition matrices �(t) , we used the standard Frobenius matrix 
distance between pair of matrices at time t and t ′ > t:

where N is the number of rows and columns in the transition matrices.
To identify the two clusters corresponding to confined (lockdown) and non-confined situations we applied a 

standard unstructured hierarchical clustering algorithm. In this bottom-up algorithm, the closest pairs of points 
and then pairs of clusters are recursively merged. We stop the algorithm when only two clusters are left. To find 
the closest clusters at each step, we compute the Frobenius norm between the mobility networks composing them 
and adopt the Ward linkage method, that is, we merge two clusters if the variance of the distance between the 
points in the resulting cluster is lower than the sum of the variances in the two original clusters. We implement 
this using the AgglomerativeClustering function available in the sklearn Python  package66 version 
1.2.2, specifying the target of two clusters, ward linkage, and an affinity matrix based on the Frobenius distance 
defined above. The other parameters are left to their default values.

Spatial clustering
Spatial clusterings into communities are obtained starting from the most representative matrices of the two 
main temporal clusters C0 and C1 ; these correspond to the unconfined and confined periods respectively, and 
are represented in Fig. 3e.

Most representative current matrices
We computed the mean matrices �C0 and �C1 of the matrices belonging to the unconfined ( C0 ) and confined 
( C1 ) temporal clusters. From the mean transition matrices, we selected the most representative ones ( ̃�Ck ) of 
each cluster by taking the daily (weekly rolled-average) transition matrix closest to the mean and defined the 
most representative current matrix JCk :

where Ck is the set of days ti within the temporal cluster k.
The transition matrices defined above provide the daily probability of going from one province to another, but 

the weights do not contain any information on the population of each province. To include this information, we 
constructed the current matrix by multiplying the most representative transition matrices of the two principal 
temporal clusters by the Istat vector ρIstat and it is subject to the normalization condition of the most right 
equation above.

We specify here that we do not define the current matrix using the stationary (Perron-Frobenius) population 
vector ρ∗ but with the one computed from Istat data which is comparable up to a few fluctuation. This can be seen 
in Fig. 2a–c. While this means that the detailed balance is not exactly verified, the detailed balance condition 
is not used in the clustering and the population data of Istat is more accurate, thus ensuring that the computed 
currents are more representative of the real fluxes.

Greedy modularity communities method (GMC)
This clustering algorithm is provided by the networkx  Python library (greedy_modularity_
communities). This algorithm, developed  in67 and refined  in68,69, relies on the optimization of the modularity 
Q. Let Wij be a weighted matrix, without self-loops, of the associated graph; for a given clustering c, the modularity 
is defined  as69:

The quantity m generalises what would be the number of edges in a binary graph, ki is the generalised degree of 
the node i, and ci labels the cluster to which node i belongs.

To understand its meaning, consider the simpler case of an unweighted graph, where Wij = Aij is the 
adjacency matrix. If connections are made at random but respecting the degrees ki and kj of the nodes i and j, 
then the probability of an existing link between these two nodes is kikj/2m . This means that modularity measures 
the difference between the linkage of the node within a community cluster and what is expected from a random 
network. With increasing values of Q, one has an increasing deviation from a random choice of linkage. Also, 
looking at Eq. (8), we see that if there is only one cluster, then δ(ci , cj) ≡ 1 , and it is straightforward to see that 
in this case Q = 0 . In the opposite situation, where the clustering is made only of singletons then δ(ci , cj) = δij ; 
in this case as well, we see that Q = 0 . It is possible to  show70 that, in between these extreme cases, there exists 

(6)d(�(t),�(t ′)) =

√√√√
N∑

i,j

(�ij(t)−�ij(t′))2, t, t′ ∈ {1, . . . ,T}

(7)�̃Ck = min
t∈Ck

��(t)−�
Ck�, k ∈ {0, 1}; and J

Ck
ij = �̃

Ck
ij ρ

Istat
i , k ∈ 0, 1, such that

N∑

i,j

J
Ck
ij = 1.

(8)Q =
1

2m

∑

ij

Wij −
kikj

2m
δ(ci , cj), where m =

1

2

∑

i,j

Wij and ki =
∑

j

Wij
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an optimal clustering corresponding to maximal modularity. The algorithm tests different levels of resolution 
through an agglomerative clustering method similar to the one presented in section “Spatial clustering”, aiming 
at finding the clustering of the network with maximal modularity.

Effective distance matrix between nodes
Following  ref51, we define the effective distance between two adjacent nodes i and j as dij = 1− ln�ij . If there 
exists a path going from i to j with l steps : Ŵij = {(k0 = i, k1), (k1, k2), . . . , (kl−1, kl = j)}, the direct length �(Ŵij) 
of this path is the sum of the effective distances along its steps. We defined the effective distance Dij between any 
node as the minimal distance among all the existing paths from i to j:

The effective distance matrix used in CVS is �S = (�+�t)/2 the symetric part of �.
This definition is valid for any weighted directed graph. In particular, the last line is not needed if the graph 

is weakly connected ( ∀(i, j), ∃Ŵij or ∃Ŵji ). Similarly, the two last lines are not needed if it is strongly connected 
( ∀(i, j), ∃Ŵij).

In our case, the most representative transition matrix of the non-confined period, �C0 is strongly connected 
while �C1 , the graph associated with the most representative transition matrix for the confinement period is 
not even weakly connected, and its connected components are not always strongly connected. We add that, on a 
computer, ‘infinite’ must be represented as a large number; this value was defined as 100 times the maximum 
of the well-defined elements of � . The effective distance matrix is normalized by its mean value: �S ← �S/�S 
where �S = 1

N2

∑N
i,j �

S
ij . In this way, the agglomerative clustering operations on the distance matrix do not 

depend on the large-scale cutoff.

Critical variable selection method (CVS)
The critical variable selection method, also known as resolution-relevance71–76, has been successful in identify-
ing optimal clustering for the reduction of complexity in the representation of  biomolecules77 or for a protein 
conformational  landscape78.

Considering a set of N objects and a given clustering of them, we labeled the K clusters by s ∈ �1,K� and 
defined ks to be the number of objects in cluster s. ks/N is the empirical probability for an object to belong to 
cluster s.

where logN is the logarithm in base N such that logN N = 1 . H[s] = 0 when all objects belong to only one cluster, 
and H[s] = 1 at the other extreme, when each object has its own separate cluster.

Resolution alone, however, is not sufficient to identify an optimal level of informativeness of a given clustering. 
A second quantity, the relevance is defined based on the number of clusters containing k objects, mk

45:

In the latter expression, the factor kmk
N  is the empirical probability that a randomly chosen object in the collection 

belongs to the cluster with k elements in it. The relevance is the Shannon entropy associated with this second 
empirical probability. For both limit cases of 1 and N clusters, H[k] = 0 , the relevance being non-negative 
 otherwise45,78. The maximum relevance thus corresponds to an optimal clustering, i.e. to the most informative 
partition of the collection of objects.

We then performed an agglomerative clustering of the nodes representing provinces using the distance 
introduced above and computed for each number of clusters from 1 to N the corresponding values of resolution 
and relevance (see Fig. 4 right panels). The optimal partition of provinces was defined as the clustering with the 
maximum relevance value.

Variation of information (VI), a measure for cluster similarity
In order to quantify the similarity of the clustering, we measure the Variation of Information (VI). The Variation 
of Information is defined  as53 VI[C,C′] = 2H[C,C′] −H[C] −H[C′], where C and C′ are two partitions of a set 
of N object containing respectively K and K ′ clusters. H[C,C′] the cross entropy between the two partitions, and 
H[C] the Shannon entropy (or resolution) of clustering C, are defined as:

(9)

�(Ŵij) =

l−1�

n=0

dkn ,kn+1 ; Dij = min
Ŵij

�(Ŵij); and �ij =





0 if i = j
dij if �ij �= 0
dji if �ij = 0 and �ji �= 0
Dij if ∃Ŵij

Dji if � ∃Ŵij and ∃Ŵji

+∞ elsewhere.

(10)

The resolution is defined as the Shannon entropy of this probability distribution: H[s] = −

K∑

s=1

ks

N
logN

ks

N

(11)mk =

K∑

s=1

δk,ks . The relevance is defined as follows: H[k] = −

N∑

k=1

kmk

N
logN

kmk

N
.

H[C,C′] =

K∑

i=1

K ′∑

j=1

nij

N
log

(nij
N

)
, with: nij = |Ci ∩ C′

j |, (i, j) ∈ �1,K�× �1,K ′�; and H[C] = −

K∑

k=1

ks

N
log

ks

N
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with ks = |Cs| the number of objects in cluster s. VI[C,C′] ranges from 0 to log(N). VI is also related to the mutual 
Information, I[C,C′] , share by two partitionings as explained in detail in  ref53,54.

Data availability
All the derivative datasets generated and analysed during this study are included in this published article in Clus-
tering_Meta_matrices.zip. The Facebook mobility datasets are provided under an academic license agreement 
with Meta in the context of the “Meta Data for Good” program, through which data are released by Meta upon 
request to non-profit organizations and academics, see dataf orgood. faceb ook. com. The Sars-Cov2 provincial 
Italian data set comes from the  ISS79 (Italian National Institute of Health), and the official census of provincial 
populations from  Istat50 (Italian National Institute of Statistics) and are publicly available data sets.
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