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Dynamic hydrogen peroxide levels 
reveal a rate‑dependent sensitivity 
in B‑cell lymphoma signaling
Melde Witmond 1, Emma Keizer 1, Bas Kiffen 1, Wilhelm T. S. Huck 1* & 
Jessie A. G. L. van Buggenum 1,2*

Although in vivo extracellular microenvironments are dynamic, most in vitro studies are conducted 
under static conditions. Here, we exposed diffuse large B‑cell lymphoma (DLBCL) cells to gradient 
increases in the concentration of hydrogen peroxide  (H2O2), thereby capturing some of the dynamics 
of the tumour microenvironment. Subsequently, we measured the phosphorylation response of 
B‑cell receptor (BCR) signalling proteins CD79a, SYK and PLCγ2 at a high temporal resolution via 
single‑cell phospho‑specific flow cytometry. We demonstrated that the cells respond bimodally to 
static extracellular  H2O2, where the percentage of cells that respond is mainly determined by the 
concentration. Computational analysis revealed that the bimodality results from a combination of 
a steep dose–response relationship and cell‑to‑cell variability in the response threshold. Dynamic 
gradient inputs of varying durations indicated that the  H2O2 concentration is not the only determinant 
of the signalling response, as cells exposed to more shallow gradients respond at lower  H2O2 levels. A 
minimal model of the proximal BCR network qualitatively reproduced the experimental findings and 
uncovered a rate‑dependent sensitivity to  H2O2, where a lower rate of increase correlates to a higher 
sensitivity. These findings will bring us closer to understanding how cells process information from 
their complex and dynamic in vivo environments.

An important factor in disease development is the extracellular microenvironment of cells. In vivo, the microen-
vironment of cells is highly dynamic, for instance due to the production or release of small molecules. However, 
most in vitro research on cellular signalling studies the effects of sudden increases in stimuli (static step stimu-
lations). Although such studies have been very informative, static in vitro study conditions do not reflect the 
complex and dynamic in vivo environments of cells. Various recent studies show that temporal dynamic stimuli 
can influence cellular signal processing, decision making, and  function1–6. A study on human embryonic stem 
cells elucidated that the SMAD4 protein responds dose-dependently to one morphogen, but in a rate-dependent 
manner to another  morphogen1. Johnson et al. (2021) discovered both a dose and a rate threshold mechanism 
that together govern MAPK stress signalling in  yeast2. The same group showed that human cells survive gradual 
but not acute osmotic stress, where stress signalling pathways were not activated upon dynamic input  patterns6. 
Furthermore, a study on fibroblast cells demonstrated that the NFkB signalling pathway responds to absolute 
differences in cytokine concentrations, also under dynamic cytokine  conditions4. O’Donoghue et al. (2021) 
studied T-cells and their capability to selectively filter out oscillatory signals at the minute  timescale3. Thus, 
research has revealed a large variety of mechanisms with which different cell systems process dynamic inputs 
from their environment.

One cell type for which it is particularly important to respond to dynamic environments is the B-cell, as these 
immune cells have to recognise pathogens and process the information to initiate immune responses. However, 
B-cells have not yet been studied in in vitro dynamic environments. In addition, reactive oxygen species (ROS), 
such as hydrogen peroxide  (H2O2), play a critical role in healthy B-cell function and lymphoma  development7–9. 
 H2O2 in the microenvironment of lymphoma cells can reduce the activation of macrophages and natural killer 
cells, thereby promoting tumour cell  survival10,11. Moreover,  H2O2 can cross the cell membrane and alter intra-
cellular signalling by inhibiting phosphatases, which are essential negative signalling regulators, thus promoting 
 proliferation12.  H2O2 can activate the B-cell receptor (BCR) network, a major signalling network in lymphoma 
cells (Fig. 1a). Normally, this network is activated via antigen recognition by the  receptor13,14. Antigen binding 
causes the BCR complex, consisting of Immunoglobulin (Ig) and the CD79a/b heterodimer, to cluster and associ-
ate with LYN. LYN phosphorylates CD79a/b, which subsequently phosphorylates tyrosine kinase SYK. SYK is a 
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key kinase in the BCR network, able to activate the BTK/PLCγ2 signalling hub, the PI3K/AKT pathway (protein 
synthesis), and the p38 MAPK pathway (transcription regulation). The BTK/PLCγ2 hub, in turn, can activate the 
ERK1/2, NFkB and NFAT pathways (transcription regulation). In addition, BCR-proximal phosphatases such as 
SHP1 and SHP2, PTPN22, SHIP and PTEN are activated through LYN, PI3K, and localised ROS  production15,16. 
These phosphatases are essential negative regulators of BCR signalling.  H2O2-induced activation of the BCR 
signalling is distinctly different from antigen-based activation.  H2O2 oxidises cysteine residues in the active site 
of the phosphatases, thereby rendering them unable to inhibit the kinases in the  network17, resulting in active 
BCR signalling. Indeed, previous research has demonstrated that both healthy primary B-cells and chronic 
lymphocytic leukemia (CLL) cells respond in vitro to  H2O2 via BCR  signalling8,18–20.

Since environment sensing is essential for B-cell function but B-cell responses to dynamic conditions have 
not yet been studied, we have opted to use a diffuse large B-cell lymphoma (DLBCL) cell model and study their 
signaling response to dynamic  H2O2 concentrations. As a step towards complex dynamic environments, we 
applied temporal gradients of increasing stimulus to study how DLBCL cells process dynamic inputs and meas-
ured signalling responses with single-cell phospho-specific flow cytometry. We demonstrated that the activated 
B-cell (ABC) type DLBCL cell line HBL1 responds to extracellular  H2O2 by heterogeneously activating vari-
ous components of the BCR network. Static step stimulations indicated a concentration-dependent signalling 
response to extracellular  H2O2. However, dynamic  H2O2 input patterns revealed a rate-dependent sensitivity 
to  H2O2; more shallow gradients induced a response at lower  H2O2 levels. This behaviour was qualitatively 
reproduced with a mathematical minimal model of the proximal BCR signalling network, suggesting that the 
rate-dependent sensitivity is inherent to the BCR network.

Results and discussion
Static  H2O2 exposure results in bimodal and dose‑dependent phosphorylation of BCR network 
proteins
First, we set out to establish the BCR signalling response to static ROS-induced phosphatase inhibition condi-
tions. The cell model responds to static extracellular  H2O2 by increasing the phosphorylation of upstream BCR 
proteins CD79a (Y182), SYK (Y525/Y526) and PLCγ2 (Y759) (Fig. 1b,c). The  H2O2 concentrations used here 
compare to previous work in different B-cell  types18–20. Interestingly, the single-cell data reveals a heterogeneous 
response to static concentrations of  H2O2. Low, medium, and high concentrations induce distinct population-
level phosphorylation distributions (Fig. 1b [pPLCγ2], Supplementary Fig. S1 [pCD79a + pSYK]). A low dose 
results in a unimodal OFF response, a medium dose leads to heterogeneous (bimodal) behaviour with a frac-
tion of the cells ON, and a high dose results in a unimodal ON response (see Methods for ON/OFF threshold 
details). Thus, the cells respond in a digital rather than graded manner to  H2O2, with the proportions between 
the two subpopulations varying upon input conditions. Such heterogeneous or bimodal population responses 
upon static  H2O2 stimulation have also been observed in another lymphoma type (CLL)19,20, but not in healthy 

Figure 1.  Static  H2O2 exposure results in heterogeneous and dose-dependent phosphorylation of BCR network 
proteins. (a) Schematic of the BCR network, with phosphatases and  H2O2 influence. Kinases are indicated in 
red, phosphatases in green, sharp black arrows are activating effects, flat red arrows are inhibitory effects. (b) 
Density plots of PLCγ2 phosphorylation response to low (1 mM), medium (5 mM) or high (25 mM) static 
 H2O2 doses after 0, 5, 10 or 25 min of exposure. Vertical lines indicate the ON/OFF threshold (see Methods for 
details). (c) pCD79a, pSYK and pPLCγ2 response over time (in percentage of cells responding) for different 
concentrations of  H2O2 (average of 3 replicates per condition with standard deviation as error bars).
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primary B-cells18,19,21. The bimodal response to  H2O2 highlights the importance of single-cell data and analysis 
approaches in signalling studies. A graded response, where all cells respond similarly, can be studied with bulk 
methods. A digital response with two subpopulations, on the other hand, requires single-cell methods since 
average values would obscure the heterogeneity in the population.

The percentage of activated cells over time indicates that the response of CD79a, SYK and PLCγ2 is governed 
by the  H2O2 concentration (Fig. 1c). Signaling activation requires exceeding a dose threshold that lies somewhere 
between 2.5 and 10 mM  H2O2, depending on the cell-to-cell variability. In addition, the effect of static  H2O2 
is transient, likely due to clearance of  H2O2 by proteins and antioxidants in the  cell9. For higher  H2O2 doses, it 
takes longer for the system to revert to basal levels. In short, static extracellular  H2O2 induces heterogeneous and 
dose-dependent activation of the BCR signalling pathway.

To gain a better understanding of the origin of the bimodal responses to  H2O2, we created dose–response (DR) 
curves for each protein from the static stimulation data (t = 10 min; Fig. 2a). The DR of the system is assumed 
to follow Hill-type kinetics, where the response is characterised by the half-maximal response threshold, EC50 , 
describing the stimulus level for which the response is half of the maximum, and the Hill coefficient, H , determin-
ing the steepness of the DR curve (see “Methods”/Eq. (3) for more details). DR curves fitted on the percentage of 
cells ON give average EC50 values of 8.9 mM for pCD79a, 7.6 mM for pSYK, and 6.7 mM  H2O2 for pPLCγ2. The 
Hill coefficients of the DR curves for each protein are 1.1, 2.7 and 3.3 respectively, meaning that the steepness 
of the DR curves increases with each downstream protein. Together, these DR parameters suggest an increased 
sensitivity of the response to input levels, a hallmark of the multiplicative nature of multi-step processes and 
positive feedback  systems22.

Cell-to-cell variability in the response threshold can arise as a consequence of protein expression noise rather 
than molecular (intrinsic)  noise23,24. The combination of the cell-to-cell response variability, as measured by the 
standard deviation of the half-maximal response threshold, σx50 , and the steepness of the DR relationship, H , 
dictates the range of experimental conditions  (H2O2 concentrations and exposure durations) for which bimo-
dality can be observed. Here, the cell-to-cell variability was estimated for each protein based on the normalised 
median fluorescence intensity, as described by Dobrzynski et al.25. The variability σx50 is 1.04 for pCD79a, 0.59 
for pSYK, and 0.71 for pPLCγ2. (Supplementary Fig. S2). Based on the estimated Hill coefficients of the DR 

Figure 2.  Bimodality results from a combination of a steep dose–response relationship and cell-to-cell 
variability. (a) Experimental dose–response curves of pCD79a, pSYK and pPLCγ2 (t = 10 min). (b) Normalised 
experimental dose–response curves with EC50 (point) and estimated bimodality range (shaded area; proxy for 
cell-to-cell variability). (c) Minimal model of the BCR network. (d) Simulated dose–response curves of pCD79a, 
pSYK and pPLCγ2.
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curves and standard deviations of the threshold variability, the region for bimodality for each protein was pre-
dicted (Fig. 2b), and these regions coincide with the input concentrations for which bimodality in the popula-
tion distribution was observed in the experimental data (Supplementary Fig. S1). Although pCD79a has the 
highest cell-to-cell variability, its shallow DR curve means that this protein generally responds more gradually to 
increasing  H2O2 concentrations, exemplified by broad and shifting distributions; nonetheless, bimodality can be 
observed under specific dose-duration conditions. pSYK and pPLCγ2, on the other hand, have a more distinct 
switch-like response. This overall network behaviour is reminiscent of digital cell fate decision-making as the 
signal is propagated further downstream into the network.

To further explore the BCR signalling response and the increased sensitivity downstream in the network, 
we built a minimal mathematical model of the proximal BCR signalling network (Fig. 2c). The model includes 
phosphorylation and dephosphorylation of CD79a, SYK, PLCγ2 (sharp black arrows), and the indirect effect 
of  H2O2 on the dephosphorylation of these proteins (flat red arrows). We include cell-to-cell variability in our 
model by introducing variability in the values of the Michaelis constants of each protein as well as the EC50 of 
the phosphatases to  H2O2, which are drawn from a log-normal distribution (Supplementary Fig. S3). As the 
model parameters are unknown for this specific cell type and cannot be uniquely estimated from the available 
data, we assume kinetic rates are identical for each protein (Table 1, see Methods for details). The resulting DR 
curves, which are constructed from 1000 simulated trajectories, qualitatively reproduce the experimental data: 
a decreasing half-maximal response threshold, and an increasing Hill coefficient for each more downstream 
protein (Fig. 2d [DR with % cells ON], Supplementary Fig. S4 [DR with median response]). Ziegler et al. (2019) 
investigated the BCR signalling response to  H2O2 in CLL  cells20. They found that the bimodal response originates 
from the clustering of BCRs on the membrane and a positive feedback loop from SYK onto itself. Therefore, we 
included a positive feedback loop on SYK in our model (Fig. 2c). However, we note that the feedback loop is not 
necessary to reproduce the bimodal behaviour in the model (data not shown). The DR steepness and cell-to-cell 
variability are sufficient to induce bimodality.

Dynamic extracellular  H2O2 levels reveal that the signalling response is not exclusively deter‑
mined by concentration
Although static step stimulations are a convenient way to study cellular signalling, dynamic environments more 
closely represent the in vivo microenvironment of cells and could reveal more about the signalling network 
capabilities. To move towards more physiologically relevant conditions, we applied temporal gradients of increas-
ing  H2O2 concentrations. The experimental set-up to create such gradients is based on Thiemicke et al. (2019), 
where a computer-controlled pump system continuously adds concentrated  H2O2 to a flask with cell suspension, 
from which samples could be collected at various time  points26 (Fig. 3a, see “Methods” for details). This set-up is 
compatible with suspension cells such as B-cells, allows coupling to phospho-specific flow cytometry as readout 
method, and is easy to use with standard laboratory equipment.

The initial dynamic input patterns all reached the same final concentration of 10 mM  H2O2: a step increase, 
a linear gradient of 20 min (rate of 0.5 mM/min), a linear gradient of 60 min (rate of 0.17 mM/min), and an 
exponential gradient of 60 min (increasing rate during the gradient) (Fig. 3b). The signalling response of pCD79a, 
pSYK, and pPLCγ2 over time suggests that the response follows the input patterns of  H2O2 (Fig. 3c [pPLCγ2], 
Supplementary Figs. S5, S6 [pCD79a + pSYK]). However, closer inspection of the response at different doses 
reached during the gradient reveals that the longer gradients of 60 min respond faster than the shorter gradient 
of 20 min, where 50% of cells ON is reached at a lower  H2O2 concentration (Fig. 3d). Surprisingly, the linear 
and exponential gradients of 60 min respond in much the same manner even though they do not have the same 
rate of increase. This might be due to technical issues; the shift in response between the linear and exponential 
60 min gradients might disappear in the auto-fluorescence background of the flow cytometry measurements.

To exclude the possibility that the difference in response at certain doses reached during the gradient is due 
to the longer exposure time of the shallower gradients, we investigated if the combination of time and dose, or 
the cumulative exposure, explains the signalling response (Fig. 3e). The cumulative exposure can be represented 
by the area under the input pattern curve (dose versus time). Although cells experiencing the 60 min gradients 
have a longer time to reach the same dose in the gradient, the cumulative exposure representation of the data 

Table 1.  Parameters used to simulate the computational model.

Parameter Value

kf 1  min−1

kr 10  min−1

KM1 2 M

KM3 0.5 M

KM5 0.125 M

KM2,  KM4,  KM6 1 M

kcat 1  min−1

kpos 1  min−1

kros 0.5 M

H 1
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shows that cell exposed to the steeper gradient reach a 50% response at a lower cumulative exposure, indicating 
that the signalling response is not solely governed by the combination of dose and time.

The model described above was used to further explore the responses to dynamic inputs. We again simulated 
1000 cells with cell-to-cell variability using the parameters from Table 1. The resulting trajectories are in 
qualitative agreement with the experimental gradient observations (Supplementary Fig. S7), where shallow 
gradients are more sensitive to the concentration than steeper gradients. Noteworthy, model simulations show 
that early in the exponential gradient the signalling response matches that of the 60 min linear gradient since 
the rates of the two gradients are similar. As the rate of the exponential gradient increases and becomes more 
similar to that of the 20 min linear gradient, the signalling response crosses over to the response curve of the 
20 min linear gradient. This behaviour is most pronounced in the simulated response of pPLCγ2. In short, both 
the experimental data and model simulations with dynamic input patterns reveal that the signalling response is 
not solely influenced by the duration, concentration, or total exposure to  H2O2. Rather, the rate of increase plays 
a key role in determining the signalling response.

ROS‑induced signalling activation shows hallmarks of a rate‑dependent sensitivity to  H2O2 
input concentrations
To comprehend more fully the influence of the rate of  H2O2 increase on the signalling response, we utilised the 
model to simulate a wide range of gradient input rates, namely from 0.025 to 10 mM/min to a final concentra-
tion of 10 mM  H2O2. For each gradient input pattern, we computed the half-maximal response dose,  EC50%, 
defined as the input concentration during the gradient when 50% of cells in the population are ON (Fig. 4a). 
All proteins display a similar asymptotic-like curve, where an increase in the rate (steeper gradient) results in a 
higher  EC50%. Thus, there is an inverse relationship between the rate of increase and the sensitivity to  H2O2. This 
is what we also observed in the first experimental data, where the shallower gradients responded at lower doses 

Figure 3.  Dynamic  H2O2-induced BCR signalling reveals that a combination of dose and rate of increase 
determine the response at intermediate doses. (a) Experimental set-up for creating dynamic gradient inputs. 
(b) Dynamic  H2O2 input patterns. (c–e) pPLCγ2 signalling response upon gradient inputs over time (c), dose 
reached during gradients (percentage of gradient indicated) (d) and cumulative exposure (e). Blue = PBS step 
increase (negative control); green =  H2O2 step increase (positive control); orange = 20 min linear gradient; dark 
purple = 60 min linear gradient; light purple = 60 min exponential gradient.
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than the steep gradient (Fig. 3d). Within the range of simulated gradients, pSYK and pPLCγ2 seem to have a 
higher sensitivity to changes in the rate of increase than pCD79a. This is indicated by the smaller range of rates 
that result in a half-maximal response concentration below 10 mM  H2O2 for pSYK and pPLCγ2 (Fig. 4a x-axis), 
while the range of concentrations is similar for all three proteins (Fig. 4a y-axis).

Guided by these simulations, we experimentally explored a broader gradient regime (Fig. 4b, Supplementary 
Fig. S8a + c). To reduce the duration of experiments, gradients with the same durations but varying final 
concentrations were created. For each gradient, the rate and  EC50% were determined (Fig. 4c, Supplementary 
Fig. S8). These investigations show qualitative agreement with the model predictions: gradients with higher 
rates of increase (gradient 1 in Fig. 4b + c) have a  EC50% value than gradients with lower rates (gradient 2). We 
summarised this trend of a rate-dependent sensitivity to  H2O2 into a rate sensitivity value for each protein, 
defined as the change in  EC50% per 1 mM/min change in gradient rate (averaged over 3 experiments, see 
Methods for details). This gives rate sensitivities of 2.73 (± 0.55 standard deviation) for pCD79a, 4.84 (± 1.09) 
for pSYK, and 3.55 (± 0.13) for pPLCγ2 (Fig. 4d). The highest rate sensitivity is observed for pSYK, meaning 
that phosphorylation of this protein is especially sensitive to the rate of  H2O2 increase and occurs at lower 
concentrations when  H2O2 levels increase slowly compared to fast increases.

Interestingly, the experimentally tested gradient condition with the lowest rate of increase, a 60 min gradient 
to 2.5 mM (rate of 0.04 mM/min; Supplementary Fig. 8c + d), showed no signaling activation, while the static step 
experiments revealed a slight response with 2.5 mM  H2O2 (Fig. 1c). We postulate that the slow rate of increase in 
this gradient condition is too low to respond to. Since cells have a buffering capacity and can decompose  H2O2

7,9, 
cells might be able to remove the slowly added  H2O2 and adapt to the changing environment without activating 
the BCR signaling network.

Figure 4.  H2O2 response sensitivity can be increased by decreasing the rate of increase. (a) Simulated half-
maximal response doses  (EC50%) for gradients of different rates. (b) Two of the experimentally tested dynamic 
 H2O2 input patterns (see Supplementary Fig. S8 for additional gradients tested). (c) Experimentally determined 
 EC50% for each gradient in (b). (d) Average rate sensitivity per protein (experiments n = 3), defined as the change 
in  EC50% (mM) per 1 mM/min change in rate (see Methods for details).
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The concordance between the model simulations and the experimental data indicates that the behaviour 
results from the network topology and connections and not from specific parameters in the model. Various 
network motifs that elicit different responses to static and dynamic inputs have been described  previously2,4,27. 
For instance, Park et al. (2016) found that a 3-node network motif with regulated double-negative feedback could 
give a transient response upon a static input, but a sustained response upon a dynamic gradient  input27. Johnson 
et al. discovered that a rate threshold for osmotic stress signalling was governed by one of three regulatory 
proteins in the signalling network that were previously thought to be  paralogs2. And Son et al. demonstrated 
that negative feedback by two proteins in a complex network enabled cells to respond to absolute differences in 
 concentration4. For our cell model, the already-known network topology and connections as included in the 
model (Fig. 2c) are sufficient. Further research could focus on identifying which proteins or connections in the 
BCR network are essential for the behaviour under dynamic conditions.

Conclusion
In short, we aimed to study B-cell signalling not only under static input conditions but also under dynamic inputs, 
as this is a vital difference between many in vitro studies and in vivo conditions. We found that dynamic  H2O2 
inputs reveal a more complex mechanism at play than static conditions suggest: A rate-dependent sensitivity to 
 H2O2, with an increased sensitivity upon a lower rate of increase, instead of a straightforward dose-dependent 
response. These experimental findings could be reproduced with a minimal model of the proximal BCR signalling 
network. The results of this study and previous work on dynamic inputs demonstrate an enormously wide variety 
of mechanisms how cells can process their dynamic environment into a functional response.

Outlook
In this study, we focussed on the fundamental mechanism behind  H2O2 signalling in B-cells. Although outside 
the scope of this study, the biological implications of BCR activation upon ROS-induced phosphatase inhibition 
should be considered. Generally, low ROS levels lead to controlled growth and cellular repair, while intermediate 
ROS levels induce uncontrolled proliferation, and high ROS levels are toxic and induce  apoptosis12. As the 
tumour microenvironment contains  ROS7, tumour cells are exposed to these intermediate ROS levels that 
increase proliferation. In addition, intermediate ROS levels affect B-cell lymphomas specifically by activating 
intracellular signalling pathways and disrupting immune cell  connections7. Some evidence suggests that a classic 
chemotherapy regimen can increase ROS levels in DLBCL and induce oxidative stress-based  cytotoxicity28. Thus, 
tuning ROS levels in lymphoma cells is emerging as an intriguing new therapy  approach7,29,30.

In addition to the biological effects of static ROS levels, the increased sensitivity to  H2O2 with lower rates 
of increase might also have important biological effects that could be further investigated in a follow-up study. 
First, if  H2O2 reaches tumour cells in vivo in a temporal gradient manner, a lower dose might be needed to elicit 
the same response as determined in static in vitro experiments. However, if the rate of  H2O2 increase is too low, 
cells might clear the  H2O2 and adapt to the changing environment, even though the total  H2O2 concentration 
should have an effect. Second, although we focussed on the signaling responses of cells, the combination between 
dynamic inputs and bimodal signaling responses could result in bimodal cell fate decisions in the population 
where activated and non-activated cells display distinct functional responses. Third, expanding the experimental 
set-up to create additional types of input patterns, such as decreases in concentrations, oscillations, or randomly 
increasing and decreasing patterns, could give additional insights into BCR signalling under dynamic conditions. 
Fourth, the interplay between  H2O2 and other molecules, each with their own dynamic pattern, could affect 
cellular responses. Since the in vivo microenvironment consists of a multitude of molecules, investigating various 
static or dynamic input patterns of multiple molecules would improve our understanding of in vivo signal 
processing. Fifth, expanding the research with additional cell models or primary cells would provide interesting 
comparisons, as cancer cell lines might contain (activating) mutations that alter dynamic signal processing. In 
short, future research efforts on ROS-induced BCR signalling should consider the dynamic nature of the in vivo 
tumour microenvironment in order to elucidate B-cell signalling under dynamic conditions and what this means 
for disease development, progression, and treatment.

Materials and methods
Cell culture
The HBL1 cell line (gift from Prof. Dr. Annemiek van Spriel, Radboud University Medical Center) is an EBV-
negative ABC-DLBCL cell line (see Table 2 for all materials and reagent information). It originates from a Japanese 
65-year-old male and was established in  198831. Cells were cultured in RPMI 1640 medium supplemented with 
10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin. Cells were maintained at a density of 
0.20–1.5*106 cells/mL in a humidified incubator at 37 °C with 5%  CO2.

Plate‑based step stimulation procedure
Prior to experiments, cells were counted, centrifuged for 5 min at 300 rcf, resuspended at 5.3*106 cells/mL in 
serum-poor medium (RPMI 1640 medium with 2% FBS and 1% pen/strep) and rested for at least 60 min at 
37 °C. 0.8*106 cells per well were distributed in 96-well plates. Working backwards from the longest stimulation 
time,  H2O2 was added to the wells (final concentrations of 0, 0.25, 1, 2.5, 5, 10 or 20 mM) at desired time points 
and cells were incubated at 37 °C with 5%  CO2. All samples were fixated simultaneously by adding 4% final 
concentration paraformaldehyde (PFA) for 15 min at room temperature (RT). The fixation was stopped by 
centrifuging samples for 5 min at 800 rcf and resuspending them in phosphate buffered saline (PBS). Samples 
were either immediately processed (see phospho-specific flow cytometry of fixated cells) or stored overnight at 
4 °C before further processing.
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Flask‑based step and gradient stimulation set‑up and procedure
The experimental set-up consists of a round-bottom 2-neck flask held in a small water bath set on a hot plate 
stirrer (37 °C, 500 rpm), a computer-controlled pump system, and a syringe with needle and tubing. Prior to 
experiments, gradient pump profiles were generated for all gradient conditions via a custom R script using 
the following parameters: initial reaction volume (volume needed for all samples + 5 mL extra), stimulus 
concentration, desired final concentration, gradient duration, gradient pattern (linear or exponential), sample 
volume, and sample time points. The exponential gradient of 60 min to 10 mM  H2O2 is described with the 
following formula:

The generated pump profiles were uploaded to the pump system. A syringe with a needle attached was filled 
with HFE-7500 oil. Then, tubing and a sterile pipette tip were attached, connected by a polydimethylsiloxane 
(PDMS) stopper. The required amount of concentrated  H2O2 stimulus was loaded into the oil-filled pipette tip, 
thereby reducing waste of stimulus.

Prior to experiments, cells were counted, centrifuged for 5 min at 300 rcf, resuspended at 2*106 cells/mL in 
serum-poor medium and rested for at least 60 min at 37 °C. Rested cells were placed in the flask, the stimulus-
loaded pipette tip was inserted, and all flask openings were covered with tape or parafilm. For step stimulations, 
the stimulus  (H2O2 or PBS) was added manually by pipette. Samples of 0.5–1*106 cells were collected manually 
by pipette and immediately fixated with 4% final concentration PFA for 15 min at RT. The fixation was stopped 
by centrifuging samples for 5 min at 800 rcf and resuspending them in PBS. Samples were either immediately 

(1)concentration = 60

10
1
3

∗ time
1
3 .

Table 2.  Key resources table.

Reagent or resource Source Identifier

Antibodies

Caspase 3: V450 Rabbit Anti-Active Caspase-3 (1/500) BD Biosciences Cat#560,627; RRID:AB_1727415; clone:C92-605

PARP: BV421 Mouse Anti-Cleaved PARP (Asp 214) (1/500) BD Biosciences Cat#564,129; RRID:AB_2738611; clone:F21-852

pSYK: Phospho-Syk (Tyr525/526) (C87C1) Rabbit mAb (PE 
Conjugate) (1/250) Cell Signalling Technologies Cat#6485; RRID:AB_11220429; clone:C87C1

pPLCγ2: Alexa Fluor® 647 Mouse anti-PLC-γ2 (pY759) (1/100) BD Biosciences Cat#558,498; RRID:AB_647139; clone:K86-689.37

pCD79a: Phospho-CD79A (Tyr182) (D1B9) Rabbit mAb 
(Alexa Fluor® 488 Conjugate) (1/250) Cell Signalling Technologies Cat#52,821; RRID:AB_2799422; clone:D1B9

Chemicals, peptides, and recombinant proteins

H2O2 ThermoFisher Cat#202,460,010

RPMI Medium 1640 Gibco Cat#52,400–025

FBS Gibco Cat#A3160801

Penicillin/streptomycin Gibco Cat#15,140–122

PFA Merck Cat#1,040,051,000

Nuclease-free water Ambion Cat#AM9937

Tris–HCl, pH 7.5 Gibco Cat#15,567–027

NaCl Sigma Aaldrich Cat#S5886

Triton X-100 Thermo Fisher Scientific Cat#85,112

Dulbecco’s phosphate buffered saline Gibco Cat#14,190–094

0.5 M EDTA, pH 8.0 Lonza Cat#51,201

BSA Sigma Aaldrich Cat#A4503-50G

HFE-7500 3 M (TM) Novec (TM) Engineered fluid Fluorochem Cat#051,243

Experimental models: Cell lines

Human: HBL1 Gift from Prof. Dr. Annemiek van Spriel (Tumour 
Immunology, RadboudUMC) RRID:CVCL_4213

Software and algorithms

neMESYS UserInterface version 2016.6.14.1 Cetoni NA

BD FACSuite software v1.0.6 BD Biosciences NA

R version 4.0.5 The R Foundation https:// www.r- proje ct. org/

RStudio RStudio, USA https:// www. rstud io. com/

BioRender BioRender, Canada https:// biore nder. com/

Other

NeMESYS pump system Cetoni NA

Fine dosage syringe Braun Cat#9161406 V

HENKE-JECT hypodermic needle 0.6 × 25 mm VWR 613–2017

PTFE tubing 0.81 mm DD × 1.63 mm OD adtech Cat#77,228

https://www.r-project.org/
https://www.rstudio.com/
https://biorender.com/
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processed further (see phospho-specific flow cytometry of fixated cells) or stored overnight at 4 °C before further 
processing.

Sample moments varied between experiments. During gradient stimulations, samples were taken when certain 
concentrations were reached in the gradient profile, namely at 0, 1.25, 2.5, 3.75, 5, 6.25, 7.5 8.75, and 10 mM 
 H2O2. The step stimulation samples matched a time point that a sample was taken in a gradient stimulation in 
the same experiment.

Phospho‑specific flow cytometry of fixated cells
PFA-fixed cells were transferred to 96-well plates (0.25–0.5*106 cells/well), for multiple staining panels samples 
were split across multiple wells. After 5 min centrifugation at 800 rcf, cells were permeabilised for 10 min in 
NF water with 100 mM Tris–HCl, 150 mM NaCl and 0.1% Triton X-100 at RT. Cells were then washed 1 × with 
FACS buffer (Dulbecco’s PBS with 0.1% bovine serum albumin, 0.05% sodium azide and 0.5 mM EDTA) before 
resuspending in 40 µL staining solution, consisting of fluorescently labelled antibodies in FACS buffer (see 
Table 3 for antibody combinations), and incubated for 1 h at RT in the dark. Cells were washed 3 × with FACS 
buffer and finally resuspended in FACS buffer for measurements. Cells were measured on the BD FACSVerse 
(BD Biosciences) (50,000 events per sample). Compensation matrices were created from single-stain controls 
of each antibody used and applied to all measurements.

Flow cytometry data analysis
All flow cytometry data were analysed in RStudio with various packages (see session information of the data 
analysis files for all packages and version numbers). The flow cytometry data was gated using the  flowCore32 and 
 ggcyto33 packages. The data were first gated to remove debris (FSC-A vs SSC-A), then to select singlets (FSC-H 
vs FSC-W), and then to select live cells (FSC-A vs active caspase 3 + cleaved PARP, BV421-A) (Supplementary 
Fig. S9). The gated flow cytometry data were then processed and visualised using the tidyverse  package34. Samples 
with < 5000 gated cells were removed from the analysis. Median fluorescent intensities (MFI) for each fluorophore 
in each sample were calculated, as well as the percentage of activated cells (percentage ON), where the ON 
threshold is the fluorescence at which 97.5% of cells at time = 0 min or concentration = 0 mM  H2O2 fall below this 
value (for each condition). For gradient data, the rate sensitivity, defined as the change in half-maximal response 
dose per 1 mM/min change in the rate, was calculated for each experiment separately as follows:

where dose50 is the concentration during the gradient when 50% cells ON is reached, steep indicates the steepest 
gradient of the experiment and shallow indicates the shallowest gradient of the same experiment.

Dose response curves
Dose response curves from flow cytometry data were fit on (1) the fold change of the normalised MFI and (2) 
the percentage ON. For both cases, the unstimulated sample at the time point of interest for each replicate is 
taken as the control. The dose response is assumed to follow Hill-type kinetics:

where R0 is the response level in the absence of stimulus S , Rmax is the response amplitude, EC50 is the half-
maximal response threshold, and H is the Hill coefficient.

(2)Rate sensitivity = dose
steep
50 −doseshallow50

ratesteep−rateshallow
,

(3)R = R0 + Rmax
SH

SH+ECH
50

,

Table 3.  Antibody panels for phospho-specific flow cytometry. NA not applicable.

Target Fluorophore Dilution

Panel A

 Cleaved Caspase 3 V450 1/500

 Cleaved PARP BV421 1/500

 pSYK PE 1/200

 pPLCγ2 Alexa 647 1/100

 pCD79a Alexa 488 1/200

Panel B

 Cleaved Caspase 3 V450 1/500

 Cleaved PARP BV421 1/500

 Rabbit IgG isotype Alexa 647 1/1000

Panel C

 Buffer (no stain) NA NA
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Population‑level bimodality from the interplay of nonlinearity in input–output and cell‑to‑cell 
variability
Dobrzynski et al. have analytically quantified conditions for the existence of bimodality in the presence of 
response threshold  variability25. We have applied their mathematical framework to our data to infer the level of 
threshold variability σx50 for each protein. If this parameter, together with the Hill coefficient of the DR curve, 
satisfies the condition H · σx50 >

√
2 , bimodal distribution may emerge. Our analysis revealed that the necessary 

condition for bimodality was satisfied for pSYK and pPLCγ2, but not for pCD79a. Furthermore, we can prospect 
the range of stimulus concentration for which we can expect to see a bimodal population response, which is also 
solely determined by σx50 and the steepness H of the DR curve. For further details on the analytical method, we 
refer to the source paper by Dobrzynski et al. (2014).

Computational model of the phosphorylation cascade
We model each protein as a switch, in which a substrate is phosphorylated by a kinase. The phosphorylation can 
subsequently be reversed by a phosphatase. ROS such as  H2O2 enhance signalling by oxidising ROS-sensitive 
signalling molecules such as  phosphatases17. This oxidation broadly inactivates tyrosine phosphatases, which 
can be modelled by a Hill-type inhibition. We model the effective concentration of active phosphatase P as a 
function of  H2O2 by

where P is the (scaled) concentration of active phosphatase, kros is the half-maximal concentration constant, H 
is the Hill coefficient and S refers to the  H2O2 concentration.

The concentration of an isolated phosphorylated protein can be described by the following ordinary 
differential equation (ODE):

where AT  is the total protein concentration, Ap is the concentration of phosphorylated protein, kf  is 
the phosphorylation rate, kr is the dephosphorylation rate, and KMi refers to the Michaelis constant. 
Michaelis–Menten rate laws were chosen to model the underlying protein dynamics as the work of Dobrzynski 
et al. state the presence of a sigmoidal dose–response relationship as a condition for population  bimodality25.

Our simplified model includes all experimentally measured proteins which form a phosphorylation cascade. In 
such a cascade, each phosphorylated protein acts as a kinase that phosphorylates the next protein in the cascade. 
Additionally, it has been shown that SYK acts as a positive feedback regulator on the BCR-associated tyrosine 
kinases LYN (not included in our model) and SYK  itself20. Therefore, we include this positive autoregulation in 
our model. The system of ODEs describing the simplified phosphorylation cascade is then given by:

where we denote pCD79a by X , pSYK by Y  , and pPLCγ2 by Z . Using MATLAB, we resolved this system of 
equations using the built-in function ode23. All protein abundances are scaled between 0 and 1 and are initially 
(in the absence of stimulus) assumed to be in an unphosphorylated state. As the values of the model parameters 
are unknown for the cell line used in our experiments, and due to the increased number of parameters in 
equations with Michaelis–Menten kinetics as compared to linear mass-action kinetics, we simulated the model 
using a general parameter set (Table 1). Here, we have assumed that the Michaelis constants KMj , j ∈ {1, 3, 5} 
become successively smaller as we move further down the cascade, to reflect sensitivity propagation and 
amplification of downstream proteins in signaling  cascades35–37. All other parameters are assumed to be equal 
for each protein.

In addition to stationary  H2O2 levels, we extend the ODE model to include time-dependent inputs by 
including a differential equation that describes the gradient profile (linear of exponential). This equation is 
characterised by two parameters, namely the gradient duration and maximal concentration. Here, we have 
assumed degradation of  H2O2 is negligible on the time scale of our experiments.

We model cell-to-cell variability in the population response by generating variation in the thresholds 
KMi , i ∈ {1, 2, 3, 4, 5, 6} and kros . Variation in the values of these parameters can reflect variability in the levels 
of signalling components, such as kinase and phosphatase levels. We generate 1000 cells with KM and kros val-
ues randomly chosen from a lognormal distribution with mean mx and variance mx50 · s2x50 . We used mx50 as 
given by the values in Table 1, and sx50 = 1.25 in all simulations to reflect large cell-to-cell variability and found 
that this was sufficient to generate bimodal responses in the levels of Yp and Zp , but not Xp , in agreement with 
experimental observations. To assess the percentage of activated cells (% cells ON), cells are said to be activated 
if its protein abundance exceeds 30% of its maximal level. The half-maximal response concentration as given in 

(4)P = 1

1+
(

S
kros

)H ,

(5)
dAp

dt = kf
AT−Ap

KM1
+(AT−Ap)

− krP
Ap

KM2
+Ap

,

(6)
dXp

dt = kf
AT−Ap

KM1
+(AT−Ap)

− krP
Ap

KM2
+Ap

(7)
dYp
dt = kf Xp

YT−Yp
KM3

+(YT−Yp)
+ kcat

YT−Yp
kpos+(YT−Yp)

− krP
Yp

KM4
+Yp

(8)
dZp
dt = kf Yp

ZT−Zp
KM5

+(ZT−Zp)
− krP

Zp
KM6

+Zp
,



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4265  | https://doi.org/10.1038/s41598-024-54871-7

www.nature.com/scientificreports/

Fig. 4a is calculated as the  H2O2 concentration at which 50% of cells are activated. At higher gradient rates, the 
gradients become very short so 50% is not reached, resulting in a discontinuation of the line.

Data availability
Data analysis was performed using custom R scripts (flow cytometry data analysis), Python scripts (threshold 
variability analysis), and MATLAB scripts (BCR model simulations). Together with the raw flow cytometry 
data, these are publicly available as of the date of publication at https:// github. com/ huckg roup/ H2O2_ manus 
cript. Any additional information required to analyse the data reported in this paper is available from the cor-
responding author upon request.
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