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A multi‑class brain tumor grading 
system based on histopathological 
images using a hybrid YOLO 
and RESNET networks
Naira Elazab , Wael A. Gab‑Allah  & Mohammed Elmogy *

Gliomas are primary brain tumors caused by glial cells. These cancers’ classification and grading are 
crucial for prognosis and treatment planning. Deep learning (DL) can potentially improve the digital 
pathology investigation of brain tumors. In this paper, we developed a technique for visualizing a 
predictive tumor grading model on histopathology pictures to help guide doctors by emphasizing 
characteristics and heterogeneity in forecasts. The proposed technique is a hybrid model based 
on YOLOv5 and ResNet50. The function of YOLOv5 is to localize and classify the tumor in large 
histopathological whole slide images (WSIs). The suggested technique incorporates ResNet into 
the feature extraction of the YOLOv5 framework, and the detection results show that our hybrid 
network is effective for identifying brain tumors from histopathological images. Next, we estimate 
the glioma grades using the extreme gradient boosting classifier. The high-dimensional characteristics 
and nonlinear interactions present in histopathology images are well-handled by this classifier. DL 
techniques have been used in previous computer-aided diagnosis systems for brain tumor diagnosis. 
However, by combining the YOLOv5 and ResNet50 architectures into a hybrid model specifically 
designed for accurate tumor localization and predictive grading within histopathological WSIs, our 
study presents a new approach that advances the field. By utilizing the advantages of both models, 
this creative integration goes beyond traditional techniques to produce improved tumor localization 
accuracy and thorough feature extraction. Additionally, our method ensures stable training dynamics 
and strong model performance by integrating ResNet50 into the YOLOv5 framework, addressing 
concerns about gradient explosion. The proposed technique is tested using the cancer genome atlas 
dataset. During the experiments, our model outperforms the other standard ways on the same 
dataset. Our results indicate that the proposed hybrid model substantially impacts tumor subtype 
discrimination between low-grade glioma (LGG) II and LGG III. With 97.2% of accuracy, 97.8% of 
precision, 98.6% of sensitivity, and the Dice similarity coefficient of 97%, the proposed model 
performs well in classifying four grades. These results outperform current approaches for identifying 
LGG from high-grade glioma and provide competitive performance in classifying four categories of 
glioma in the literature.

Keywords  Brain tumor, Histopathology images, Brain tumer grades diagnosis, Deep learningm YOLOv5, 
Resnet50

A histopathological examination is required for cancer diagnosis. The classification of brain cancer patients 
is primarily based on histological findings that appropriately identify the kind of malignancy1. For a proper 
diagnosis and treatment strategy, histopathological examination of glioma tumor tissue is necessary. The use of 
histological imaging enables a thorough analysis of the tumor tissue, which is essential for determining the kind, 
grade, and extent of the tumor as well as tracking the response to treatment. Pathologists can precisely evaluate 
a patient’s status by examining tissue slice photographs from actual patients. Computer vision-based automatic 
histopathology diagnosis can assist pathologists in reducing their burden2.

In recent years, histopathology has become an important tumor detection and prognosis tool. Although 
such an idea is not a product of modernity, the scarcity of resources has long stifled its development. Therefore, 
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recent technological advancements have greatly facilitated the widespread use of histopathological images in 
various applications. In contrast to traditional glass slides, the innovative whole slide images (WSI) are numerical 
reproductions of stained specimen materials3. Due to the ease of data sharing and archiving that these images 
provide, they are also significantly impacting the procedure of making a pathology diagnosis. The WSI analysis 
gives doctors a complete understanding of the data content and makes it possible to diagnose tumors and cancer 
subtypes accurately4. The segmentation and classification of WSI have been addressed using a variety of method-
ologies during the past few years. Most of these experiments concentrated on learning superficial aspects, such 
as texture and pattern recognition, as described in5, grey level co-occurrence matrix or local binary pattern6.

However, each tumor contains a variety of textures, shapes, and color distributions. As a result, while dealing 
with the issues posed by current WSI, the previously discussed solutions are frequently constrained. Today histo-
pathology images are quite big, containing billions of pixels. These slides typically present high-level, complicated 
clinical aspects. Furthermore, most of the time, they only represent a subset of the accessible annotated regions. 
Manually marking each WSI is time-consuming and requires significant effort and dedication7. Figure 1 shows 
different samples of glioma histopathological images.

The unique characteristics of histopathology pictures have sparked efforts to develop new automated image 
analysis methods. This circumstance can reduce pathologists’ effort, synchronize clinical applications, and reduce 
processing and handling time. Indeed, artificial intelligence (AI) models have gradually progressed from expert 
systems to classical machine learning and, finally, deep learning (DL)8. In other words, in the traditional hand-
crafted systems, the data analysis activities relied heavily on expert knowledge to determine the relevant prop-
erties. However, the newest generation of DL networks can accurately and simply learn characteristics from 
the data itself9,10. Without a doubt, the development of highly effective computational resources has shifted the 
emphasis away from DL models in various applications for medical image processing. A significant part of cur-
rent research in histopathology is focused on developing new DL models that will allow accurate analysis and 
information extraction from WSI11.

Effective diagnosis and treatment of brain tumors depend on careful analysis and information extraction 
from WSI. Brain tumors can be life-threatening, and early detection and classification are crucial for prompt and 
efficient patient treatment12. This is why computer-aided diagnostic (CAD) systems for brain tumor classification 
have been created. These technologies allow radiologists to visualize and categorize different forms of tumors. 
They can be beneficial when pathologists need a more thorough visual examination or are unsure of the tumor’s 
nature13. Researchers working on image processing and computer vision are concentrating on developing precise 
and effective algorithms for automatic tumor segmentation, classification, and identification. Their aim is to give 
clinicians reliable resources for making accurate diagnoses and giving patients prompt, efficient treatment14,15.

CAD is a routine clinical detection method widely used in many screening sites and hospitals. It has grown 
into an essential diagnostic imaging research field. Because of recent advancements in the digital preservation 
of digitized histological research, histopathological tissues are utilized with CAD systems to improve disease 

Figure 1.   Samples of TCGA histopathological images.
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categorization16. Reviewing several slides and noticing inter- and intra-differences is exceedingly laborious and 
time-consuming for a pathologist. The traditional evaluation method employing histopathology pictures needs 
to be supported appropriately because many activities would be subject to these analysis-related problems. Work-
load should also be reduced to allow pathologists to focus on suspected cases that are difficult to diagnose. This 
can be accomplished by removing the innocuous examples. When diagnosing and comprehending a particular 
disease’s causes, quantitative analysis of pathology images is essential17.

Convolutional neural network (CNN) models have shown to be quite successful in complicated object rec-
ognition and classification tasks in recent years. Their main advantage is their capacity to extract sturdy char-
acteristics resistant to varying degrees of distortion and light. DL has not yet addressed some histopathology 
issues, despite the fact that DL has shown remarkable results in several disciplines for identifying scenes and 
classifying objects. First, the histopathology field is constrained by the numerous data with labels needed for 
deep CNN training. Second, deep networks struggle to generalize successfully for new data after training on little 
data, making them susceptible to “overfitting.” Third, many computation resources are needed for deep CNN 
training, which often necessitates a lot of specialists’ prolonged devotion18.

The pathologist’s manual brain cancer diagnosis is time-consuming, exhausting, and burdensome. Few stud-
ies have been conducted to determine the grade of a brain tumor19. On the other hand, established automated 
systems that aid pathologists in cancer grade categorization depend on human-crafted feature tools that burden 
developers20. In addition to the richness and complexity of the retrieved features, these methods are sensitive to 
noise, contrast, and staining in digital histology images. The small variances between features make it difficult to 
easily extract the required features. Deeply tuned CNNs typically outperform fully trained CNNs when working 
with a limited training dataset, nonetheless.

Considering these issues, we present a new CAD system based on transfer learning that uses histopathological 
images to reliably diagnose healthy and glioma grades. The system begins with some preliminary activities. Nor-
malization and various transformation methods were applied to standardize image sizes, maximize the restricted 
datasets, and avoid overfitting. We offer a new hybrid CNN model during the modeling phase. Without requiring 
manual feature extraction, or segmentation, the suggested model can identify various glioma grades. Based on 
transfer learning, we created a hybrid model that combines the YOLOv521 and ResNet50 models22. We achieved 
a comprehensive model by combining the strong feature extraction and classification capabilities of ResNet-50 
with the object detection prowess of YOLOv5. Together, these synergistic effects enabled the model to improve 
overall diagnostic accuracy by not only correctly identifying regions of glioma tumors but also picking up on 
fine features that are essential for accurate classification.

YOLOv5’s localization capabilities were enhanced by ResNet-50’s mastery of feature extraction and classifica-
tion. Because of its depth and feature representation capabilities, the localized tumor regions could be analyzed 
more deeply, which made it easier to classify the data accurately based on patch-level information that was 
extracted. The generated feature vectors are fed into the extreme gradient boosting (XGBoost) classifier once 
features from the hybrid model have been extracted. For classification applications requiring high-dimensional 
features, such as those obtained from histopathology images, XGBoost is a potent and well-known gradient-
boosting classifier. We compared the proposed system to other models and calculated important metrics for its 
performance. A few advantages of the two-hybrid models are their decreased complexity, increased robustness, 
and greater generalization and inference capabilities.

The major contributions of our proposed system are summarized in the following points:

•	 We developed an enhanced model for grading different types of brain tumors based on pathological images.
•	 BY using transfer learning, we created a hybrid model that integrates the customized YOLOv5 and the 

ResNet50 models for feature detection.
•	 The proposed model is effective because it combines depth-wise various scales of YOLO with identity map-

ping of ResNet50, which improves model performance by reducing the vanishing gradient issue and enhanc-
ing backward gradient flow in the network.

•	 We modify the YOLOv5 model’s backbone to enhance the feature extraction process and reduce the number 
of parameters to decrease computationally.

•	 The performance of our framework was compared to that of other state-of-the-art methods, and it performed 
the best.

This paper is structured as follows for the remaining sections: “Related work” section explains the related work 
of classifying multi-grade brain tumors. With an emphasis on augmentation, and fine-tuning of the used archi-
tecture, “The proposed framework” section presents the proposed methodology. “Experimental results” section 
discusses the conducted experiments. The conclusion of the paper is provided in “Conclusion and future work” 
section.

Related work
Numerous researchers have used computer algorithms for histology image processing, and the approaches used 
can be divided into two categories: hand-crafted and DL techniques. The hand-crafted techniques extract fea-
tures from slide images that professional pathologists would recognize. In contrast, the second category used 
DL techniques to automatically extract the features from the processed images. Due to their capacity to learn 
pertinent features directly from the raw data, Dl models, particularly CNNs, have been used more frequently in 
histopathology image analysis. In contrast, conventional ML systems rely on manually created characteristics. 
Deep learning has demonstrated considerable potential in capturing complicated patterns and variances in 



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4584  | https://doi.org/10.1038/s41598-024-54864-6

www.nature.com/scientificreports/

histopathology images when compared to conventional approaches, making it an important tool for developing 
the field.

Many studies use DL to analyze brain tumor histopathology images. According to cellular level features 
collected from hematoxylin and eosin (H &E) histopathology images of brain tumours, Sumi et al.23 suggested 
spatial fusion network design can categorize four different types of brain tissues. Before training the Inception-
ResNetv2 (INRV2) architecture to predict probabilistic features of various tumor cancers for local patches, the 
model extracts patches from each image and applies augmentation to them. A deep spatial fusion network is put 
into place in the second step to discover the spatial links between nearby patches. On a four-class and a two-class 
classification, the model obtained classification accuracy of 0.95 and 0.99, respectively. The cancer genome atlas 
(TCGA) and the cancer imaging archive (TCIA), each containing 2034 and 2005 basic pictures, respectively, 
were used to train the algorithm.

To categorize glioblastoma (GBM) and low-grade glioma (LGG) pictures, Yonekura et al.24 presented a deep 
CNN (DCNN) model with 14 layers. 200 H &E histopathological WSIs from TCGA make up the dataset. Ten 
thousand unique patches are retrieved from each cohort and used as training data for their model. To evaluate 
performance, common DCNN architectures, including LeNet25, ZFNet26, and VGGNet27 were tested, and the 
results were contrasted with those of the suggested model. Based on WSIs, Kolachalama et al.28 predicted the 
survival rates of kidney tumors by using DCNN. Three classes of survival rates 1year, 3years, and5years were 
produced using their model, with outcomes of 87%, 87%, and 90%, respectively. They did not extract any patches, 
which was a computationally intensive process. They used WSIs as inputs.

Deep survival convolutional network (DeepSurvNet) was introduced by Zadeh Shirazi et al.29 to reliably clas-
sify the survival rates of brain cancer patients. Based on H &E histopathology images, the model gives survival 
likelihood ranges across four classes. The datasets were obtained from the TCGA and a nearby hospital. They 
included 450 H &E slides from individuals with various types of brain tumors. For patients who had survived 
for 0–6, 6–12, 12–24, and over a year, they took into consideration classifications of four grades. The TCGA 
dataset was used to train and evaluate DeepSurvNet, which is built on the GoogLeNet30 architecture. A private 
dataset was also used to generalize DeepSurvNet. In the testing phases, their model obtained precisions of 99% 
and 80%. They also examined the frequency of genes linked to each class.

Liu et al.31 employed DCNN to predict the mutational status of isocitrate dehydrogenase (IDH), an essen-
tial biomarker in glioblastoma. 266 H &E slides with grade 2–4 gliomas were gathered for their dataset from 
the TCGA and a private hospital. They presented a model based on using Resnet50 DCNN architecture as the 
primary structural support for IDH status prediction and generative adversarial networks (GAN) to produce 
synthetic samples to enable data augmentation. They also inferred that the DCNN model could predict IDH 
status more precisely when patients’ ages are added as a new feature. They could identify the IDH mutational 
status with an accuracy of 85%.

With accuracy rates of 83.25% and 82.1%, respectively, Bayramoglu et al.32 developed two CNN architectures 
for the detection of malignancy in breast cancer. On each magnification factor of the BreaKHis dataset, they 
evaluted their performance. Using the BreakHis dataset, Sudharshan et al.33 created a supervised learning system 
that, on average, had 82.67% accuracy. They also looked at the applicability of multiple instance learning for the 
categorization of breast cancer. Using a pre-trained CNN network on the BreakHis database, Alrahhal34 was able 
to detect breast cancer in histological images with an accuracy of 86.4%, whereas Truong and Pham35 evaluated 
their CNN architecture and achieved 77.3% accuracy.

To prevent overfitting, DL models like CNNs need to be trained optimally on a lot of balanced, labelled data. 
DL techniques are frequently used in the analysis of histopathological images36. While Hou et al.37 proposed a 
patch-based CNN with an expectation-maximization technique. The sparse autoencoders have been used in38 to 
extract features from histopathology files. Zheng et al.39 presented a CNN-based nuclei-guided feature extraction 
method for histopathology imaging.

Amin et al.40 suggested two phases approach. They first segmented breast lesions using a model made up of 
deepLabv3 and Xception models that had already been trained. A few chosen parameters were used to train the 
model, greatly enhancing the segmentation of breast cancer. Second, a classification model with six layers and 
four qubits was used. Salman et al.41 created a system that recognizes carcinogenic areas in tissue pictures and 
assigns them a grade using the Gleason grading system. They used 450 actual biopsy pictures to retrain a Yolo 
identification model built on CNN with over 1800 annotated prostate tissue. For 24 hours, the system was tuned 
with default hyperparameters up until the loss function dropped below 5%. Three pathologists examined each 
discovered region’s accuracy after testing it on two sets of biopsy pictures.

Chan et al.42 applied two neural networks, VGG16 and Resnet50, to process the WSI with feature extraction. 
They used k-means and random forest methods to categorize the three forms of brain malignancies (glioblastoma, 
oligodendroglioma, and astrocytoma). They compared prediction results with and without magnetic resonance 
imaging (MRI) characteristics during the prediction stage. Pei et al.43 proposed a DL-based technique for brain 
tumor classification, which was divided into two parts. The first step was to segment a brain tumor on a multi-
modal MRI. The second step was classifying the tumors based on the tumor segmentation results. A 3D deep 
neural network (DNN) is implemented to distinguish tumors from normal tissues, followed by the development 
of a second 3D DNN for tumor categorization.

Pei et al.44 developed a DNN-based method for brain tumor classification and grading based on histology 
and genetic data, utilizing the most recent world health organization (WHO) classification criteria from 2016. 
To increase performance, the classification approach incorporated a cellularity characteristic obtained from 
the morphology of brain tumor histology images. By employing the over-segmentation technique, they also 
presented a region of interest (ROI) selection strategy for histopathological WSIs. Lakshmi et al.45 used a DL 
method called the Inception-v3 model. The softmax classifier was utilized in their approach to categorize the 
photos into various classes. The Adam optimizer and loss function were used to optimize the network settings.
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Attallah 46 proposed a technique called CoMB-Deep classifying medulloblastoma from histopathology pic-
tures. Ten CNNs are used for complex feature extraction, discrete wavelet transform is integrated for fusion and 
dimension reduction, and Bi-LSTM networks are used for improved classification.Even though CoMB-Deep 
shows encouraging results, there are still important factors to take into account. The pipeline’s complexity could 
be increased by integrating ten CNNs and then fusing features with discrete wavelet transform (DWT). Longer 
training times, scalability issues, and computational inefficiency could result from this. Attallah and Zaghlool 47 
introduced textural images derived from GLCM and GLRM texture analysis methods. Using both original and 
textural images, three deep learning models (ResNet-101, Inception, and InceptionResNet) were trained to 
extract deep features.

Mohan and M 48 extracted localized pathology features by analyzing individual smaller tile pictures. From 
these tiles, they extracted features such as the Gray Level Co-occurrence Matrix, Histogram(GLCM), Gabor, 
and Perceptual Features(PF). For the purpose of assessing performance, these multidimensional feature sets 
are subsequently fed into classifiers like KNN, SVM, Naive Bayes, and Logistic Regression. The methodology’s 
reliance on a combination of diverse feature extraction methods (PF, Histogram, Gabor, GLCM) might intro-
duce redundancy or irrelevant features, potentially impacting model performance. The challenge of selecting 
the most informative and relevant features among these diverse sets could impact the model’s robustness and 
generalization.

Im et al. 49 trained the ResNet50V2 model to classify diffuse glioma grades and subtypes in a deep transfer 
learning framework using clinical-grade pathological images. The model demonstrated promising results in 
subtype classification, with a commendable accuracy of approximately 87.2% in differentiating between glioma 
subtypes. Satyanarayana et al. 50 presented a CNN with mass correlation analysis for feature extraction and 
weight assignment. The lack of information in the paper regarding the validation process and the potential biases 
introduced by the preprocessing steps.

Archana and Komarasamy 51 presented a method that uses a Bagging Ensemble with K-Nearest Neighbor 
(BKNN) for classification and U-Net for image segmentation. Ozer et al. 52 applied a resnet50 deep neural net-
work to analyze cytological images taken during surgery. Twenty-five medical images from squash smear slides 
were used in the study. These images showed samples of non-neoplastic brain tissue as well as high-grade and 
low-grade gliomas, as well as metastatic carcinomas. 5-fold cross-validation was used for the neural network’s 
training and assessment. The model performed with a 95% diagnostic accuracy at the patch-level classification. 
Despotovic et al. 53 introduced a detailed comparison of deep learning architectures and transfer learning tech-
niques for the classification of adult-type diffuse gliomas. The generalizability of ImageNet representations to 
histopathological images is assessed, pretraining methods such as self-supervised and multi-task learning are 
investigated, and a semi-supervised strategy utilizing weak labels is presented to enhance model performance. 
Table 1 provides an overview of some recent related work.

According to the above description, some of the present related work’s limitations are highlighted, which can 
be summarized as follows: First, some research only included two or three grades of brain tumors (glioblastoma, 
oligodendroglioma, and astrocytoma), which may not be an accurate representation of brain tumors in general. 
Second, many studies relied on subjective and time-consuming manual tumor segmentation. Third,There were 
significant challenges for some methods including potentially missing global context, difficulties in capturing 
subtle tumor features. Fourth, some techniques require two distinct 3D DNNs for tumor identification and 
classification, which can be computationally intensive and may require a large amount of data. Finally, some 
approaches only used one deep learning model, which might not be adequate for correctly identifying more 

Table 1.   A summary of some current related work.

Study Analysis type Methodology Performance

Sumi et al.23 Classification for benign, Oligodendroglioma, and GBM
The InceptionResNetV2 is used to extract hierarchical features. A 
deep spatial fusion network was built to extract spatial features from 
across patches

ACC = 95%

Yonekura et al.24 Classification for GBM Built a DCNN model with 14 layers. Feature descriptors and a clas-
sification strategy are simultaneously acquired using DCNN ACC = 96.5%

Shirazi et al.29 Classification for brain cancer patients’ survival rate DeepSurvNet is the suggested classifier. DeepSurvNet is a Goog-
leNet classifier that was developed using the TCGA dataset Precision = 99%

Liu et al.31 Determination of the IDH mutational status of gliomas
A data augmentation technique based on the GAN methodology 
were presented for the prediction of IDH mutational status using H 
&E slides

ACC = 85.3%

Bayramoglu et al.32 Benign/Malignant Classification
Single-task CNN and multi-task architectures are presented. CNN 
is employed to concurrently classify the malignancy and the degree 
of image magnification. The suggested methodology allowed the 
integration of picture data from many resolution levels

ACC = 83.25%

Chan et al.42 Discrimination between glioblastoma, oligodendroglioma, and 
astrocytoma

Two neural networks, VGG16 and Resnet50, was utilized to process 
the WSIs and extract features. K-means and random forest (RF) 
approaches are applied to categorize brain malignancies

DSC = 89%

Pei et al.44 Automated Glioma Grading
Shape-based measurement for aberrant cell nuclei was applied. 
The performance of the DNN-based classification approach is then 
enhanced by combining cellularity and molecular characteristics

ACC = 93.81%

Lakshmi et al.45 Brain Tumor Detection The Inception-v3 model was used. Their model extracts the multi-
level features and categorizes them ACC = 89%
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complex cases.Our suggested method aims to address these drawbacks. Our goal is to increase the model’s gen-
eralizability and enhance subtle feature recognition by fusing the accuracy of YOLOv5 with the feature extraction 
capabilities of ResNet50.

To address the limitations of the existing literature and enhance the diagnosis performance of identifying 
different grades of brain tumors, we developed a CAD system based on the hybrid YOLO and RestNet50 DL 
model.The advantage of integration between yolov5 and resnet50 is its robustness to variations in image qual-
ity, tumor size, and location which addresses the limitation of some related work. We began by preprocessing 
the photos. The primary purpose is to improve contrast and reduce noise from entered photos. Then, we used 
various processing techniques to make all photos the same size and increase their number. All photos from the 
used datasets were shrunk to (256,256), cropped, rotated, and color normalized. The standard RestNet50 was 
then tweaked its hyperparameters to appropriately diagnose the various grades. We compared the suggested 
model to some cutting-edge models. We used five different performance criteria in the comparison to evaluate 
the model’s performance in diagnosing healthy and varied Glioma grades.

The proposed framework
Transfer learning is widely used in a variety of contexts. Pre-trained models detect simple features like shapes and 
diagonals in the first layer. In the subsequent layers, they combine these elements to pick up multipart features. 
In the final layer, the models create meaningful constructs by exploiting features discovered in previous stages. 
We use two well-known models to extract features, which are then used to train the models. Figure 2 depicts an 
overview of the study’s workflow.

In order to address the complex challenges of brain tumor grading in large-scale histopathological images, 
this work presents a new hybrid model that combines the strengths of three powerful architectures. By delib-
erately combining:

•	 YOLOv5: well known for its accurate and efficient object detection capabilities, which allow for the precise 
localization of tumors within large histopathological WSIs.

•	 ResNet50: a deep CNN with strong feature extraction capabilities that offers detailed representations of 
complex tumor properties required for accurate grading.

•	 XGBoost: an effective gradient boosting classifier that can further improve classification accuracy by capturing 
complex non-linear interactions and high-dimensional features within the extracted features.

This innovative combination offers a number of benefits and constitutes a noteworthy contribution to the field:

•	 Enhanced Feature Representation: By combining the strengths of YOLOv5 and ResNet50, a more compre-
hensive and insightful feature representation of the tumor is produced, including contextual and spatial 
information that is essential for a precise diagnosis.

•	 Improved Grading Accuracy: The object detection capabilities of YOLOv5 enable accurate tumor localization 
within the WSI, whereas the deep feature extraction of ResNet50 enables the identification of subtle tumor 
characteristics, resulting in improved accuracy for grading task.

Preprocessing
Because whole slide photos cannot be handled directly due to their vast size, some preprocessing processes must 
be taken. It is also necessary to account for the variety in stain colors across the dataset while ignoring the glass 
background of the scans. The Open Slide program was used to access all the image slides54.

Filtering
WSIs often have at least a 50% white background, as the white background in WSI analysis carries no useful infor-
mation and can obstruct classification. Background filtering is a crucial preprocessing step. Different techniques 
have been tried to get rid of the background, such as color thresholding and morphological operations. This 
model uses a straightforward color thresholding technique that examines each pixel’s green channel values and 
eliminates any that are more than the 200-intensity threshold. When a binary mask is produced, if it covers more 
than 90% of the image, the threshold is adjusted until it only covers less than 90%. This challenge was completed 
using the adaptive non-local means thresholding algorithm55. When using H & E-stained histopathological 
images, where tissue has less green content in comparison to the white backdrop, this approach performs well.

It is crucial to note that the filtering procedure might also eliminate pixels inside the tissue area that have 
a brighter color. The median filter, closing filter, and holes filling algorithm were used to eliminate small holes 
left by the background filter in order to solve this problem. The filtering procedure was also used on the WSI 
thumbnails, which are the smallest-resolution representations of the full-sized images, to save computing time. 
The generated binary mask was then upscaled to its full resolution. While maintaining the accuracy of the seg-
mentation and classification results, this method can significantly lower the computational cost of the background 
filtering procedure.

Stain normalization
WSIs in the TCGA dataset were prepared at multiple clinics and stained using a variety of H &E compounds, 
which can cause variances in stain colors due to environmental factors. Stain normalization is regarded as 
an important preprocessing step because the variability in stain colors can make it challenging for a neural 
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network to discriminate between GBM and LGG classes56. In this study, stain normalization uses the Vahadane 
algorithm57, which effectively maintains biological structures.

In four cancer datasets, Roy et al.58 determined that Vahadane’s method was the best color normalization 
technique for histopathology images. For normalizing source images without color distortion, the algorithm 
needs a target image. From the original photographs, stain density maps are generated, capturing the relative 
concentrations of the two stain colors, which provide crucial details about the biological structures. The target 
image’s stain color foundation is mixed with the density maps to change only the colors while maintaining the 

Figure 2.   The proposed framework.
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intensity of the structures. The target image was chosen rather arbitrarily to encompass a wide range of colors 
from the dataset. Each image is normalized independently since removing the white pixels of the backdrop first 
is recommended because they are simply formed of the two base stain colors.

Patching
One popular method for getting around the restrictions of applying neural networks to analyze huge images is 
to use small patches. Choosing the right patch size is essential to balance the analysis’s resolution and processing 
needs. A patch size of 1024 x 1024 at 20x magnification makes sense in the context of WSI analysis for tumor 
detection since it corresponds to the size skilled pathologists can use to identify tumors. When this size is scaled 
down to the input size anticipated by the majority of CNNs trained on the ImageNet dataset, which is typically 
224 × 224 pixels, the area is significantly reduced59. Based on these results, the current study attempted two 
patch sizes, small (256 × 256) and large (512 × 512), and successfully extracted a total of 225,213 small patches 
and 40,114 large patches that did not overlap using the tiling technique60. To prevent analytical redundancy and 
guarantee the independence of the patches, it is crucial to use non-overlapping patches. We utilized a variety 
of augmentation techniques to enhance the diversity and resilience of the dataset by adding to the available 
data samples. A variety of transformations, such as rotation, scaling, flipping, translation, and adjustments to 
brightness and contrast, were included in these augmentation techniques. Furthermore, we used geometric 
transformations to simulate different viewing angles and perspectives, such as affine transformations.Table 2 
summarizes the number of extracted patches of various sizes for each class.

Modeling
This section discusses our Glioma classification algorithms. We apply the two-step technique. The initial stage 
is target detection using standard approaches, such as YOLOv5. The image classifier is used to perform clas-
sifications in the second stage. Similar to61, the decision to utilize a ResNet50 model was chosen because it has 
already demonstrated its capability in medical image processing. The prediction performance of a pre-trained 
network is compared to that of a CNN constructed from scratch in this study.

ResNet50
The residual network is referred to as ResNet. It forms a crucial component of the traditional computer vision 
task, which is crucial for target classification. ResNet50, ResNet101, and so on are examples of the classic ResNet. 
The issue of the network developing in a deeper direction without gradient explosion is resolved by forming the 
ResNet network. As is well known, DCNNs are excellent at extracting low-, medium-, and high-level character-
istics from images. We can typically improve accuracy by adding additional layers. The activation function of 
each of the two dense layers in the residual module is the ReLU function. Because ResNet-50 offers the benefits 
of lower input complexity, computational efficiency, and pre-trained weight availability, we deliberately chose it 
over ResNet-152, even though the latter may have improved accuracy. By utilizing the optimal depth of ResNet-50 
for whole-slide image analysis, it was possible to process a greater number of patches for reliable analysis and 
effectively concentrate on specific features of glioma tumors while preserving essential information. ResNet-50 
was chosen as a practical and effective option for brain tumor grading because it was highly efficient in our train-
ing process and gave a strong foundation for feature extraction when we used pre-trained ResNet-50 weights.

Deep CNN ResNet-50 has a lightweight design. There are 50 layers that reformulate learning residual func-
tions concerning the layer inputs rather than learning unreferenced functions. The ResNet concept comprises a 
stack of related or “residual” pieces. This block represents an array of convolutional layers. An identity mapping 
path also links a block’s output to its input. The channel depth is increased while stride convolution continually 
downscales the feature mapping to maintain the time complexity per layer.

YOLO
YOLOv5 is a compelling option for a dependable and effective detection model because of its greater maturity, 
ease of use, availability of pre-trained models, optimized performance for real-time applications, and low resource 
requirements, even though there are newer YOLO versions with possibly higher accuracy. Because YOLOv5’s 
architecture is less complex and requires less resources than its more recent versions, it can analyze large datasets 
effectively on standard computing hardware. This is critical for the analysis of large amounts of histopathological 
data without the need for costly or specialized equipment. In order to analyze large datasets of histopathological 
images in real-time and greatly increase workflow efficiency, YOLOv5’s speed is very important. Newer ver-
sions may be marginally more accurate, but in this case, their slower inference speed makes them less useful. 

Table 2.   Number of patches for each class.

No. of ROIs No. of patches (256×256) No. of patches (512×512)

Class I 221 50,621 8939

Class II 215 54,440 9660

Class III 282 75,942 13,575

Class IV 152 44,210 7940

Total 870 225,213 40,114
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Although there is a greater theoretical accuracy with YOLOv6-v8, YOLOv5 is a more practical and advanced 
option for brain tumor detection in histopathological images due to its established presence in medical research, 
pre-trained medical models, ease of use, resource efficiency, and integration capabilities. With its adaptability to 
handle various tumor types with little effort, and its speed and real-time inference capabilities, it is an invaluable 
tool for analyzing large datasets.

The backbone, neck, and head comprise the three essential structural components of the YOLO series of 
models. The original architercture of Yolov5 is shown in Fig. 3. CSPDarknet is used by YOLOv5 as the backbone 
to extract features from photos composed of cross-stage partial networks. In the YOLOv5 neck, the features are 
aggregated using a feature pyramid network created by PANet, which is then sent to the head for prediction. 
Concerning object detection, the YOLOv5 head has layers that produce predictions from anchor boxes. In addi-
tion, YOLOv5 chooses the following options for training62:

•	 Leaky ReLU and sigmoid activation are used by YOLOv5, while SGD and ADAM are available as optimizer 
alternatives.

•	 Binary cross-entropy is used for logit loss as the loss function

YOLOv5 has a variety of pre-trained models. The trade-off between model size and inference time is what 
separates them. Although only 14MB in size, the YOLOv5s lightweight model is not very realistic. On the other 
end of the range, we have the 168MB-sized YOLOv5x, which is the most accurate member of its family. YOLOv5 
features several lighting spots over the YOLO series, including: 

1.	 Multiscale: To improve the feature extraction network, employ the FPN rather than the PAN, resulting in a 
simpler and quicker model.

2.	 Target overlap: The target can be mapped to several nearby central grid points using the rounding method.

The fundamental purpose of the model backbone is to extract essential characteristics from an input picture. 
The backbone network’s first layer, called the focusing layer, is utilized to speed up training and simplify model 
calculations. The following objectives are achieved by it: The three-channel picture is divided into four slices 
for each channel using a slicing method. The output feature map was generated using the convolutional layer 
comprised of 32 convolution kernels. Then, the four sections are connected in depth using concatenation, with 
the output feature map having a size of. After that, the results are output into the next layer using the Hardswish 

Figure 3.   The architecture of YOLOv5 model.
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activation functions and the batch normalization (BN) layer. The third layer of the backbone, the BottleneckCSP 
module, was created to efficiently extract in-depth information from the picture. The Layer (Conv2d + BN + 
ReLu) with a convolution kernel size is joined to produce the Bottleneck module, which is the main component 
of the BottleneckCSP module illustrated in Fig. 4. The ultimate output of the bottleneck module is the result of 
adding the output of this portion to the original input obtained through the residual structure.

The operation of the CSP network from the first layer to the last layer is shown by Eqs. 1–3.

where [L0, L1, . . .] means concatenating the layer output, and Wi and Li are the weights and output of the i-th 
dense layer, respectively. Three components make up the YOLO loss function: classification error, intersection 
over union (IOU) error, and coordinate prediction error. The coordinate prediction error shows the precision 
of the bounding box’s position, which is defined by Eq. 4.

where �Cod represents the weight of the coordinate mistake in Eq. 4. G2 represents each detection layer’s total 
number of grid cells. N represents the total number of bounding boxes in each grid cell. If a target is present 
within the j-th bounding box of the j-th grid cell, ITij  will signal this. āi , b̄i , w̄i , andh̄i denote the anticipated 
box, whereas ai , bi , andwi , hi denote the abscissa, ordinate, width, and height of the center of the ground truth, 
respectively.

The intersection over union (IOU) error shows how closely the predicted box and the ground truth intersect. 
Eq. 5 provides a definition.

The confidence cost in the absence of an object is described by the notation “ �notar ” in Eq. 5. The confidence in 
the truth and prediction are denoted by Ci and C̄i . In Eq. 6, the term “classification error” is used to describe the 
accuracy of categorization.

(1)L1 = W1xL0

(2)L2 = W2x[L0, L1]

(3)Lk = Wkx[L0, L1, L2, . . . , L(k−1)]

(4)
ErrorCod = �Cod

∑G2

i=0

∑N

j=1
ITij [(ai − āi)

2 + (bi − b̄i)
2]

+ �Cod

∑G2

i=0

∑N

j=1
ITij [(wi − w̄i)

2 + (hi − h̄i)
2]

(5)
ErrrorIOU =

∑G2

i=0

∑N

j=1
ITij (Ci − C̄i)

2

+ �notar

∑G2

i=0

∑N

j=1
Inotarij (Ci − C̄i)

2

Figure 4.   The architecture of bottleneck model.
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The discovered target’s class is denoted by the letter c in Eq. 6. The genuine probability that the target is in class 
c is denoted by the pi(c) symbol. The estimated likelihood that the target is a member of class C is denoted by 
the p̄i(c) symbol. So, Eq. 7 represents the definition of the YOLO loss function.

Improved YOLOv5
The YOLOv5 model’s initial implementation does not lead to the intended outcomes. The model should accu-
rately identify and classify cancers, even on intricate surfaces. In order to implement the model in hardware 
devices, its size must also be as small as feasible. We thus modify the model’s skeleton in a few ways. The 
YOLOv5 architecture’s core network comprises four BottleneckCSP modules, each having several convolutional 
layers. Even though the convolution process may extract picture information, the convolution kernel has many 
parameters, which also leads to many parameters in the recognition model. The consequence is deleting the 
convolutional layer on the alternative branch of the original CSP module. The input and output feature maps of 
the BottleneckCSP module are linked directly by another branch in-depth, significantly decreasing the number 
of parameters in the module. Figure 5 depicts the architecture of the enhanced BottleneckCSP module. The 
Optuna library has used to implement hyperparameter tuning for this layer. A summary of our methodology 
is provided below:

•	 Defined Search Space: We created a search space with the following parameters: activation function (ReLU, 
Leaky ReLU, Swish), number of filters (128–192), and kernel size (1–3).

•	 The primary objective function used to assess each configuration was validation accuracy.
•	 Trial Budget: To balance exploration and exploitation within the Optuna framework, we set a trial budget of 

50 training runs.

(6)ErrrorCL =
∑G2

i=0

∑N

j=1
ITij

∑
c∈class

(pi(c)− p̄i(c))
2

(7)

Loss = �Cod

∑G2

i=0

∑N

j=1
ITij [(ai − āi)

2 + (bi − b̄i)
2]

+ �Cod

∑G2

i=0

∑N

j=1
ITij [(wi − w̄i)
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+
∑G2

i=0

∑N
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2

+
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Figure 5.   The modified bottleneck.
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The following are the outcomes of the hyperparameter tuning: The best-performing configuration was deter-
mined by Optuna to include 154 filters, a kernel size of 3, and Leaky ReLU activation.

The whole structure of the model
The RESNET-50 AND YOLOV5 fusion technique uses the result of one of ResNet-50’s layers as an input to 
the YOLO neck while combining it with the result of enhanced bottleneckCSP. This ResNet-50 network layer 
is designated as a feature extraction layer in YOLO. In this study, the feature extraction layer was based on the 
ReLU (activation 49 ReLU) layer. The remaining layers of ResNet-50, which include the average pooling, fully 
connected, softmax, and classification layers, are shortened and combined with the YOLO layer to create a new 
fused network architecture for the detection and classification of brain tumors, as presented in Fig. 1. We pro-
cessed the source photos before feeding them into YOLOv5 and ResNet50. YOLOv5’s backbone was enhanced 
by the integration of ResNet50 as a complementary feature extractor to achieve the best feature extraction for 
the classification within the architecture. We recognized that the ResNet50 model could capture high-level 
visual representations, so we initially trained it with weights pretrained on ImageNet by utilizing transfer learn-
ing principles. We tuned the last few layers of the ResNet50 model specifically to meet the requirements of our 
detection task in the YOLOv5 framework. In order to fine-tune the network, most of its layers were frozen, and 
the weights of the fully connected and final convolutional layers were changed. Our goal in fine-tuning these 
chosen layers was to modify ResNet50’s feature extraction capabilities so that they more closely matched the 
traits and intricacies present in our object detection dataset. This fine-tuning approach not only enhanced the 
model’s capacity to extract complex visual features pertinent to our task, but it also expedited convergence when 
the YOLOv5 detector was subsequently trained. By concatenating the outputs from the YOLOv5 backbone with 
the activations from the final two layers of ResNet50, we performed a targeted feature fusion to maximize the 
strengths of both models. With a focus on semantic richness, the deeper layers of ResNet50 extracted detailed 
feature maps that were strategically fused into the spatial hierarchy captured by YOLOv5. After this combination, 
we took a fine-tuning strategy, focusing on the joined layers to enable a well-balanced combination of feature 
representations from both networks. We specifically started selectively fine-tuning the concatenated layers so 
that the original YOLOv5 architecture wouldn’t be disturbed, and we could gradually adapt to the specifics of the 
detection task. To facilitate a more customized extraction of discriminative features relevant to the intricacies of 
our dataset, this fine-tuning mainly involved modifying the weights and biases of the combined layers.Through 
the process of feature concatenation and fine-tuning, we were able to combine the strengths of both ResNet50 
and YOLOv5 in order to maximize their complementary abilities. This method not only accelerated the model’s 
ability to capture context and fine-grained visual details, but it also made improved the classification performance 
possible. XGBoost categorizes the input data and creates predictions when features from a hybrid model have 
been extracted. Since XGBoost is better at handling high-dimensional features, capturing non-linear relation-
ships, and adapting to different tumor presentations, we chose them over classical machine learning models. 
This combination of parameters contributes to the success of improving algorithms in medical image analysis 
and ensures effective analysis and diagnosis in clinical settings by enabling robust and accurate classification of 
brain tumors in histopathological images. By applying XGBoost as a classifier, we may benefit from its capacity 
to manage big datasets and intricate feature spaces, making it an excellent option for this kind of task. Overall, 
the predictions produced by combining XGBoost with ResNet50 and YOLOv5 are more precise and effective. 
Algorithm 1 lists the glioma tumor classification technique based on brain histopathological RGB images.

Algorithm 1.   The glioma tumor classification
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Experimental results
Dataset description
937 WSIs from 490 patients with brain cancer were retrieved from TCGA. The dataset is described in Table 3. The 
WSIs were visually examined, and those that were determined to be useless because of corruption, irremovable 
marker markings, poor resolution, or a lack of clinical information were eliminated. This led to 445 cases with 
654 WSIs that could be examined further.

Performance metrics
In this section, we will review some of the evaluation metrics we employed in our experiment. We know that 
detection is the most critical aspect of the CAD system. Accuracy (ACC), sensitivity, specificity, receiver operating 
characteristic (ROC) curve, overlapping error, boundary-based evaluation, and the Dice similarity coefficient 
(DSC) are common metrics for analyzing the effectiveness of classification systems. The following equations 
can be used to calculate ACC, sensitivity (SEN), specificity (SPC), positive predictive value (PPV), and DSC.

It is possible to calculate the Pearson product-moment correlation coefficient between expected and observed 
values using the Matthew correlation coefficient (MCC), which is unaffected by the problem of unbalanced 
datasets. The percentage of correctly identified tumor and non-tumor samples in the categorization of brain 
tumors using histopathological images is the ACC. SEN would be the model’s capacity to accurately classify 
tumor samples as positive considering their histological characteristics. The model’s SPC would be its capacity 
to appropriately classify non-tumor samples as negative based on their histological characteristics. PPV is the 
percentage of tumor samples with a histological diagnosis that the model correctly identifies as positive. The 
degree of overlap between the predicted and actual tumor regions in the image is quantified by DSC. A high DSC 
implies good alignment between the predicted tumor region by the model and the actual tumor region, whereas a 
low DSC suggests poor alignment. MCC would indicate the overall relationship between the model’s predictions 
and the actual tumor or non-tumor labels based on the samples’ histological characteristics.

We separated the dataset into training, validation, and testing categories since a DL model’s training and testing 
phases are critical. Specific hyperparameters, such as learning rate, batch size, and the number of training epochs, 
should be carefully selected for the training phase. Table 4 displays the values of the YOLOV5-RESNET50 model’s 
hyperparameter optimization trials on the dataset.

Choosing the best parameters and values for a DL model is crucial. During this process, the model achieves 
the best accuracy on the hyperparameters shown in Table 4. The suggested model based on these hyperparameters 
values is then validated using the validation dataset. The performance metrics were recorded for each epoch of 
training and validation.

Python 3.9 and Google Colab were used to develop the proposed system. TensorFlow 2.4 was used as the 
main processing framework to implement this work. Besides, the OpenCV library is used for the preprocessing 

(8)ACC =
TP + TN

TP + TN + FP + FN

(9)SEN =
TP

TP + FN

(10)PPV =
TP

TP + FP

(11)SPC =
TN

TN + FP

(12)DSC =
2TP

2TP + FP + FN

(13)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

Table 3.   The characteristics of TCGA dataset.

Characteristics Complete dataset LGG HGG

No. of patients 490 184 306

No. of deaths 316 94 222

Age 49.65 40.37 56.79

Gender

 Male 303 115 188

 Female 187 69 118
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stage as it is an open-source Python library. Our studies were carried out on a core i7/4.5 GHz computer. It had 
16 GB of RAM and a 4GB VRAM NVIDIA card.

Results
The suggested model’s performance on previously unseen data has been thoroughly assessed using test data. 
Fig. 6 shows the model’s performance on the test dataset. With ACC equals to 97.2%, PPV equals to 96.3%, 
and DSC equals to 97.0% , the model performs well within the first three grades, but grade IV identification is 

Table 4.   The specific hyper parameter of the proposed model.

Component Hyperparameter Value

ResNet50 backbone

Learning rate 0.0001

Momentum 0.84

Weight decay 0.00035

Modified YOLOv5s backbone

CSP module modifications Yes

Learning rate 0.0001

Momentum 0.84

Weight decay 0.00035

Neck layer (YOLOv5)

Learning rate 0.001

Momentum 0.9

Weight decay 0.0001

XGBoost classifier

Learning rate 0.1

n_estimators 70

Max_depth 6

Gamma 0.1

Whole model

Learning rate scheduler CosineAnnealingLR

Loss function Similar to YOLOv5

Optimizer Adam

Epochs 200

Batch Size 32

Table 5.   The comparison of the suggested model’s results (%) and some recent CNN techniques.

ACC​ SEN SPC DSC MCC PPV

InceptionV3 92.2 94.4 88.8 93.6 83.6 92.9

EfficientNet 94.1 96.6 87.9 95.9 85.6 95.2

VGG19 93.7 96.4 88.2 95.4 85.6 94.4

Proposed model 97.2 97.7 94.9 97.0 92.8 96.3

Figure 6.   Model evaluation per class.
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remarkably well. SEN and SPC are also beneficial to all classes. Regarding performance, the ROC curve for all 
classes is shown in Fig. 5. Figure 6 depicts the use of the four classifiers on a 256× 256 patch size. The ROC curve 
has been presented in this figure, confirming that the suggested model has the ROC curve for four classes in 
contrast to the other classifiers. Table 5 shows the classification results of different models trained on 256× 256 
patch size for each cross-validation in 5 folds cross-validation. The findings reveal that the suggested model has 
the highest average indexes (across all four classes). The Model evaluation of different four grades for glioma 
brain tumor using differnet metrics like ACC,SEN,F1-score,etc is shown in Table 6

Discussion
This study presents a new hybrid deep learning model on histopathological images from TCGA dataset for the 
classification of glioma brain tumors. The suggested model integrates the best aspects of three well-known archi-
tectures: XGBoost for robust classification, YOLOv5 for feature selection and object detection, and ResNet50 
for feature extraction. In order to decrease redundancy and increase efficiency in the feature extraction process, 
this study also modifies the YOLOv5 backbone by eliminating the alternate branches of the conv2dx1 section.

Histopathology images have traditionally been utilized in clinical settings to classify tumors. However, there 
are specific difficulties in processing histopathologic images. First, the size of the WSI varies significantly within 
the dataset. Second, choosing an RoI is quite difficult. The quality of the chosen RoI influences the ultimate tumor 
classification. Finally, RoI selection in WSI is quite computationally demanding for this operation.

We achieved good accuracy and robustness in glioma grade classification by utilizing a hybrid YOLOv5 and 
ResNet50 model for feature extraction, followed by a gradient boosting classifier. To extract high-level semantic 
characteristics and low-level object features essential for tumor grading, the hybrid model can take advantage of 
the strengths of both the ResNet50 and YOLOv5 models. After collecting features from the hybrid ResNet50 and 
YOLOv5 model, the XGBoost classifier is used to categorize brain tumor grades, which is an efficient method for 
precise and trustworthy tumor grading. Our model, which was a customized integration of modified YOLOv5 
backbone and a ResNet50, was optimized and fine-tuned in terms of the number of parameters. Consequently, a 
model configuration with approximately 28.16 million parameters was produced.On a machine with the NVIDIA 
GeForce GTX and Intel(R) Core (TM) i7/4.5 GHz specifications, the model’s processing time was measured. An 
image’s processing takes about 30 milliseconds on average.

We compare the suggested hybrid model to various approaches that have been investigated in the literature 
that use the WSI from the TCGA. Sumi et al.23 achieved 95.6% for ACC. Yonekura et al.24 achieved 96.5% for 
GMB classification. Kurc et al.63 presented three classification techniques to group adult diffuse glioma patients 
into oligodendroglioma and astrocytoma classes. They obtained 75.0%, 80.0%, and 90.0% for ACC using a 
weighted average-based classification method. Dropout enables ensemble learning for multi-scale image classi-
fication and DenseNet-161 network for classifying low-grade gliomas. To further improve the evaluation robust-
ness of our model, we have applied k-fold cross-validation with 10 folds. Using this method, the data is split into 
ten distinct folds, each of which is used at different stages for training and validation. By doing this, it is made 
sure the model is tested on a variety of data subsets, which reduces the possibility of overfitting and gives a more 
complete picture of the model’s generalizability.

Compared to the state-of-the-art models, the proposed system produced the best results. Our suggested 
system outperforms the VGG19, ResNet50, Inception V3, and MobileNetv2 models. We discovered that when 
we altered the standard ResNet50 by adjusting the hyperparameters and layers, the results needed to be raised 
to satisfy the glioma grades’ satisfying expectations. Our suggested approach, which combines YOLOv5 with 
ResNet50, performs better than the other method. This implies that the proposed method is more effective in 
achieving the desired result. We investigated using H &E-stained brain cancer histopathology pictures as input 
for DCNN-based glioma classification. We compared the performance of DCNN algorithms using the publicly 
accessible TCGA dataset. Our suggested model, a hybrid method for identifying and categorizing brain tumors, 
was developed using a set of training samples from the TCGA dataset. This model is intended to provide a com-
prehensive approach for precisely classifying and detecting various grades of brain cancer. In the testing phase, 
the patch classification accuracy using YOLOv5+ResNet50 was 97.2%. A confusion matrix was used to evaluate 
the model’s performance as shown in Fig. 7. We evaluated the performance of the proposed classification by 
comparing its results with different state-of-the-art grade classification methods. The result of the comparison 
with state-of-the-art techniques is shown in Table 7. The results show that the proposed model, which is based 
on the hybrid of Yolov5 and Resnet50, performs better than other state-of-the-art methods (Fig. 8).

When we compared YOLOv5’s original and the proposed model, we found that the proposed model per-
formed better. Figure 6 shows the proposed model’s results, which include 97.7% SEN, 94.9% SPC, 96.3% PPV, 
97.2% ACC, and 92.8% MCC value. The original YOLOv5, in contrast, obtained 92% SEN, 91.6% PPV, 91.8% 
ACC, and 85.4% MCC value. We further evaluated the performance of three models (InceptionV3, EfficientNet, 

Table 6.   The model evaluation of different grades for glioma brain tumor.

ACC (%) SEN (%) SPC (%) PPV (%) F-score (%) MCC(%)

Grade I 97.05 98.74 96.60 97.87 98.30 87.05

Grade II 96.55 98.20 95.43 97.17 97.68 90.92

Grade III 97.08 98.67 96.20 97.89 98.28 88.51

Gradde IV 94.69 96.99 94.38 95.73 96.35 86.62
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Figure 7.   The confusion matrix for the model’s performance.

Figure 8.   The ROC curve for four grades output.
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Figure 9.   The ROC curve for four classifiers output on patches 256× 256 : Inception V3, MobileNet V2, 
VGG19, Proposed model.

Table 7.   The comparison between the proposed system and state-of-the-art techniques.

Method ACC(%)

Yonekura et al. 24 Applied Deep CNN. The approach comprises of 7 convolution, 8 ReLU, 6 pooling, 1 softmax layers 96.5

Sumi et al.23 The InceptionResNetV2 is used to extract features 95.0

Pei et al.44 Based on cellularity and molecular characteristics and applied DNN classifier 93.8

Im et al. 49 Using the ResNet50V2 model 87.2

Mohan 48 A feature combination of PF+FLBP+GLCM+GABOR with linear SVM 93.5

The proposed method Yolov5 integrated with resnet50 for feature extraction and applied XGboost for classification 97.2
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and VGG19) for identifying brain tumors and discovered that the enhanced YOLOv5s model outperformed 
these models regarding MCC and ACC by 92.8% and 97.2%, respectively. As demonstrated in Fig. 9, our sug-
gested model performs better than InceptionV3, MobileNetV2, and VGG19 in classifying and diagnosing brain 
tumors. The brain tumor identification and classification outcomes using a proposed network are shown in Fig. 8.

Deep learning has been investigated in several studies for brain tumor classification. The propsed model has 
several benefits over these methods:

•	 Enhanced extraction of features: When YOLOv5 and ResNet50 are used together, the resulting model offers 
a larger feature set than when either model is used alone.

•	 Increased effectiveness: Removing unnecessary branches keeps performance at a high level while increasing 
effectiveness.

•	 Flexibility and interpretability: XGBoost facilitates fine-tuning and offers insights into the significance of 
features, allowing for a better understanding and possible model improvement

The efficacy of the hybrid architecture and the suggested modifications is demonstrated by the proposed model, 
which achieves notable performance gains on several metrics over individual baseline models and pre-defined 
CNNs. When compared to other models, the suggested model has the best accuracy in classifying GBM, dem-
onstrating its superior capacity to distinguish between tumor and non-tumor regions. High sensitivity and 
specificity are displayed by the model, indicating that it has good capabilities for grading the brain tumor. The 
model demonstrates its generalizability to previously unseen data by exhibiting strong performance across a 
variety of evaluation metrics.

Conclusion and future work
It is critical to create non-invasive, inexpensive, and efficient technology for diagnosing and grading gliomas since 
brain tumors are a common, serious condition with a poor prognosis. In impoverished healthcare systems, a DL 
framework can be an invaluable replacement for conventional tools, particularly for early preventative treatment. 
Our research intends to develop a system that can automatically categorize brain tumors using a hybrid model 
built on YOLOv5 and ResNet50. The modified approach, which incorporates ResNet into the feature extraction 
of the YOLOv5 framework, is used by our hybrid network to successfully identify brain tumors from histopatho-
logical images. However, our method is still unable to identify tumors with atypical forms. Future improvements 
will improve ease and allow the network to detect tumors of all sorts and sizes. Using this method, we hope to 
contribute new ideas and focus on classifying different cancers. The method may also be more broadly applicable 
to a wider variety of clinical situations if additional imaging modalities, such as MRI or CT scans, are investigated. 
The suggested method’s clinical applicability and effectiveness may also be supported by conducting a clinical 
validation study to evaluate its performance on a bigger and more varied dataset. Future research into different 
network architectures, such as DenseNet or EfficientNet, may be useful to see whether they can accomplish the 
task of classifying brain tumors more effectively.

Data availability
The datasets used during the current study available in the Cancer Genome Atlas repository (https://​portal.​gdc.​
cancer.​gov/) at the TCGA-LGG and TCGA-GBM projects.

Received: 18 August 2023; Accepted: 17 February 2024

References
	 1.	 Baxi, V. A., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical 

practice. Mod. Pathol. 35, 23–32 (2021).
	 2.	 Elazab, N., Soliman, H., El-Sappagh, S., Islam, S. R. & Elmogy, M. Objective diagnosis for histopathological images based on 

machine learning techniques: Classical approaches and new trends. Mathematics 8, 1863 (2020).
	 3.	 Ács, B., Rantalainen, M. & Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 288, 

62–81 (2020).
	 4.	 Babawale, M. O. et al. Verification and validation of digital pathology (whole slide imaging) for primary histopathological diagnosis: 

All wales experience. J. Pathol. Inform. 12, 4 (2021).
	 5.	 Rastghalam, R. & Pourghassem, H. Breast cancer detection using MRF-based probable texture feature and decision-level fusion-

based classification using hmm on thermography images. Pattern Recognit. 51, 176–186 (2016).
	 6.	 Saito, A. et al. A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature 

level co-occurrence matrix. J. Pathol. Inform. 7, 36 (2016).
	 7.	 Bengio, Y., LeCun, Y. & Hinton, G. E. Deep learning for AI. Commun. ACM 64, 58–65 (2021).
	 8.	 Saric, M., Russo, M., Stella, M. & Sikora, M. CNN-based method for lung cancer detection in whole slide histopathology images, 

in 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech) 1–4 (2019).
	 9.	 Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter 

study. PLoS Med. 16, e1002730 (2019).
	10.	 Khan, M. S. I. et al. Accurate brain tumor detection using deep convolutional neural network. Comput. Struct. Biotechnol. J. 20, 

4733–4745 (2022).
	11.	 Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 

25, 1–3 (2019).
	12.	 Bhatele, K. R. & Bhadauria, S. S. Machine learning application in glioma classification: review and comparison analysis. Arch. 

Comput. Methods Eng. 29, 1–28 (2021).
	13.	 Carson, R. E. & Kuo, P. H. Brain-dedicated emission tomography systems: A perspective on requirements for clinical research and 

clinical needs in brain imaging. IEEE Trans. Radiat. Plasma Med. Sci. 3, 254–261 (2019).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4584  | https://doi.org/10.1038/s41598-024-54864-6

www.nature.com/scientificreports/

	14.	 Gumaei, A. H., Hassan, M. M., Hassan, M. R., Alelaiwi, A. & Fortino, G. A hybrid feature extraction method with regularized 
extreme learning machine for brain tumor classification. IEEE Access 7, 36266–36273 (2019).

	15.	 Bhatele, K. R. & Bhadauria, S. S. Brain structural disorders detection and classification approaches: A review. Artif. Intell. Rev. 53, 
3349–3401 (2020).

	16.	 Rangayyan, J. T., Singh, N. M., Mohapatra, A. G., Rath, B. N. & Kanungo, G. K. Detection and diagnosis of breast cancer with 
mammography: Recent advances” described about an overview of recent advances in the development of cad (computer -aided 
diagnosis or detection) systems (2012).

	17.	 Kong, J. et al. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic 
differentiation. Pattern Recognit. 42(6), 1080–1092 (2009).

	18.	 Zejmo, M., Kowal, M., Korbicz, J. & Monczak, R. Classification of breast cancer cytological specimen using convolutional neural 
network (2017).

	19.	 Tan, T. et al. Optimize transfer learning for lung diseases in bronchoscopy using a new concept: Sequential fine-tuning. IEEE J. 
Transl. Eng. Health Med. 6, 1–8 (2018).

	20.	 Tey, K. Y. et al. Optical coherence tomography angiography in diabetic retinopathy: A review of current applications. Eye Vis. 6, 
1–10 (2019).

	21.	 Jocher, G. R. et al. ultralytics/yolov5: v3.1-bug fixes and performance improvements (2020).
	22.	 Targ, S., Almeida, D. & Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv:​1603.​08029 (2016).
	23.	 Sumi, P. S. & Delhibabu, R. Glioblastoma multiforme classification on high resolution histology image using deep spatial fusion 

network (2019).
	24.	 Yonekura, A., Kawanaka, H., Prasath, V. B. S., Aronow, B. J. & Takase, H. Automatic disease stage classification of glioblastoma 

multiforme histopathological images using deep convolutional neural network. Biomed. Eng. Lett. 8, 321–327 (2018).
	25.	 LeCun, Y., Bottou, L. & Bengio, Y. Proceedings of the IEEE November gradient based learning applied to document recognition 

(2006).
	26.	 Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks, in ECCV (2014).
	27.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR. arXiv:​1409.​1556 (2015).
	28.	 Kolachalama, V. B. et al. Association of pathological fibrosis with renal survival using deep neural networks. Kidney Int. Rep. 3, 

464–475 (2018).
	29.	 Shirazi, A. Z. et al. DeepSurvNet: Deep survival convolutional network for brain cancer survival rate classification based on his-

topathological images. Med. Biol. Eng. Comput. 58, 1031–1045 (2020).
	30.	 Szegedy, C. et al. Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

1–9 (2015).
	31.	 Liu, S. et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 

10, 7733 (2020).
	32.	 Bayramoglu, N., Kannala, J. & Heikkilä, J. Deep learning for magnification independent breast cancer histopathology image clas-

sification, in 2016 23rd International Conference on Pattern Recognition (ICPR) 2440–2445 (2016).
	33.	 Sudharshan, P. J. et al. Multiple instance learning for histopathological breast cancer image classification. Expert Syst. Appl. 117, 

103–111 (2019).
	34.	 Rahhal, M. M. A. Breast cancer classification in histopathological images using convolutional neural network. Int. J. Adv. Comput. 

Sci. Appl. 9 (2018).
	35.	 Truong, T. D. & Pham, H. T.-T. Breast cancer histopathological image classification utilizing convolutional neural network, in 

IFMBE Proceedings (2019).
	36.	 Khatami, S. A., Babaie, M., Khosravi, A., Tizhoosh, H. R. & Nahavandi, S. Parallel deep solutions for image retrieval from imbal-

anced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018).
	37.	 Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification, in 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR) 2424–2433 (2016).
	38.	 Cruz-Roa, A., Arevalo, J., Madabhushi, A. & González, F. A. A deep learning architecture for image representation, visual inter-

pretability and automated basal-cell carcinoma cancer detection, in Medical image computing and computer-assisted intervention 
: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 16 Pt 2, 403–10 (2013).

	39.	 Zheng, Y. et al. Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast 
lesion classification. Pattern Recognit. 71, 14–25 (2017).

	40.	 Amin, J. et al. Breast microscopic cancer segmentation and classification using unique 4-qubit-quantum model. Microsc. Res. Tech. 
85, 1926–1936 (2022).

	41.	 Salman, M. E., Çakirsoy Çakar, G., Azimjonov, J., Kösem, M. & Cedimoglu, I. H. Automated prostate cancer grading and diagnosis 
system using deep learning-based yolo object detection algorithm. Expert Syst. Appl. 201, 117148 (2022).

	42.	 Chan, H.-W., Weng, Y.-T. & Huang, T.-Y. Automatic classification of brain tumor types with the MRI scans and histopathology 
images, in BrainLes@MICCAI (2019).

	43.	 Pei, L., Vidyaratne, L., Hsu, W., Rahman, M. M. & Iftekharuddin, K. M. Brain tumor classification using 3d convolutional neural 
network, in BrainLes@MICCAI (2019).

	44.	 Pei, L., Jones, K. A., Shboul, Z. A., Chen, J. & Iftekharuddin, K. M. Deep neural network analysis of pathology images with integrated 
molecular data for enhanced glioma classification and grading. Front. Oncol. 11, 668694 (2021).

	45.	 Lakshmi, M. J. & Rao, S. N. Brain tumor magnetic resonance image classification: A deep learning approach. Soft. Comput. 26, 
6245–6253 (2022).

	46.	 Attallah, O. Comb-deep: Composite deep learning-based pipeline for classifying childhood medulloblastoma and its classes. Front. 
Neuroinform. 15, 21 (2021).

	47.	 Attallah, O. & Zaghlool, S. B. AI-based pipeline for classifying pediatric medulloblastoma using histopathological and textural 
images. Life 12, 332 (2022).

	48.	 Mohan, G. Intelligent framework for brain tumor grading using advanced feature analysis. Comput. Methods Biomech. Biomed. 
Eng.: Imaging Vis. 11, 485–503 (2023).

	49.	 Im, S.-C. et al. Classification of diffuse glioma subtype from clinical-grade pathological images using deep transfer learning. Sen-
sors (Basel, Switzerland)21, 6500 (2021).

	50.	 Satyanarayana, G., Naidu, P. A., Desanamukula, V. S., Kumar, K. G. S. & Rao, B. C. A mass correlation based deep learning approach 
using deep convolutional neural network to classify the brain tumor. Biomed. Signal Process. Control 81, 104395 (2023).

	51.	 Archana, K. V. & Komarasamy, G. A novel deep learning-based brain tumor detection using the bagging ensemble with k-nearest 
neighbor. J. Intell. Syst. 32, 20220206 (2023).

	52.	 Ozer, E., Bilecen, A. E., Ozer, N. B. & Yanikoglu, B. Intraoperative cytological diagnosis of brain tumours: A preliminary study 
using a deep learning model. Cytopathology 34, 113–119 (2022).

	53.	 Despotovic, V. et al. Glioma subtype classification from histopathological images using in-domain and out-of-domain transfer 
learning: An experimental study. arXiv:​2309.​17223 (2023).

	54.	 Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. Openslide: A vendor-neutral software foundation for digital 
pathology. J. Pathol. Inform. 4, 27 (2013).

	55.	 Dusenberry, M. & Hu, F. Deep learning for breast cancer mitosis detection (2018).

http://arxiv.org/abs/1603.08029
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2309.17223


20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4584  | https://doi.org/10.1038/s41598-024-54864-6

www.nature.com/scientificreports/

	56.	 Grenko, C. M. et al. Towards population-based histologic stain normalization of glioblastoma, in Brainlesion: Glioma, Multiple 
Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 11992, 44–56 (2019).

	57.	 Vahadane, A. et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. 
Imaging 35, 1962–1971 (2016).

	58.	 Roy, S., Jain, A. K., Lal, S. & Kini, J. R. A study about color normalization methods for histopathology images. Micron 114, 42–61 
(2018).

	59.	 Barker, J., Hoogi, A., Depeursinge, A. & Rubin, D. Automated classification of brain tumor type in whole-slide digital pathology 
images using local representative tiles. Med. Image Anal. 30, 60–71 (2016).

	60.	 patchify · PyPI.
	61.	 Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. 

Med. 25, 1–9 (2019).
	62.	 Kasper-Eulaers, M. et al. Short communication: Detecting heavy goods vehicles in rest areas in winter conditions using yolov5. 

Algorithms 14, 114 (2021).
	63.	 Kurç, T. M. et al. Segmentation and classification in digital pathology for glioma research: Challenges and deep learning approaches. 

Front. Neurosci. 14, 27 (2020).

Author contributions
N.E., W.G., and M.E. participated in conceptualization, methodology and software. N.E. and W.G. were respon-
sible for validation, N.E. and M.E. for formal analysis, and W.G. and M.E. for investigation. N.E., W.G., and 
M.E. participated in data curating, visualization, and writing the original draft preparation. W.G. and M.E. were 
responsible for supervision, M.E. was responsible for project administration. All authors reviewed and Edited 
the manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in coopera-
tion with The Egyptian Knowledge Bank (EKB).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A multi-class brain tumor grading system based on histopathological images using a hybrid YOLO and RESNET networks
	Related work
	The proposed framework
	Preprocessing
	Filtering
	Stain normalization
	Patching

	Modeling
	ResNet50
	YOLO
	Improved YOLOv5
	The whole structure of the model


	Experimental results
	Dataset description
	Performance metrics
	Results
	Discussion

	Conclusion and future work
	References


