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Three‑dimensional Z topological 
insulators without reflection 
symmetry
Alexander C. Tyner 1,2* & Vladimir Juričić 1,3*

In recent decades, the Altland-Zirnabuer (AZ) table has proven incredibly powerful in delineating 
constraints for topological classification of a given band-insulator based on dimension and 
(nonspatial) symmetry class, and has also been expanded by considering additional crystalline 
symmetries. Nevertheless, realizing a three-dimensional (3D), time-reversal symmetric (class AII) 
topological insulator (TI) in the absence of reflection symmetries, with a classification beyond the Z
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paradigm remains an open problem. In this work we present a general procedure for constructing such 
systems within the framework of projected topological branes (PTBs). In particular, a 3D projected 
brane from a “parent” four-dimensional topological insulator exhibits a Z topological classification, 
corroborated through its response to the inserted bulk monopole loop. More generally, PTBs have 
been demonstrated to be an effective route to performing dimensional reduction and embedding the 
topology of a (d + 1)-dimensional “parent” Hamiltonian in d dimensions, yielding lower-dimensional 
topological phases beyond the AZ classification without additional symmetries. Our findings should be 
relevant for the metamaterial platforms, such as photonic and phononic crystals, topolectric circuits, 
and designer systems.

Despite the rapid developments in our understanding and diagnosis of topological phases of matter in recent 
decades, the classification rules provided by the Altland-Zirnbauer (AZ) table have remained steadfast when only 
non-spatial symmetries, such as time-reversal and particle-hole, are considered1–6. In this respect, a few known 
exceptions to the AZ table exist7–11, perhaps most famous is the Hopf-insulator, which achieves classification 
beyond the AZ table in three dimensions.

This rather unexpected exception to the tenfold periodic table of topological insulating phases has naturally 
led to questions on what, if any, other exceptions may exist to prompt a reexamination of this paradigm. Moreo-
ver, rapid advances in meta-materials and engineered (designer) systems12–21 for realizing the exotic physics of 
such exceptional systems in an experimental setting provides additional motivation to answer this question.

In Ref.22, projected topological branes (PTBs) were introduced as a robust pathway to performing dimensional 
reduction of a lattice tight-binding model while preserving the bulk topology. This construction was exemplified 
on one- and two-dimensional PTBs obtained from two-dimensional Chern insulators and three-dimensional 
(3D) Weyl semimetals, respectively. In this work, we generalize this method further, placing special emphasis 
on systems beyond the physical three spatial dimensions. In particular, we demonstrate that topological clas-
sification of the (d + 1) dimensional system is preserved in the dimensional reduction procedure, realizing a d−
dimensional topological brane. This procedure thereby offers a route to traverse the AZ table, as shown in Fig. 1, 
and realize topological states in lower dimensions which would otherwise not be permitted.

For clarity, we focus on time-reversal symmetric (class AII) insulators in three dimensions as these represent 
a majority of real, spinful, condensed-matter systems. In the presence of reflection symmetry, they are character-
ized by an integer topological invariant, therefore accommodating Z classification1,5. However, for general time-
reversal insulators lacking additional symmetry, the AZ table limits topological classification to only a parity, Z2 , 
invariant. By contrast, in four spatial dimensions class AII insulators admit a Z invariant.

By forming 3D PTBs from four-dimensional topological insulators in class AII, we can thus provide a gen-
eral principle for achieving the insulators with a Z topological invariant in three dimensions, thereby going 
beyond the AZ table without introducing symmetry constraints. In order to prove that we have preserved the 
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topological nature of the parent system, we utilize known real-space probes of bulk topology, namely electro-
magnetic vortices, monopoles, and monopole loops for parent Hamiltonians in d = 2, 3, 4 , respectively24–31. 
In particular, the spectrum of the prototypical, four-dimensional (4D) time-reversal symmetric model with a 
monopole-loop inserted in the fourth dimension yields a number of induced mid-gap modes, N0 = 2|C2| , that 
is in correspondence with the second Chern number, C2 , characterizing the 4D topological state. Remarkably, 
this number of mid-gap modes remains invariant when the 3D PTB is constructed out of the 4D parent state, 
therefore demonstrating the realization of Z classified time-reversal invariant topological insulators in d = 3.

Projected topological branes
To construct the PTB, we employ the method based on the Schur complement22. Consider a lattice tight-binding 
model defined in d-dimensions for a system of Nd lattice sites, which we refer to as the parent system. The real-
space Hamiltonian for the parent system can be written in the block form as

The Hamiltonian for the PTB then takes the form22,

where H11 corresponds to the real-space Hamiltonian of lattice sites on the (d − 1)-dimensional brane. By con-
trast, H22 is the real-space Hamiltonian for the remaining subsystem formed by lattice sites which do not consti-
tute the (d − 1)-dimensional brane. It then follows that the off-diagonal piece in the Hamiltonian (2), H12 = H†

21 , 
is the coupling between the PTB and the remaining subsystem in the parent d-dimensional lattice tight-binding 
model.

While the form of Eq. (2) is insensitive to choice of dimension, we detail the generalization of this algorithm 
for constructing (d − 1)-dimensional branes from d-dimensional parent cubic lattices. Generalization of this 
procedure for d-dimensional parent systems relies on specifying a (d − 1)-dimensional hyperplane, the equation 
of which takes the form,

where αj and β are real numbers. A lattice site, i, projected onto the (d − 1)-dimensional PTB, obeys the relation,

(1)H =
[

H11 H12

H21 H22

]

.

(2)HPTB = H11 −H12H
−1
22 H21,

(3)
d

∑

j=1

αjxj = β ,

Figure 1.   Periodic table of topological invariants for projected branes. Topological classification for each class 
in d-dimensions is inherited from the prescribed classification for (d + 1)-dimensions in the Altland-Zirnbauer 
table. Therefore, PTBs can realize three-dimensional (3D) Z topological insulator protected purely by time-
reversal symmetry. Additional example of the Z-classified two-dimensional projected branes in class AIII with 
the chiral (unitary particle-hole) symmetry is discussed in the Supplementary Materials23. This analysis shows 
that the 2D projected brane in this class inherits the Z topological invariant from the parent 3D state, consistent 
with the periodic table for projected branes displayed here.
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where a is the lattice constant. As an illustrative example, we choose a parent cubic system in d = 3 dimensions 
of size 10× 10× 10 . We then select the parameters for our plane, αj=1,2,3 = 1 and β = 1/100 . The lattice sites 
which make up the PTB are colored in red in the middle panel of Fig. 2. In order to visualize the PTB, we map 
each lattice site in red onto the projected plane at the point nearest to the lattice site. The result is shown in the 
right panel of Fig. 2, demonstrating that the PTB is a hexagonal system as expected given the orientation of the 
plane, perpendicular to the (111) axis of the cube.

At this point we remark that an infinite number of choices for the parameters which define the hyperplane 
in Eq. (3) may be made. Tuning such parameters may allow to tune the band topology of the corresponding 
PTB. For example, a two-dimensional PTB may not inherit the bulk topology of the parent model if the selected 
hyperplane extends only in a two-dimensional subspace corresponding to a single layer of the parent 3D lattice 
with stacked two-dimensional layers. In this work we continuously use a hyperplane extending along the body 
diagonal such that a genuine dimensional reduction is performed and ensures that the PTB inherits the bulk 
band topology of the parent system, thus avoiding previously mentioned trivial projection. Having established a 
definite procedure for construction of projected branes in d-dimensions, we consider a 4D, parent tight-binding 
model for demonstration of topology beyond the AZ table.

Construction and analysis of three‑dimensional PTB
Bulk topology of four‑dimensional parent model
We explicitly consider a 4D generalization of the Bernevig-Hughes-Zhang topological insulator32,33 on a cubic 
lattice. The Bloch Hamiltonian takes the form, H(k) =

∑5
j=1 dj(k)Ŵj . Employing the basis,

where τ0,1,2,3(σ0,1,2,3) are the 2× 2 identity matrix and three Pauli matrices respectively, acting on the orbital 
(spin) degrees of freedom, the vector d(k) reads,

We have set the lattice constant to unity for simplicity, tp,s have units of energy and �, η1,2,3 are dimensionless, 
real, non-thermal band parameters used for driving topological phase transitions.

Time-reversal symmetry T  , is generated by T †H∗(−k)T = H(k) , where T = iτ0 ⊗ σ2 , such that T 2 = −1 , 
placing the Hamiltonian in class AII. As such, it supports Z topological classification via calculation of the second 
Chern number, C233,34. The second Chern number is efficiently computed for the model at hand as,

(4)
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(5)Ŵj=1,2,3 = τ1 ⊗ σj , Ŵ4 = τ2 ⊗ σ0, Ŵ5 = τ3 ⊗ σ0,
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Figure 2.   Flow diagram detailing construction of (d − 1)-dimensional projected brane from parent 
d-dimensional lattice. For clarity, we here show the example of parent 10× 10× 10 cubic lattice in three-
dimensions with unit lattice constant along each direction.
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We w i l l  cons ider  t hre e  main  p arameter  s e t s ,  (A)  � = 3.5, (η1, η2, η3) = (1, 1, 0) ,  (B) 
� = 0.5, (η1, η2, η3) = (1, 1, 0) , and (C) � = 0.5, (η1, η2, η3) = (1, 0, 1) . These phases support C2 = −1,+3,+4 
respectively.

Topological analysis of three‑dimensional PTB
Utilizing the parent, 4D Bloch Hamiltonian detailed in Eq. (6), we will now construct the 3D PTB following the 
previously detailed procedure, fixing αj=1,2,3,4 = 1 and β = 0.01 . The lattice sites projected onto the 3D hyperplane 
are shown in Fig. 3. In order to diagnose the bulk topology of the PTB we will utilize a real-space probes in terms 
of defects. In particular, singular magnetic probes have been proven to be ideal in detecting topology in real-
space through the emergence of bound states. Famously, in two-dimensions insertion of magnetic vortices has 
been used to determine spin-Chern number ( Cs ), with the number of mid-gap vortex-bound modes ( NVBM ), 
following the relationship NVBM = 2Cs

24–27,30. Furthermore, in three dimensions, magnetic monopoles through 
the number of monopole bound mid-gap modes was employed to diagnose the bulk-invariant31,35–39. In 4D 
systems, a natural extension is the monopole loop, whereby a unit strength magnetic monopole is placed in each 
plane parameterized by the conserved momenta in the fourth dimension, k4 . Notice that the high-symmetry 
values of k4 , namely k4 = 0,±π , represent distinct 3D topological insulators. Importantly, the emergent 3D 
topological insulator defined at these planes supports a chiral (unitary particle-hole) symmetry defined as, 
S−1HS = −H where S = Ŵ4 . This emergent chiral symmetry at the high-symmetry locations k4 = 0,±π , in 
turn, pins to zero energy the surface and monopole bound states induced by the monopole-loop. Finally, even 
through the chiral symmetry can be broken, as allowed for time-reversal symmetric insulators (class AII), the 
number of bound states remains invariant, consistent with the Z classification, but they are simply shifted to 
finite energy values.

We insert the monopole loop into the bulk under open-boundary conditions along the x, y, z directions and 
periodic boundary conditions along the w direction, by employing the singular, north-pole gauge

where i index lattice sites and we fix g = 1 to specifically consider the case of a unit-strength monopole loop.
The results of inserting the monopole loop into the parent Hamiltonian for phase (A), (B), and (C) are shown 

in the top panel of Fig. 4, detailing that the number of mid-gap zero modes in each phase precisely follows the 
relationship, N0 = 2|C2| . Having established this relationship for the parent system, we perform the projection 
to construct the topological brane. We carry out this process both with and without the monopole loop inserted, 
maintaining identical boundary conditions utilized for examining the four-dimensional system.

Solving for the spectra of the projected brane in each phase, we find the results shown in the bottom panel 
of Fig. 4. Remarkably, the number of mid-gap zero modes in each phase under insertion of the monopole loop 
remains invariant, thereby demonstrating that the topology of the parent 4D topological state is inherited by 
the 3D PTB.

Summary and outlook
In this work we have demonstrated that the PTBs offer a route to perform dimensional reduction of a parent 
Hamiltonian in (d + 1) dimensions to a d−dimensional PTB, while preserving the bulk topological invariant. 
Importantly, this allows for the construction of lattice tight-binding models for which the bulk topology goes 
beyond the ten-fold classification scheme based on the AZ table. PTBs thus fall under the category of symmetry 

(8)A(ri) =
g

ri
cot

θi

2
φ̂i = g

−yix̂ + xiŷ

ri(ri + zi)
,

Figure 3.   Three-dimensional projected brane formed from the four-dimensional hypercubic crystal. (a) Side, 
(b) top, and (c) corner perspective on projection of lattice sites in four-dimensional parent lattice onto three-
dimensional hyperplane, forming the brane.
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non-indicative phases, of which other known examples include the Hopf insulator. As the projected branes can 
be constructed through lattice tight-binding models, opportunities exist to realize these systems in engineered 
metamaterial systems, including photonic, phononic and topolectric systems. Furthermore, the designer quan-
tum materials offer another route to experimentally test our proposal. While routes to constructing synthetic 
dimensions exist40–42, PTBs offer an alternate route to exploring such physics without the additional requirement 
of synthetic dimensions. This important direction for physical realization of the exotic properties will be pursued 
in a subsequent work. We also expect that new studies accounting for the effects of disorder will further cor-
roborate the robustness of the projected branes arising from their topological nature. Finally, higher-dimensional 
crystalline dislocations, being related to translations in extra dimensions, should provide a refined classification 
of the 3D Z projected branes, which we plan to study in future.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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