
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports

SEGCN: a subgraph encoding 
based graph convolutional network 
model for social bot detection
Feng Liu 1,2, Zhenyu Li 2*, Chunfang Yang 2*, Daofu Gong 2, Haoyu Lu 2 & Fenlin Liu 2

Message passing neural networks such as graph convolutional networks (GCN) can jointly consider 
various types of features for social bot detection. However, the expressive power of GCN is upper-
bounded by the 1st-order Weisfeiler–Leman isomorphism test, which limits the detection performance 
for the social bots. In this paper, we propose a subgraph encoding based GCN model, SEGCN, 
with stronger expressive power for social bot detection. Each node representation of this model is 
computed as the encoding of a surrounding induced subgraph rather than encoding of immediate 
neighbors only. Extensive experimental results on two publicly available datasets, Twibot-20 and 
Twibot-22, showed that the proposed model improves the accuracy of the state-of-the-art social bot 
detection models by around 2.4%, 3.1%, respectively.

With the rapid development of Internet technology, cybersecurity incidents in cyberspace are frequent and 
have a great impact. Countries around the world regard network security situation awareness as the key to the 
strategic layout of cybersecurity. As an indispensable part of cyberspace, the security of online social networks has 
aroused widespread concern. Social bots pose a great challenge to online social network security. Social bots are 
social accounts that controlled by automated  programs1. Bot manipulators use bots to perform various malicious 
activities in social networks (e.g., spreading  rumors1,2, polarizing online  discussions3, amplifying  popularity4,5, 
etc.) seriously jeopardize the security of cyberspace and cause adverse effects on society. Social bots have been 
found in different domains, including  politics6,  health7, and  business8,9.

As social networks become increasingly connected to people’s lives, we are vulnerable to potential 
manipulation by bots. For example, in Mumbai, social bot spread rumors on social media that the vaccines were 
a plot by the government to sterilize Muslim children, which led to that only 50% of those who were expected 
to be vaccinated actually got the  vaccine7. During the 2016 U.S. election bots posted numerous smear tweets 
against their competitors, swaying their  supporters6.

Social platforms and researchers proposed a series of social bot detection models to minimize the impact of 
malicious social bots, with early success. These detection methods can be grouped into two categories—account 
feature-based methods and graph structure-based methods.

Existing feature-based detection methods for social bot use many hand-crafted features from different 
categories of information, such as profiles, content, networks, properties and train machine learning models 
to separate the bots from benign users. However, many of the existing features are effectless when facing the 
manually aided created profile property and scheduled activities of social bot generated by complex stochastic 
algorithms. For instance, the rapid development of deep forgery techniques allows social bots to have identical 
profile information as normal accounts and automatically establish social relationships with other accounts, 
interspersing small amounts of malicious information with many neutral ones, which is very different from the 
traditionally considered bot  behavior10. The study on Twitter  bots11,12 indicates that current social bots can more 
delicately disguise themselves as normal accounts and work in concert to achieve certain specific purposes, such 
as spreading rumors, posting advertisements.

To address these challenges, several studies used the interactions of accounts in social networks to construct 
social graphs which are then divided into cohesive subgraphs using graph mining techniques. This type of 
approach usually considers only leveraging the links of social bots in online social networks but misses the 
automated cues embedded in the text, time, and profile information. Therefore, these methods are unable to 
detect social bots that have successfully established enough attack edges (links) with normal  users13.

OPEN

1School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China. 2Henan Provincial 
Key Laboratory of Cyberspace Situational Awareness, Zhenzhou 450001, China. *email: li1989zhenyu@126.com; 
chunfangyang@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54809-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Inspired by graph neural network (GNN) models that utilize both structural and property features of nodes, 
some researchers used GCN, graph attention networks (GAT), and other Message passing neural networks 
(MPNN) models to integrate account property features and structural features for social bot  detection11,14, with 
promising results. However, MPNN’s expressive power is upper-bounded by the 1st-order Weisfeiler–Leman 
(WL) isomorphism  test15. The WL algorithm can be k-dimensional, which considers the k-tuple of the vertices 
when calculating the graph isomorphism problem. If only one vertex’s characteristics (such as labels, properties, 
etc.) are considered, then it is a 1-dimensional WL (1-WL) algorithm. The 1-WL algorithm results in a unique set 
of features on most graphs, which means that each node on the graph has a unique role positioning. Therefore, 
for most irregular graph structures, the features obtained using 1-WL algorithm can be used as the basis for 
determining whether the graph is isomorphic, that is 1st-order Weisfeiler–Leman test. Importantly, researchers 
found that such method cannot capture basic graph structure features such as cycles and  triangles16,17. Yang 
et al.18 proposed that cycles or triangles are important features in social bot detection tasks.

To improve the expressive power of GCN, capture the basic structure in the graph, and improve the detection 
performance of the model, we design a subgraph encoding-based GCN model for social bot detection.

Motivation
Bot operators are easily aware of the property features used by the bot detection model and they tend to evade 
detection by avoiding these  features10,18. Social bot detection models using purely structural features are unable 
to detect social bots that have successfully established sufficient attack edges (links) with ordinary  users13. The 
MPNN-based social bot detection model proposed by Feng et al.11 achieved good results in the social bot 
detection task, but it ignored the limitations of the expressive power of the MPNN.

In general, motivation can be summarized into the following two points:

• Basic graph structure features, such as rings and triangles, are important to detecting social bots. However, 
these features cannot be captured by directly using messaging neural networks in the entire social graph.

• Considering various types of features, rather than one type of features, can boost the social bot detection 
performance.

Contributions
To address the above problem, we propose an end-to-end social bot detection model with combined account 
semantic features, property features and structural features. Specifically, first, we vectorize the semantic and 
property information of the account and concatenate them into the initial representation vector of the nodes. 
Then, a random walk is used to extract a fixed-length subgraph of each node, and the final representation of the 
node is obtained using subgraph encoding. Finally, Softmax is used to identify machine accounts and human 
accounts.

• A GCN-based social bot detection model is proposed. The model detects social bots using semantic features, 
property features, and structural features of accounts simultaneously.

• Improve the expressive power of the GCN by using subgraph encoding to capture differences in the basic 
structure (e.g., cycles or triangles, etc.) between accounts.

• We analyze the impact of different types of features on model performance. Extensive experimental results 
show that the proposed model achieves better performance compared to the state-of-the-art models.

Related work
The earliest work on social bot detection dates back to  201019, honeypot traps were designed to detect social bots. 
Over time, the development of social bots has shown two main trends: single-account feature-based social bot 
detection and groups-based one. This section introduces the characteristics of these two categories of methods.

Single-account feature-based social bot detection
Early social bot detection methods were mainly based on feature engineering of account properties, using 
traditional classifiers for classification. The work  from20 filters social bots by analyzing Twitter account profiles. 
Specifically, it designed 16-dimensional features, for instance, screen name length, active days, the number of 
posted tweets, by analyzing account properties, tweet content, historical activity, and friend lists. Afterwards, 
it feeds these features into a random forest classifier to distinguish bots from humans, which is one of the 
foundational work on social bot detection based on individual accounts. Many follow-up studies continue to mine 
more features from accounts to improve the accuracy of model  detection18,21,22. Some researchers, considering 
that social accounts should not be classified only as bots and non-bots due to the hijacking of human accounts in 
social networks, studied the differences between humans, bots and cyborgs in terms of tweets (number of tweets, 
time of posts) and account properties (external URL ratio, account reputation, etc.)23. This work laid down the 
idea of designing different classifiers for different types of bots. Cresci et al.24 designed digital DNA, a string of 
characters that encodes the sequence of the accounts’ action, to train different classifiers to detect different bots.

However, over time, bot operators gradually learned about classical bot detection features and managed to 
evade detection. The traces of the continuous evolution of bots can be found  from10,11,18. In response to this 
trend, researchers continue to exploit individual account features. Yang et al.18 mined 10 new features from the 
data, such as account clustering coefficients, two-way following ratio, and tweet similarity, to train classifiers 
against the evolution of bots. Beskow et al.21 extracted differentiated account profile features (degree centrality, 
K-betweenness centrality, mean eigen centrality, etc.) and tweet features (mean/max mentions, number of 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

languages, etc.) from the collected data and used the random forest as the classifier. Subsequent researchers 
designed new features to combat the continuous evolution of bots and achieved good  performance25,26. But 
it should be noted that the designed features are subject to the specific social platforms, which limits the 
generalization ability of these models.

To address the challenge of generalization ability and design generic social bot detection models, some 
 researchers27 designed various classifiers for bots using different datasets and combined these classifiers into an 
ensemble; Botometer-v328, a social bot detection system that incorporates 1700-dimensional features to improve 
generalization, boosted a series of research works on social bots  detection28–30; Some scholars used natural 
language processing methods to extract semantic differences from account tweets to detect social bots. For 
example, the work  from31 designed a long short-term memory network (LSTM) based model to extract content 
features and temporal features of tweets to distinguish bots and people. Pre-training models in natural language 
processing are also applied in social bot  detection11,32.

The confrontation between bot detectors and operators is a never-ending race. The properties of a single 
account are easy to be forged and tampered. Dealing with this challenge, researchers work on group-based social 
bot detection methods.

Group-based social bot detection
The group-based social bot detection method utilizes the structural differences between the social graphs 
generated by humans and bots. The relationships that are used to build the social graph are usually friend 
 relationships33, following/follower34,35, retweet/retweeted36. The detection mechanism is to use the homogeneity 
of social networks, in another word, the neighbor nodes of the bot tend to be bots, and the neighbor nodes of 
the human tend to be  humans34,37–39. A label-enhanced network integrates labels with social networks and uses 
the defined badness score based on the random walk of nodes to distinguish bot and  human39. Wang et al.38 
proposed paired Markov random field models to estimate the posterior probability of each user by loopy belief 
propagation and predict the user’s label based on the posterior probability. Moreover, they proposed a framework 
to unify random walk and loopy belief propagation  in37,40 to address the limitation of the  method39 that it cannot 
utilize the label of bot and human, meanwhile, avoiding the problems of the  method38 that it is not scalable and 
does not guarantee convergence. The study  from41 trained a local classifier to calculate the local trust scores of 
nodes and edges, and then the local trust scores used for prediction are propagated through the global network 
structure by a weighted random walk and loopy belief propagation mechanism.

These group-based social bot detection methods largely improve the generalization of the model and avoid 
manual feature  engineering42,43. However, this type of method only utilizes the link information between 
accounts, and its detection performance is greatly reduced when enough attack links are established between 
 accounts13.

With the rise of  GCN44, it has been widely used in various occasions, such as link prediction, node 
classification, community division. Researchers introduce GCN to detect social bots because GCN can utilize 
the link information between accounts as well as lots of other information. Sun et al.45 designed a GCN with trust 
mechanism. First, the method starts a short random walk from a known real node, and its walk probability is the 
trust score of the node. Then, it uses these trust scores as edge weights, and uses graph convolution operations to 
aggregate features from local graph neighborhoods onto a weighted graph for classification. This  work14 proposed 
a GCN-based spam bot detection model which utilizes both account property features and neighborhood 
features. Following this direction, researchers designed a social bot detection model using the semantic features 
and property features of the relational graph convolutional network  (RGCN46). First, it vectorizes the property 
features and semantic features of the accounts and concatenates the two types of vectors together. Then, the 
spliced semantic vectors are fed into a neural network model for training to detect social bots. This method 
achieves state-of-the-art results on homogenous graph social bot detection.

Recently,  RoSGAS47 designed an adaptive search GNN structure for social bot detection model, which gets 
rid of the a priori of people designing GNN structures and searches for appropriate GNN structures through 
reinforcement learning. RF-GNN48 utilized the idea of integrated learning to detect social bots by combining the 
Random Forest algorithm and GNN. They both directly aggregate information from the direct neighbors of the 
account, which may fails to capture the differences in the basic structures (rings or triangles, etc.).

Proposed approach
To address the above challenges, we design a subgraph encoding-based approach for social bot detection, 
dividing the social network into multiple subgraphs and coding each node in the subgraphs with a GCN, which 
significantly differs from the existing methods. Since a node may belong to multiple subgraphs, so there are 
multiple representation vectors of a node, which enhances the representation of the node. Compared to GCNs 
where the central node features originate from the aggregation of its immediate neighbors, subgraph encoding 
considers both immediate and non-immediate neighbors, making it capable of capturing basic structural 
information such as rings and triangles, and therefore, more suitable for social bot detection. This is the difference 
between our approach and existing social bot detection methods. The framework of our model is shown in Fig. 1 
and the implementation details of the model are specifically described in the following subsections.

Input
Social accounts contain abundant data information, and existing social bot detection methods identify bot 
accounts by mining the information contained in social accounts. This paper proposes to use account semantic 
features, property features, and structure features for learning account representation. The semantic features are 
extracted from the account’s descriptions and tweets. The account’s profile, such as account ID, screen name, 



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

profile image, is the source of the property features. The social graph whose edge represents the following and 
follower relationship between accounts is the input for extracting the structure features.

Node representation
Learning the node (account) representation is a very important process for downstream tasks, and the node 
representation directly affects the model performance.

Semantic representation
Tweets can largely reflect the characteristics of the accounts and are widely used by the existing bot detection 
methods. We use the  RoBERTa49 language model in Transformer.pipeline to encode account semantic 
information. The semantic feature vector Nu

s  for a given account u consists of two components: the account 
description semantic vector Nu

d , the tweet semantic vector Nu
t  . The account description is a paragraph set by 

Twitter users to briefly introduce themselves.
First, we use RoBERTa to learn the representation vector Nu

d of the u-th account description information 
(see as Eq. (1)),

where di ∈ R
DR×1 and {di}ni=1 is the u-th account description that consists of n words and i represents the index 

of the word in the description. DR is the embedding dimension which is predefined in RoBERTa. Wd and bd are 
learnable parameters. Nu

d ∈ R
D×1 , D is the dimensionof the output vector of the MLP. σ is the activation func-

tion. In this paper, Leaky-ReLU50 is used as the activation function.
The semantic vector of account tweets can be obtained in a similar method (see as Eq. 2)

where wi
j ∈ R

DR×1 and {wi
j }
mu
i=1 is the i-th word of the j-th tweet, and the tweet length is mu . Ws and bs are learnable 

parameters. Mu is the number of tweets from the u-th account. Nu
t ∈ R

D×1.
Combing the two parts obtained above, we can get the semantic feature vector of the u-th account, namely, 

N
u
s =

[

N
u
t ,N

u
d

]

,Nu
s ∈ R

2D×1.

(1)N
u
d = σ(Wd ·

1

n

n
∑

i=1

RoBERTa({di}
n
i=1)+ bd),

(2)N
u
t = σ(Ws ·

1

Mu

1

mu

Mu
∑

i=1

mu
∑

j=1

RoBERTa({wi
j }
mu
j=1 + bs),

Figure 1.  The framework of the proposed social bot detection model.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Property representation
Many early social bot detection studies were successful in distinguishing bot accounts from benign accounts 
based on the property features of the  accounts10,18. In this paper, the properties of accounts are divided into 
statistical features (e.g., number of followers, likes, retweets) and category features (e.g., whether the account 
is authenticated, whether it uses default profile information, whether it displays location information). All the 
property features used for account representation are shown in Table 1. Concerning vectorization to the property 
features, we use Z-Score normalization for the numerical features and One-hot encoding for the category features. 
The processing details can be referred  to11

The property feature vector Nu
p  for the u-th account is combined as Nu

p = [Nu
Pn
,Nu

Pc
],Nu

p ∈ R
2D×1.

Ultimately, the initial feature representation vector of account u can be expressed as 
N

u
init = [Nu

s ,N
u
p],N

u
init ∈ R

4D×1.

Subgraph encoding
The core idea of subgraph coding is to obtain more expressive structural features of the whole graph by encoding 
the subgraphs extracted from the graph, which is similar to the idea of word segmentation in natural language 
processing. In this paper, GCN is used as encoding model for the subgraphs.

Graph nodes contain rich structural and property information. In MPNNs, each node aggregates its neighbor 
features in a star pattern. Therefore, MPNNs cannot distinguish the non-isomorphic regular graphs with the 
same star  structure51. However, two non-isomorphic graphs with the same star structure but their subgraphs 
may differ (see as Fig. 2). The star structure of node “1” in Fig. 2A,B are identical, but there are differences in 
their subgraph structures. Subgraphs retain basic structural features such as cycles or triangles.

Table 1.  Property features used in our model.

Feature name Description

Followers The number of followers an account has

Followings The number of accounts that the account follows

Favorites The number of favorites or likes an account receives

Statuses The number of statuses an account posts

Active days The number of days from the account’s registration to current

Screen name length The length of the account’s current screen name

Protected Whether the account is currently protected

Contributors enabled Whether contributors are enabled or not

Is translator Whether there is a translator or not

Is translation enabled Whether the translation is available or not?

Geo enabled Whether the account is geo enabled or not

Background tile Whether the account uses a background tile

Background image Whether the account uses a background image

Extended profile Whether the account has extended profile or not

Default profile Whether the account uses a default profile

Default profile image Whether the account uses a default profile image

Verified Whether the account is verified or not

1

2

3

4 5

9

8

6 7

10

1

2

3

4 5

9

8

6 7

10

1

8

4

6

2 1

8

4

7

2

AA’s Subgraph 1 BB’s Subgraph 1

1

8

4

6

2 1

8

4

7

2

A’s Star 1 B’s Star 1

Figure 2.  Illustration of the Two 4-regular graphs that cannot be distinguished by 1-WL. Colored edges are the 
difference between two graphs. There are differences in the first-order subgraph of some nodes in the graph.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Subgraph extraction. :n social networks, the k-hop egonet of a node as a subgraph may be too  large52. Therefore, 
we use random walking to extract subgraphs that limit the subgraph size (see as Eq. (3)). In practice, We use the 
random walking rule in Node2vec [46].

where Wl is the random walking length. u is a subgraph root node. Nrw(u) denotes the set of nodes visited by the 
random walker. G(Nrw(u)) denotes the subgraph whose root node is u.

Subgraph encoding.  Subgraph encoding can improve the expressive power of GCN,  and51 demonstrated both 
theoretically and experimentally that subgraph encoding surpasses 1-WL and 2-WL and can be no weaker than 
3-WL. The principle is similar to the convolution operation in convolutional neural networks.

The GCN is viewed as a kernel (GCN as kernel (GCN-AK)), and a new node representation vector is obtained 
by convolving it with the initial feature vector of the nodes in the subgraph. Specifically, the GCN is used as a 
subgraph encoder. Then, GCN-AK computes hG by Eq. (4)

where G is graph, G = (V ,E) . G(Nrw(u)) is the subgraph generated by random walking from the root node u. 
Gl(Nrw(u)) is the subgraph with hidden features at the l-th layer. hlu denotes the hidden representation of node 
u in GNN-AK layer l. u ∈ Nk(u), h

(0)
u = N

u
init.

We use Subgraphl(u) instead of G(l)(Nk(u)) to denote the induced subgraph of u and use GCN to encode node 
i in subgraph j yields the representation vector Emb(i|Subgraphl

(

j
)

) . We consider the embedding of all j ∈ V  
and all nodes of i ∈ Subgraphl

(

j
)

 . That the base GCN can have multiple convolutional layers, and Emb refers to 
the node embeddings at the last layer before global pooling poolingGCN that generates subgraph-level encoding.

We refer to the encoding of the rooted subgraph Subgraph(l)(u) in Eq. (5) as the subgraph encoding. Typical 
choices of poolingGCN (l) are SUM and MEAN. As each rooted subgraph has a root node, poolingGCN (l) can be 
additionally realized to differentiate the root node by self-concatenating its own representation, which is “centroid 
encoding”, resulting in the following realization as each layer of GCN-AK:

where h(l+1)|centroid
u := Emb(u|(Subgraph(l+1)(u)40. FUSE is concatenation.

To improve the scalability of the model, we use the subgraph drop strategy, more details refer to. The final 
node representation vector is Nu.

where Nu ∈ R
ψ×1 , and W and b are learnable parameters. ψ is the final output dimension of the model.

Output
The node representation vector Nu is obtained based on the processing in the previous subsection, and our model 
classifies node u as a social bot or human by the softmax layer (see as Eq. (8)).

where W and b are learnable parameters.
The loss function used in model training is the cross-entropy loss function which is commonly used in 

classification tasks. The proposed model is named as SEGCN and its pseudo-code is given as Algorithm 1.

(3)G(Nrw(u)) = Random walkWl
(u|u ∈ V),

(4)hl+1
u = GCNl(Gl(Nrw(u))), l = 0, · · · , L− 1; hG = pooling(hlv|u ∈ V),

(5)h
(l+1)|subgraph
u = GCN (l)

(

Subgraph(l)(u)
)

:= poolingGCN (l)

(

{Emb
(

i|Subgraph(l)(u)
)

|i ∈ Nk(u)}
)

,

(6)h(l+1)
u = FUSE(h(l+1)|centroid

u , h
(l+1)|subgraph
u )

(7)N
u = σ(W · h(l)u + b)

(8)ŷi = SoftMax(W · Nu + b),



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Algorithm 1.  SEGCN

Experiments
In this section, we perform extensive experiments on two benchmark datasets to validate the performance of 
the proposed model. All experiments are conducted on a server with Intel (R) Xeon (R) Gold 6234 CPU (4 × 8 
cores, 128 GB, 3.3 GHz) and RTX 3090 (2 × 24 GB) GPU running Ubuntu 20.04 (64-bit).

Datasets
The experiments are based on two different publicly available datasets, namely, the TwiBot-20  dataset53 and 
the TwiBot-22  dataset54. The TwiBot-20 dataset is a social bot dataset made public by Feng et al.53 in 2020, 
which includes 229,573 Twitter users, 33,488,192 tweets, 8,723,736 user property items and 455,958 following 
relationships. The TwiBot-22 dataset is a larger social bot dataset made public by Feng et al.54 in 2022, which 
includes 1,000,000 Twitter users (human: 860,057, bot: 139,943), 86,764,167 tweets and 170,185,937 following 
relationships. An overview of the datasets is presented in Table 2.

Baseline methods
In this section, we give a brief introduction of the baseline bot detection models compared with our model.

Deepwalk55

Deepwalk is a graph embedding algorithm that combines random walk and word2vec, which is able to represent 
the nodes in a graph as a vector containing potential information. It is widely used in downstream tasks such as 
node classification, link prediction, and community discovery.

Table 2.  Overview of the benchmark dataset.

Datasets Total account Bot account Human account

TwiBot-2053 229,573 5273 6589

TwiBot-2254 1,000,000 139,943 860,057



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Node2vec56

Node2vec is a graph embedding model that integrates node structure equivalence and neighbor similarity. 
Specifically, it introduces breadth-first search (BFS) and depth-first search (DFS) to capture the homogeneity and 
structural equivalence of nodes, and can be seen as the Deepwalk model that combines BFS and DFS random 
walks.

GCN44

GCN is a kind of MPNN. MPNN aggregates the information of neighboring nodes to update the information 
of central nodes, and it extends the convolution operator to the field of irregular data to realize the connection 
between the graph and the neural network. It has been widely used for tasks such as node classification, and 
link prediction.

GAT 57

GAT follows the same message-passing paradigm, which introduces an attention mechanism that takes into 
account the differences in the influence of neighboring nodes on the central node. It is also widely used for 
downstream tasks such as link prediction, node classification and graph clustering.

Bot2vec34

Bot2vec is a social bot detection algorithm using only structural features proposed by Pham et al. in 2021. It 
is an improved version of Node2vec that introduces community detection algorithms to capture the structural 
equivalence of nodes.

SATAR 32

SATAR is a self-supervised Twitter account representation model combining account semantic information, 
property information and neighbor information proposed by Feng et al.32. It achieved very good results in the 
task of detecting novel bots.

BotRGCN11

BotRGCN is an RGCN-based social bot detection model and it is similar to GCN following the message passing 
paradigm. Compared to GCN which aggregates on undirected graphs, it can aggregate information about 
surrounding neighbors in a directed graph format.

RFGNN48

RFGNN is a method that combines Random Forest and GNNs, which employs GNNs as the base classifiers to 
construct a random forest, effectively combining the advantages of ensemble learning and GNNs to improve 
the accuracy and robustness of the model. We use the best-performing RF-RGCN model in RF-GNN as our 
comparison method. Notably, this method utilizes the BERT model to extract semantic features from tweets 
and account descriptions.

RFGNN‑R
RFGNN-R, in comparison to RFGNN, uses the RoBERTa model to extract semantic features, meaning that its 
method of feature extraction beyond structural features remains consistent with that of GCN, GAT, SATAR, 
BotRGCN, and our model.

To explicitly compare with the detection models, we present an overview of the account features used by 
each model in Table 3. Deepwak/Node2vc/Bot2vec exploit the structural features of accounts, and GCN, GAT, 
SATAR, BotRGCN and our model all exploit the semantic features, property features, and structural features 
of accounts. “–” is None.

Table 3.  Overview of account information used by the compared models.

Model Published Semantic Property Structure

Deepwalk 2014 – – �

Node2vec 2017 – – �

Bot2vec 2022 – – �

GCN 2017 � � �

GAT 2018 � � �

SATAR 2021 � � �

BotRGCN 2021 � � �

RFGNN 2023 � � �

Ours – � � �



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

Implementation details
We conducted the experiments based on the source code provided by the authors. For model-specific parameters, 
we used the default configuration of the code, and we tried our best to ensure that the common parameters have 
the same configuration. The parameter configuration of all models in the experiments is shown in Table 4. “–” 
is None. The source code for these baseline models can be found in the original paper as well as in TwiBot-22.

Experimental results
To validate the performance of the models, we followed the data setting approach used in baseline models such 
as BotRGCN, SATAR and Bot2vec. The Deepwalk/Node2vec/Bot2vec models in both public datasets are trained 
with 90% of the data and tested with the remaining 10% . Both GCN/GAT/SATAR/BotRGCN/RFGNN and our 
model use 70% of the data as the training set, 20% of the data as the validation set, and the remaining 10% of the 
data as the testing set. The training of neural network is stochastic to some extent, so the learned model weights 
and errors can vary slightly after each iteration even with the fixed hyperparameters and data splits. In order to 
avoid the randomness in the training process, the models are trained and tested for 5 iterations but with the same 
partitioned data. The average performance over the repeated experiments is reported as the final result, which 
smooths out the random fluctuations and provides a more stable assessment of model effectiveness. Accuracy, 
F1-Score and Precision are used as evaluation metrics and experiments are conducted on three benchmark 
datasets. The experimental results are shown in Table 5, where the best results are in bold.

As seen in Table 5, the Accuracy of the social bot detection model (Deepwalk/Node2vec/Bot2vec) using only 
graph structure features is below 0.65 on the Twibot-20 dataset, which may be ascribed to the following reasons. 
Only 20 neighbor nodes (10 Following and 10 Followers) were extracted for each account in the Twibot-20 
dataset, and the structural features of the accounts were impaired. Such models use only structural features 
which allow novel bots to evade detection. The social bot detection models that simultaneously utilize account 
property features, semantic features, and structural features all have an accuracy of over 74% on the Twibot-20 
dataset, which improves the detection accuracy by more than 10% than purely utilize graph structural features, 
indicating the desirability of combining multiple types of features for social bot detection. Compared with the 
GCN model, GAT and SATAR introduced attention mechanisms, and the effect was improved by more than 

Table 4.  Overview of models’ parameter configuration.

Parameter Deepwalk Node2vec Bot2vec GCN GAT SATAR BotRGCN RFGNN Ours

Network layers – – – 2 2 1 2 2 2

Dropout value – – – 0.3 0.3 0.6 0.3 0.3 0.3

Embedding size 128 128 128 128 128 128 128 128 128

Learning rate – – – 0.001 0.001 0.01 0.001 0.001 0.01

Weight decay – – – 0.005 0.005 0 0.005 0.005 0.005

Optimizer – – – AdamW AdamW SGD AdamW AdamW AdamW

Epochs – – – 100 100 100 100 100 100

Window size 7 7 7 – – – – – –

Negative sampling 5 5 5 – – – – – –

Walk length 30 30 30 – – – – – 30

Number of walks 20 20 20 – – – — – –

Return parameter – 1 1 – – – – – –

In-out parameter – 1 1 – – – – – –

Table 5.  Performance comparison of multiple social bot detection models on three benchmark datasets (%).

Model

Twitbot-20 TwiBot-22

Accuracy F1-Score Precision AUC Accuracy F1-Score Precision AUC 

Deepwalk 56.31 ± 1.34 61.13 ± 0.87 53.27 ± 1.26 57.71 ± 0.73 51.87 ± 1.65 37.94 ± 1.41 49.17 ± 0.76 50.28 ± 0.91

Node2vec 60.66 ± 1.03 66.05 ± 1.17 59.23 ± 0.89 61.81 ± 0.87 57.11 ± 1.25 39.27 ± 1.31 55.97 ± 0.97 55.78 ± 1.07

Bot2vec 63.28 ± 0.87 71.47 ± 1.04 63.18 ± 0.71 60.37 ± 1.37 59.14 ± 0.83 41.08 ± 1.16 57.26 ± 0.73 49.81  ± 2.37

GCN 74.64 ± 0.24 77.03 ± 0.37 73.17 ± 0.17 83.07 ± 0.48 72.39 ± 0.51 44.80 ± 0.35 71.19 ± 0.27 72.78 ± 0.42

GAT 83.27 ± 0.32 85.25 ± 0.44 81.26 ± 0.29 84.63  ±  0.56 78.36 ± 0.41 55.86 ± 0.39 72.23 ± 0.25 73.47  ±  0.33

SATAR 84.02 ± 0.17 86.07 ± 0.24 81.50 ± 0.18 90.88  ± 0.27 78.71 ± 0.42 57.10 ± 0.26 74.07 ± 0.13 79.26  ± 0.67

BotRGCN 84.61 ± 0.38 87.07 ± 0.43 83.79 ± 0.24 91.46  ± 0.26 79.66 ± 0.14 57.50 ± 0.12 74.81 ± 0.21 78.21  ± 0.56

RFGNN 83.92 ± 0.21 83.37 ± 0.27 82.19 ± 0.44 88.67  ± 0.48 78.61 ± 0.32 55.67 ± 0.41 72.86 ± 0.56 76.87  ± 0.51

RFGNN-R 85.03 ± 0.69 87.96 ± 0.57 84.11 ± 0.51 91.67  ± 0.63 80.37 ± 0.46 57.97 ± 0.58 75.33 ± 0.51 79.61  ± 0.63

Ours 87.01 ± 0.08 88.74 ± 0.13 85.83 ± 0.06 93.79  ± 0.32 82.71 ± 0.16 59.31 ± 0.12 77.23 ± 0.17  82.31  ± 0.49



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

8.6%. BotRGCN divides the edge into Following edge and Follower edge, aggregates the surrounding neighbor 
information according to different relationships, and the accuracy is improved by about 9.9%; Our model uses 
subgraph encoding to improve accuracy by about 12.4%. These phenomena indicate that changing the node 
aggregation method affects the performance of the model. Compared with the BotRGCN, our model’s detection 
accuracy improves by about 2.4%, compared with the RFGNN-R, our model’s detection accuracy improves by 
about 2.0%, indicating that the design idea of the subgraph encoding-based graph convolutional network social 
bot detection model is feasible.

To justify why the proposed model has better performance, we use the t-SNE 2D visualization technique 
to visualize the embedding vectors and the corresponding homogeneity score obtained by each model on the 
TwiBot-20 dataset and TwiBot-22, as illustrated in Figs. 3 and 4. The t-SNE visualization results can reflect the 
quality of model training to a certain  extent11,12,32,34. A higher homogeneity score means the samples are better 
clustered. It can be observed from Figs. 3 and 4 that our model achieves the highest homogeneity score and the 
embedding vector obtained from our model training is more beneficial for the social bot detection task.

In addition, we selected five representative models and plotted the ROC-AUC curves of each model on the 
Twibot-20 and Twibot-22 datasets based on the SVM classifier (Fig. 5). Observing the ROC-AUC curves, the 
one corresponding the node representation vectors learned by our model has the largest area under the curve, 
which indicates the proposed model has a stronger expressive power than the compared models.

Ablation experiment on features
To investigate the effect of different types of features on the detection performance of our model, we conducted 
feature ablation experiments on two datasets. After adding account description features (d), tweet semantic 
features (t), numeric features (n), and category features (c) to SEGCN, the detection accuracy of the model are 
shown in Fig. 6. By comparing “d”, “t”, “n” and “c”, we can see that the category features have a greater impact on 
the model performance, which may be due to the fact that both datasets have more important category features 
such as whether they are authenticated or not. The accounts that are authenticated are usually human accounts. 
Most importantly, the best detection performance is achieved by “d+t+n+c”, which validates that all of the four 
types of features are necessary for social bot detection.

In general, the use of subgraph encoding can capture the differences of structural features in subgraphs 
and improve the expressive power of GCN, and a large number of experiments showed the good performance 
of SEGCN. It should be noted that the proposed model is a general social bot detection framework, which is 

Figure 3.  Visualization of human-bot user representations of the TwiBot-20 dataset by various models via 
t-SNE 2D projections and the corresponding homogeneity score.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

applicable for furthermore meaningful features. It can also adjust the features dynamically according to the 
development of social bot, which has great potential for industrial applications.

Discussion
This section discusses the differences between our research and the existing ones. The investigation  in10 and 
extensive experimental results in “Experiments” shows that the evolution of social bots made social bot detection 
methods using only a single type of feature less effective in detecting novel bots. The existing social bot detection 
methods using multiple types of features have yielded promising results in detecting novel bot tasks, but they 

Figure 4.  Visualization of human-bot user representations of the TwiBot-22 dataset by various models via 
t-SNE 2D projections and the corresponding homogeneity score.

Figure 5.  The ROC-AUC curve on two benchmark datasets.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

ignore the fact that the MPNN’s expressive power is upper-bounded by the 1-WL isomorphism  test15. The 
experimental results in Table 5 shows that compared with classical GCN, the subgraph coding can better capture 
the structural features of nodes in the social bot detection task, indicating that the subgraph encoding can 
improve the expression ability of GCN.

The most significant difference between our model and the existing ones is that subgraph coding method is 
introduced to improve the performance of social bot detection. To explicitly compare with the detection models, 
we present an overview of the account features used by each model in Table 3. The  Deepwalk55,  Node2vec56 and 
 Bot2vec34 utilize the structure features of the account.  GCN44, GAT 57, SATAR 32,  BotRGCN11,  RFGNN48 and our 
model all exploit the semantic features, property features, and structural features of the account. However, our 
model uses subgraph encoding to improve the expressiveness of the GCN.

Conclusion
In this paper, we propose a subgraph encoding based graph convolutional network model for social bot detection, 
named SEGCN, which uses subgraph encoding to improve the expressive power of graph convolutional networks 
and uses multiple types of features simultaneously for social bot detection. To the best of our knowledge, this is the 
first work using subgraph encoding based graph convolutional networks for social bot detection. Experimental 
results on two benchmark datasets show that the model achieves better performance than the SOTA approach 
and effectively improves the expressive power of GCN. However, the application of the proposed method in the 
real world social platform, for instance, Twitter (now called X ), is facing more difficulty, because some of the 
data that needed to evaluate the social account is not free to access anymore. Nevertheless, our method provides 
a generalized framework for social bot detection, and social platforms and individuals can refer to this pipeline to 
detect the social bots. In the future, we will try to investigate the construction of heterogeneous graphs to detect 
social bots using accounts in social networks with multiple types of activity relationships.

Data availibility
The Twibot-20 dataset and the Twibot-22 dataset are used to support the findings of this study, which are 
available at “https:// github. com/ Bunse nFeng/ TwiBot- 20” and “https:// github. com/ LuoUn dergr adXJTU/ TwiBot- 
22”, respectively.

Received: 22 July 2023; Accepted: 16 February 2024

References
 1. Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The rise of social bots. Commun. ACM 59, 96–104 (2016).
 2. Subrahmanian, V. S. et al. The darpa twitter bot challenge. Computer 49, 38–46 (2016).
 3. Stella, M., Ferrara, E. & De Domenico, M. Bots increase exposure to negative and inflammatory content in online social systems. 

Proc. Natl. Acad. Sci. 115, 12435–12440 (2018).
 4. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A. & Tesconi, M. Fame for sale: Efficient detection of fake twitter followers. 

Decis. Support Syst. 80, 56–71 (2015).
 5. Ratkiewicz, J. et al. Truthy: Mapping the spread of astroturf in microblog streams. In Proceedings of the 20th International Conference 

Companion on World Wide Web, 249–252 (2011).
 6. Chang, H.-C.H., Chen, E., Zhang, M., Muric, G. & Ferrara, E. Social bots and social media manipulation in 2020: The year in 

review. In Handbook of Computational Social Science Vol. 1 304–323 (Routledge, 2021).
 7. Donovan, J. Stuck: How vaccine rumors start-and why they don’t go away. Nature 583, 680–681 (2020).

Figure 6.  Illustration of accuracy when using various combination of the features for the training of the 
SEGCN model. The features used are accounts’ description features (d), tweet feature (t), numerical features (n) 
and category features (c).

https://github.com/BunsenFeng/TwiBot-20
https://github.com/LuoUndergradXJTU/TwiBot-22
https://github.com/LuoUndergradXJTU/TwiBot-22


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

 8. Cresci, S., Lillo, F., Regoli, D., Tardelli, S. & Tesconi, M. Cashtag piggybacking: Uncovering spam and bot activity in stock 
microblogs on twitter. ACM Trans. Web 13, 1–27 (2019).

 9. Noekhah, S., Binti Salim, N. & Zakaria, N. H. Opinion spam detection: Using multi-iterative graph-based model. Inf. Process. 
Manage. 57, 102140 (2020).

 10. Cresci, S. A decade of social bot detection. Commun. ACM 63, 72–83 (2020).
 11. Feng, S., Wan, H., Wang, N. & Luo, M. Botrgcn: Twitter bot detection with relational graph convolutional networks. In Proceedings 

of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 236–239 (2021).
 12. Feng, S., Wan, H., Wang, N. & Luo, M. Botrgcn: Twitter bot detection with relational graph convolutional networks. arXiv: 2106. 

13092 (arXiv preprint) (2021).
 13. Fazil, M., Sah, A. K. & Abulaish, M. Deepsbd: A deep neural network model with attention mechanism for socialbot detection. 

IEEE Trans. Inf. Forensics Secur. 16, 4211–4223 (2021).
 14. Ali Alhosseini, S., Bin Tareaf, R., Najafi, P. & Meinel, C. Detect me if you can: Spam bot detection using inductive representation 

learning. In Companion Proceedings of The 2019 World Wide Web Conference, 148–153 (2019).
 15. Leskovec, K. X. W. H. J. & Jegelka, S. How powerful are graph neural networks? In International Conference on Learning 

Representations, 1–9 (2018).
 16. Chen, Z., Chen, L., Villar, S. & Bruna, J. Can graph neural networks count substructures?. Adv. Neural. Inf. Process. Syst. 33, 

10383–10395 (2020).
 17. Arvind, V., Fuhlbrück, F., Köbler, J. & Verbitsky, O. On Weisfeiler–Leman invariance: Subgraph counts and related graph properties. 

J. Comput. Syst. Sci. 113, 42–59 (2020).
 18. Yang, C., Harkreader, R. & Gu, G. Empirical evaluation and new design for fighting evolving twitter spammers. IEEE Trans. Inf. 

Forensics Secur. 8, 1280–1293 (2013).
 19. Yardi, S. et al. Detecting spam in a twitter network. First Monday 20, 20 (2010).
 20. Lee, K., Eoff, B. & Caverlee, J. Seven months with the devils: A long-term study of content polluters on twitter. Proc. Int. AAAI 

Conf. Web Soc. Med. 5, 185–192 (2011).
 21. Beskow, D. M. & Carley, K. M. Bot conversations are different: Leveraging network metrics for bot detection in twitter. In 2018 

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 825–832 (IEEE, 2018).
 22. Yang, K.-C., Varol, O., Hui, P.-M. & Menczer, F. Scalable and generalizable social bot detection through data selection. Proc. AAAI 

Conf. Artif. Intell. 34, 1096–1103 (2020).
 23. Chu, Z., Gianvecchio, S., Wang, H. & Jajodia, S. Detecting automation of twitter accounts: Are you a human, bot, or cyborg?. IEEE 

Trans. Depend. Secure Comput. 9, 811–824 (2012).
 24. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A. & Tesconi, M. Social fingerprinting: Detection of spambot groups through 

dna-inspired behavioral modeling. IEEE Trans. Depend. Secure Comput. 15, 561–576 (2017).
 25. Rodríguez-Ruiz, J., Mata-Sánchez, J. I., Monroy, R., Loyola-González, O. & López-Cuevas, A. A one-class classification approach 

for bot detection on twitter. Comput. Secur. 91, 101715 (2020).
 26. De Nicola, R., Petrocchi, M. & Pratelli, M. On the efficacy of old features for the detection of new bots. Inf. Process. Manage. 58, 

102685 (2021).
 27. Sayyadiharikandeh, M., Varol, O., Yang, K.-C., Flammini, A. & Menczer, F. Detection of novel social bots by ensembles of 

specialized classifiers. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 
2725–2732 (2020).

 28. Yang, K.-C., Ferrara, E. & Menczer, F. Botometer 101: Social bot practicum for computational social scientists. arXiv: 2201. 01608 
(arXiv preprint) (2022).

 29. Davis, C. A., Varol, O., Ferrara, E., Flammini, A. & Menczer, F. Botornot: A system to evaluate social bots. In Proceedings of the 
25th International Conference Companion on World Wide Web, 273–274 (2016).

 30. Miller, Z., Dickinson, B., Deitrick, W., Hu, W. & Wang, A. H. Twitter spammer detection using data stream clustering. Inf. Sci. 260, 
64–73 (2014).

 31. Ping, H. & Qin, S. A social bots detection model based on deep learning algorithm. In 2018 IEEE 18th International Conference 
on Communication Technology (ICCT), 1435–1439 (IEEE, 2018).

 32. Feng, S., Wan, H., Wang, N., Li, J. & Luo, M. Satar: A self-supervised approach to twitter account representation learning and its 
application in bot detection. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 
3808–3817 (2021).

 33. Karpov, Ilia & Glazkova, Ekaterina Detecting automatically managed accounts in online social networks: Graph embeddings 
approach. In Recent Trends in Analysis of Images, Social Networks and Texts: 9th International Conference, AIST 2020, Skolkovo, 
Moscow, Russia, October 15–16, 2020 Revised Supplementary Proceedings (eds van der Aalst, Wil M. P.. et al.) 11–21 (Springer 
International Publishing, 2021). https:// doi. org/ 10. 1007/ 978-3- 030- 71214-3_2.

 34. Pham, P., Nguyen, L. T., Vo, B. & Yun, U. Bot2vec: A general approach of intra-community oriented representation learning for 
bot detection in different types of social networks. Inf. Syst. 103, 101771 (2022).

 35. Wang, Wenxian et al. Exploring the construction and infiltration strategies of social bots in sina microblog. Sci. Rep..https:// doi. 
org/ 10. 1038/ s41598- 020- 76814-8 (2020).

 36. Zhang, J., Zhang, R., Sun, J., Zhang, Y. & Zhang, C. Truetop: A sybil-resilient system for user influence measurement on twitter. 
IEEE/ACM Trans. Network. 24, 2834–2846 (2015).

 37. Wang, B., Jia, J., Zhang, L. & Gong, N. Z. Structure-based sybil detection in social networks via local rule-based propagation. IEEE 
Trans. Netw. Sci. Eng. 6, 523–537 (2018).

 38. Wang, B., Gong, N. Z. & Fu, H. Gang: Detecting fraudulent users in online social networks via guilt-by-association on directed 
graphs. In 2017 IEEE International Conference on Data Mining (ICDM), 465–474 (IEEE, 2017).

 39. Jia, J., Wang, B. & Gong, N. Z. Random walk based fake account detection in online social networks. In 2017 47th Annual IEEE/
IFIP International Conference on Dependable Systems and Networks (DSN), 273–284 (IEEE, 2017).

 40. Wang, B., Zhang, L. & Gong, N. Z. Sybilscar: Sybil detection in online social networks via local rule based propagation. In IEEE 
INFOCOM 2017‑IEEE Conference on Computer Communications, 1–9 (IEEE, 2017).

 41. Gao, P. et al. Sybilfuse: Combining local attributes with global structure to perform robust sybil detection. In 2018 IEEE Conference 
on Communications and Network Security (CNS), 1–9 (IEEE, 2018).

 42. Zhao, J. et al. Multi-attributed heterogeneous graph convolutional network for bot detection. Inf. Sci. 537, 380–393 (2020).
 43. Lo, W. W., Kulatilleke, G., Sarhan, M., Layeghy, S. & Portmann, M. Xg-bot: An explainable deep graph neural network for botnet 

detection and forensics. Internet Things 22, 100747 (2023).
 44. Welling, M. & Kipf, T. N. Semi-supervised classification with graph convolutional networks. In International Conference on Learning 

Representations (ICLR) (2017).
 45. Sun, Y., Yang, Z. & Dai, Y. Trustgcn: Enabling graph convolutional network for robust sybil detection in osns. In 2020 IEEE/ACM 

International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 1–7 (IEEE, 2020).
 46. Schlichtkrull, M. et al. Modeling relational data with graph convolutional networks. In European Semantic Web Conference, 593–607 

(Springer, 2018).
 47. Yang, Y. et al. Rosgas: Adaptive social bot detection with reinforced self-supervised gnn architecture search. ACM Trans. Web 17, 

1–31 (2023).

http://arxiv.org/abs/2106.13092
http://arxiv.org/abs/2106.13092
http://arxiv.org/abs/2201.01608
https://doi.org/10.1007/978-3-030-71214-3_2
https://doi.org/10.1038/s41598-020-76814-8
https://doi.org/10.1038/s41598-020-76814-8


14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4122  | https://doi.org/10.1038/s41598-024-54809-z

www.nature.com/scientificreports/

 48. Shi, S. et al. Rf-gnn: Random forest boosted graph neural network for social bot detection. arXiv: 2304. 08239 (arXiv preprint) 
(2023).

 49. Liu, Y. et al. Roberta: A robustly optimized bert pretraining approach. arXiv: 1907. 11692 (arXiv preprint) (2019).
 50. Xu, B., Wang, N., Chen, T. & Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv: 1505. 00853 (arXiv 

preprint) (2015).
 51. Zhao, L., Jin, W., Akoglu, L. & Shah, N. From stars to subgraphs: Uplifting any gnn with local structure awareness. arXiv: 2110. 

03753 (arXiv preprint) (2021).
 52. Kleinberg, J. The small-world phenomenon: An algorithmic perspective. In Proceedings of the Thirty‑Second Annual ACM 

Symposium on Theory of Computing, 163–170 (2000).
 53. Feng, S., Wan, H., Wang, N., Li, J. & Luo, M. Twibot-20: A comprehensive twitter bot detection benchmark. In Proceedings of the 

30th ACM International Conference on Information and Knowledge Management, 4485–4494 (2021).
 54. Feng, S. et al. Twibot-22: Towards graph-based twitter bot detection. arXiv: 2206. 04564 (arXiv preprint) (2022).
 55. Perozzi, B., Al-Rfou, R. & Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 701–710 (2014).
 56. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 855–864 (2016).
 57. Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (ICLR) (2018).

Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 62002387, 61872448, 
61772549, U1804263, 62002386), the Science and Technology Research Project of Henan Province (No. 
222102210075), China and the Key Research and Development Project of Henan Province (No. 221111321200), 
China.

Author contributions
F.L. contributed the central idea, analysed most of the data, and wrote the initial draft of the paper. Z.L. provided 
detailed guidance on writing the manuscript and made meticulous revisions and polish to the manuscript. The 
remaining authors contributed to refining the ideas, carrying out additional analyses and finalizing this paper. 
All authors read and approved the manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.L. or C.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://arxiv.org/abs/2304.08239
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/2110.03753
http://arxiv.org/abs/2110.03753
http://arxiv.org/abs/2206.04564
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	SEGCN: a subgraph encoding based graph convolutional network model for social bot detection
	Motivation
	Contributions
	Related work
	Single-account feature-based social bot detection
	Group-based social bot detection

	Proposed approach
	Input
	Node representation
	Semantic representation
	Property representation
	Subgraph encoding
	Subgraph extraction. 
	Subgraph encoding. 


	Output

	Experiments
	Datasets
	Baseline methods
	Deepwalk55
	Node2vec56
	GCN44
	GAT57
	Bot2vec34
	SATAR32
	BotRGCN11
	RFGNN48
	RFGNN-R

	Implementation details
	Experimental results
	Ablation experiment on features


	Discussion
	Conclusion
	References
	Acknowledgements


