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Synergistic chemo‑photothermal 
therapy using gold nanorods 
supported on thiol‑functionalized 
mesoporous silica for lung cancer 
treatment
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Roya Mirzajani 1, Seyed Mohammadsaleh Zahraei 3, Fateme Khalili 1, Minmin Shao 6, 
Aimin Wu 7, Pooyan Makvandi 8,9* & Nasrin Hooshmand 10*

Cancer therapy necessitates the development of novel and effective treatment modalities to combat 
the complexity of this disease. In this project, we propose a synergistic approach by combining chemo‑
photothermal treatment using gold nanorods (AuNRs) supported on thiol‑functionalized mesoporous 
silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous 
MCM‑41 was synthesized using a surfactant‑templated sol–gel method, chosen for its desirable 
porous structure, excellent biocompatibility, and non‑toxic properties. Further, thiol‑functionalized 
MCM‑41 was achieved through a simple grafting process, enabling the subsequent synthesis of 
AuNRs supported on thiol‑functionalized MCM‑41 (AuNR@S‑MCM‑41) via a gold‑thiol interaction. 
The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in 
AuNR@S‑MCM‑41‑DOX. Remarkably, the nanocomposite exhibited pH/NIR dual‑responsive drug 
release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional 
biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined 
photothermal‑chemo therapy by AuNR@S‑MCM‑41‑DOX exhibited superior efficacy in killing cancer 
cells compared to single chemo‑ or photothermal therapies. This study showcases the potential of the 
AuNR@S‑MCM‑41‑DOX nanocomposite as a promising candidate for combined chemo‑photothermal 
therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol‑functionalized 
mesoporous silica, and pH/NIR dual‑responsive drug release provides a comprehensive and effective 
therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on 
this strategy hold promise for addressing the challenges posed by cancer and transforming patient 
care.
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Cancer, a complex and devastating disease, requires innovative therapeutic strategies that can effectively target 
tumor cells while minimizing adverse effects on healthy  tissues1–3. Photothermal therapy (PTT) is a highly selec-
tive and noninvasive therapeutic technique that has shown great promise for the treatment of  cancer4. Nowadays, 
various nanoscale materials have been widely explored as photothermal agents (PTAs).

Among these nanomaterials, gold-based nanoarchitectures (e.g., nanorods, nanostars, nanocages, nano-
spheres and nanoshells) have been extensively studied as PTAs due to their tunable localized surface plasmon 
resonance (LSPR)  properties5–7, low toxicity and excellent  biocompatibility8,9. Gold nanorods (GNRs) are par-
ticularly interesting for concurrent cancer therapy due to their unique properties such as their excellent biocom-
patibility, controllable size, tunable surface plasmon resonance (SPR)10, high photothermal conversion efficiency 
and ease of surface  modification11–13. However, AuNRs can aggregate in the tumor microenvironment which 
reduces their optical attributes and diminishes the photothermal therapy  efficacy14. Thus, surface modification 
of AuNRs by non-toxic and biocompatible stabilizers is necessary to improve their stability and PTT  efficacy15–19.

Photothermal therapy using photothermal agents alone has limitations in completely destroying cancer  cells20. 
Light penetration into deeper tumor tissues is reduced due to absorption and scattering, leading to decreased 
photothermal therapy  efficiency21. Researchers have combined PTT with additional therapeutic strategies to 
dominate these limitations and improve  effectiveness22–26. Among various combination techniques, co-delivering 
anticancer drugs with photothermal agents has emerged as a highly promising approach. In this combination 
photothermal chemotherapy, the photothermal agent enables localized heating while the anticancer drug pro-
vides cytotoxic  effects27–31. Various materials were conjugated to gold nanorods (AuNRs) to enable drug loading 
for combination photothermal chemotherapy, including cell membrane coatings. These materials can target 
cancer cells specifically, deliver therapeutic agents to the tumor location, and induce hyperthermia to increase 
the therapeutic  effect32,33.

Mesoporous silica nanoparticles feature a variety of advantages, including simple surface modification, good 
biocompatibility and great chemical and mechanical  stability34.

Among the family of mesoporous silica nanoparticles, MCM-41 (Mobil Composition of Matter No. 41) pos-
sesses promising characteristics, instance e.g., having hexagonally shaped pores, an ordered mesoporous struc-
ture, enormous surface area (about 900–1500  m2  g−1) along with a narrow pore size distribution (2–10 nm)35–37. 
Furthermore, the presence of a large number of silanol groups (Si–OH) on the surface MCM-41 simplifies func-
tionalization of MCM-41, and the pore size can be appropriate for encapsulation of bioactive  molecules38–41. Fur-
thermore, synergetic pH/NIR responsive drug delivery systems have been shown to be a promising strategy for 
selectively delivering anticancer drugs in tumors. These systems improve permeability and uptake of the targeted 
cells, as a result ameliorate the effectiveness of chemotherapy. Besides, these nanoscale materials can generate the 
hyperthermia under NIR laser to destroy tumor cells; this offers combined photothermal and  chemotherapy42–45.

By keeping these facts in mind and in continuing our research on the development of pH/NIR dual-responsive 
drug delivery using AuNRs@DOX for combined chemo-photothermal  therapy46–48, in this work, we devel-
oped AuNRs supported on thiol-MCM-41 (AuNR@S-MCM-41) as a drug support and designed the AuNR@S-
MCM-41-DOX nanocomposite for controlled release of bioactive molecules and synergetic photothermal 
and chemotherapy techniques. First, gold nanorods were supported on thiolated MCM-41 via Au–S bonds 
(AuNR@S-MCM-41). Then, the anticancer drug doxorubicin (DOX) was loaded into the AuNR@S-MCM-41 
nanocomposite by strong electrostatic interactions. Under near-infrared irradiation, we expected the AuNR@S-
MCM-41-DOX nanocomposite to exhibit pH/NIR dual-responsive drug release behaviors and improve the effi-
cacy of chemo-photothermal therapy compared to single therapy. The results of in vitro experiments conducted 
in this study showed that AuNR@S-MCM-41-DOX is both biocompatible and effective against A549 lung cancer 
cells. Overall, the nanocomposite demonstrated stimuli-responsive drug delivery performance, in which release 
is facilitated by internal and external triggers (e.g., tumor microenvironment and NIR laser).

Experimental section
Generals
Cetyltrimethylammonium bromide (CTAB), sodium borohydride  (NaBH4), L-ascorbic acid, Silver Nitrate 
 (AgNO3), Gold (III) chloride solution  (HAuCl4.3H2O), [3-(4,5- dimethylthiazol-2-yl)-3,5-diphenytetrazolium 
bromide] (MTT), tetraethylorthosilicate (TEOS), (3-mercatopropyl)trimethoxy-silane (MPTMS), sodium 
hydroxide (NaOH), ethanol (EtOH), toluene, and hydrochloric acid (HCl) were purchased from Sigma-Aldrich. 
Doxorubicin hydrochloride (DOX) as an anti-cancer drug was obtained from Fenghua Lianbo. Co (Peking, 
China). Deionized water was used in all the experiments. Human lung cancer cell line A549 was obtained from 
the Pasteur Institute of Iran.

The absorbance of the AuNRs was measured using a UV–Vis spectrophotometer (TU-1901). To determine 
the size of the nanoparticles, a transmission electron microscope (TEM) (LEO-906E-80 kV) was used. Fou-
rier transform infrared (FTIR) spectra were recorded using BOMEM MB-Series 1998 FT-IR spectrometer. To 
characterize the surface of the nanoparticles, a Zeta sizer Nano ZS instrument (Malvern Instruments, U.K.) was 
used to measure the surface zeta potentials. The An ICP-OES spectrometer (Optima 8300, Perkin Elmer) was 
used for determination of Au concentration in samples. Energy-dispersive X-ray spectroscopy (EDX) and EDX 
elemental mapping analysis were performed by FEI Tecnai G2 F20S-TWIN at 200 kV. A continuous wave laser 
with wavelength 808 nm (GCSLS-05-7W00 fiber-coupled, Daheng Science and Technology, China) was used 
for the laser irradiation experiment (7 mm, 1.4 W, 3.6 W/cm2).

Photothermal performance
To evaluate the photothermal effect of the AuNR@S-MCM-41 nanocomposite, 100 µL of nanocomposite disper-
sions at various concentrations (0–25 nM) were added to a 96-well plate along with control wells. The control 
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sample was contained 100 µL of medium (DMEM) without any nanoparticle. Other wells contain nanoparticles 
with different concentrations. The plate was irradiated with a diode laser at 808 nm and a beam diameter of 
7 mm, using a power density of 3.6 W/cm2 for 5 min. The temperature of the solutions was measured using a 
thermocouple during laser irradiation.

Preparation of AuNR@S‑MCM‑41‑DOX
A solution of DOX at a concentration of 5 µM (1 mL) was added to solution of AuNR@S-MCM-41 nanocompos-
ite (5 mg, 5 mL) at a concentration of 228 nM in PBS buffer and stirred for 24 h at room temperature. The result-
ing AuNR@S-MCM-41-DOX was then separated and washed through centrifugation at 11,000 rpm for 10 min. 
The concentration of DOX in the supernatant solution was measured by a UV–Vis spectrometer at 485 nm. 
The efficiency percentages of DOX loading and entrapment were calculated using Eqs. (1) and (2), respectively.

In vitro drug release performance of AuNR@S‑MCM‑41‑DOX
In this experiment, a 5 mL dispersion of AuNR@S-MCM-41-DOX in PBS buffer was agitated at 130 rpm and 
37 °C in the dark, with DOX concentration of 5 µM, at pH values of 5.5 or 7.4. After centrifuging the disper-
sions at various time intervals, the amount of released DOX in the supernatant was evaluated using a UV–Vis 
spectrometer at 485 nm. Additionally, DOX release was assessed under 808 nm laser irradiation (power density 
of 3.6 W  cm−2) in PBS with pH values of 5.5 and 7.4.

Results and discussion
Synthesis and characterization of AuNR@S‑MCM‑41‑DOX
The preparation steps of AuNR@S-MCM-41-DOX nanocomposite as summarized in Scheme 1 are:

A: synthesis of MCM-41 nanoparticles by surfactant-templated sol–gel method
B: synthesis of MCM-41-SH via post grafting method using 3-mercaptopropyl trimethoxysilane
C: preparation of AuNRs through seed-mediated growth method and assembly of MCM-41-SH on AuNRs 
via a gold–thiol interaction
D: loading of DOX on AuNR@S-MCM-41 nanocomposite by strong electrostatic interactions

The successful synthesis of MCM-41-SH nanoparticles was confirmed by the FTIR spectra. The FTIR spectra 
of MCM-41 and MCM-41-SH are indicated in Fig. 1. The FTIR spectrum of MCM-41-SH (Fig. 1b) compared 
to that of MCM-41 (Fig. 1a) indicated the presence of the S–H stretching vibration in MCM-41-SH, which was 
confirmed by the detection of a weak vibrational band at 2583  cm−1. This qualitative confirmation from the FTIR 
spectra displays that the thiol functional groups were successfully included into the MCM-41  nanoparticles49.

The successful synthesis of AuNRs, AuNR@S-MCM-41, AuNR@S-MCM-41-DOX, and DOX was confirmed 
by FTIR spectra (Fig. 2A). The disappearance of the -SH absorption peak at 2583  cm−1 in AuNR@S-MCM-41 and 
AuNR@S-MCM-41-DOX confirms the formation of gold-sulfur covalent bonds. The FT-IR spectrum of DOX 
indicates two peaks at 1584  cm−1 and 1622  cm−1 (N–H) and one at 1725  cm−1 (C = O), which are also present but 
relatively weak in the FTIR spectrum of AuNR@S-MCM-41-DOX nanocomposite, confirming drug loading.

Also, the successful coating of AuNRs with MCM-41-SH and doxorubicin loading were verified through 
UV–Vis spectroscopy (Fig. 2B). AuNRs indicated transverse and longitudinal bands around 517 and 710 nm, 
respectively. The LSPR band was red shifted to nearly 748 nm on surface coating with MCM-41-SH, demonstrat-
ing the change in electronic conjugation following the chemical reaction and the Au–S bond formation, although 
the plasmon transverse band (519 nm) stayed approximately unchanged. Finally, successful loading of DOX in 
AuNR@S-MCM-41 was indicated by an LSPR to 760 nm.

The structure of AuNRs, AuNR@S-MCM-41, and AuNR@S-MCM-41-DOX were also analyzed by dynamic 
light scattering (DLS). The DLS measurements indicated that AuNRs, AuNR@S-MCM-41, and AuNR@S-MCM-
41-DOX had hydrodynamic sizes about 54, 122.4 and 164.2 nm, respectively (Fig. 2C). The effect of hydrogen 
bonding between the amine and hydroxyl groups of DOX and the silanol hydroxyl groups of MCM-41 in the 
AuNRs@S-MCM-41-DOX nanocomposite, which produces aggregation, is the most likely the reason for the 
potential enhancement in the size of nanoparticles following loading of DOX.

The zeta potential of AuNRs in water (+ 39.2 mV) is likely the result of the presence of positively charged 
groups (CTAB) on the surface of the gold nanorods. When MCM-41-SH, which contains thiol groups, was used 
as a support for AuNRs, the zeta potential decreased to + 29.8 mV. This decrease in zeta potential is probably due 
to the introduction of negatively charged functional groups (thiol). DOX loading onto the AuNR@S-MCM-41 
nanocomposite further reduces the zeta potential to + 25 mV. This decrease in zeta potential can be related to 
the interaction between the positively charged DOX molecules and the negatively charged functional groups on 
the surface of the nanocomposite, which leads to a decrease in the overall positive charge and thus a decrease 
in zeta potential (Fig. 2D).

(1)DLE(%) =
(Total amount of DOX)− (Residual amount of DOX)

(Total amount of Nanocomposite)
× 100

(2)EE(%) =
Abs(original DOX) − Abs(residual DOX)

Abs(original DOX)
× 100
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After synthesis and characterization of MCM-41-SH, gold nanorods were achieved by the seed-mediated 
growth method and their morphology was confirmed by TEM (Fig. 3A,B). The TEM images of more than 
100 AuNRs were examined, and Image J software revealed that the average width and length of AuNRs were 
11 ± 0.5 nm and 34 ± 2 nm, respectively, with an aspect ratio of 3.1 (Fig. 3G,H). Using ICP-OES, the concen-
tration of Au atoms in AuNRs was calculated. Then, MCM-41-SH nanoparticles were applied as uniform and 
water-dispersible mesoporous structures as AuNR nanocarriers. The successfully prepared AuNR@S-MCM-41 
nanocomposite was imaged by TEM (Fig. 3C,D). Finally, for the loading and delivery of the anticancer drug 
doxorubicin (DOX), AuNR@S-MCM-41 nanocomposite was utilized as a nanocarrier. The TEM images of the 
AuNR@S-MCM-41-DOX nanocomposite (Fig. 3E,F) confirm the loading of DOX in the AuNR@S-MCM-41 
nanocomposite. The spatial distribution of Au, S, Si, and O on AuNR@S-MCM-41 was revealed via energy-
dispersive X-ray spectroscopy (EDX) and elemental mapping further confirming that AuNR@S-MCM-41 nano-
composite was achieved (Fig. 3I–O).

Photothermal properties of AuNR@S‑MCM‑41
Near-infrared (NIR) light is a favorable source of light in photothermal therapy as it is transparent to biological 
systems and has sufficient tissue penetration depth. This can increase the photothermal (PT) efficiency of cancer 
cells by converting incident radiation into heat and reduce the side effects on normal  cells50. The photothermal 
properties of the AuNR@S-MCM-41 nanocomposite were studied by monitoring the temperature enhancement 

Scheme 1.  Schematic illustration for the synthesis of AuNR@S-MCM-41-DOX nanocomposite. CTAB: 
Cetyltrimethyl ammonium bromide, TEOS: Tetraethyl orthosilicate, MPTMS: (3-Mercaptopropyl)
trimethoxysilane, DOX: Doxorubicin.
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Figure 1.  FTIR spectra of (a) MCM-41 and (b) MCM-41-SH.

Figure 2.  (A) FTIR spectra of AuNRs (a), AuNR@S-MCM-41 (b), AuNR@S-MCM-41-DOX (c), DOX (d); (B) 
the UV–Vis absorption spectra of AuNRs, AuNR@S-MCM-41 and AuNR@S-MCM-41-DOX; Hydrodynamic 
size analysis by DLS (C) and Surface zeta potential (D) of AuNRs, AuNR@S-MCM-41, and AuNR@S-MCM-41-
DOX.
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of the nanocomposite suspensions under 808 nm diode laser irradiation with a power density of 3.6 W/cm2. The 
suspensions of AuNRs, AuNR@S-MCM-41 (with an equal concentration of 25 nM of AuNRs), and solutions of 
PBS and DOX were irradiated using the 808 laser. As displayed in Fig. 4A, the temperature of the AuNRs and 
AuNRs@S-MCM-41 suspension increased from 24 to 63 °C and 24 to 56 °C after 5 min of irradiation, respec-
tively. Meanwhile, the temperature of the PBS and DOX solutions did not significantly increase under the same 
conditions. These findings demonstrate that the AuNR@S-MCM-41 nanocomposite has remarkable potential 

Figure 3.  TEM images of (A), (B) AuNRs, (C), (D) AuNR@S-MCM-41, (E), (F) AuNR@S-MCM-41-DOX; 
(G), (H) Statistical data of length and diameter of more than 100 AuNRs as shown in (A), (B); (I) EDX and 
(J–O) SEM and EDX maps of AuNR@S-MCM-41, Au, S, Si, O and combined.
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Figure 4.  (A) Temperature elevation of PBS, DOX, AuNRs, and AuNR@S-MCM-41 (25 nM AuNR) after 
irradiating with 808 nm laser intensity (3.6 W  cm−2); (B) Temperature evolution curves of the solutions 
containing various concentrations of AuNR@S-MCM-41 (0, 0.78, 1.56, 3.125, 6.25, 12.5 and 25 nM) under NIR 
laser irradiation with power density of 3.6 W  cm−2. (C) Cumulative DOX release from AuNR@S-MCM-41-
DOX in PBS at pH 7.4 and 5.5 without and with NIR irradiation.
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for effectively converting light energy to heat energy. Next, the photothermal efficacy of the nanocomposite 
was evaluated at various concentrations ranging from 0 to 25 nM using NIR laser irradiation (power density 
of 3.6 W/cm2) (Fig. 4B). The results exhibited a dose-dependent behavior, where the temperature increased 
with increasing concentrations of AuNRs@S-MCM-41 nanocomposite. Overall, the excellent efficiency of this 
nanosystem in converting light energy to heat suggests that it can be potentially used as a promising candidate 
for cancer photothermal therapy.

Anticancer drug loading, entrapment efficiency and release performance
DOX was easily loaded in the AuNR@S-MCM-41 nanocomposite in the phosphate-buffered saline (PBS) solu-
tion due to the nanocomposite being mesoporous, and its loading and entrapment efficiency were 26.36 and 
48.27 wt%, respectively. As shown in Fig. 4C, the cumulative drug release from the AuNR@S-MCM-41-DOX 
was studied at pH 7.4 or 5.5 with and without 808 nm laser irradiation. The amount of DOX release from the 
AuNR@S-MCM-41-DOX was influenced by the pH, leading to the amount of DOX released enhanced with 
time. It was also found that DOX release in the absence of laser radiation occurs faster at pH 5.5 than pH 7.4. 
In detail, due to the low solubility of DOX at pH 7.4, AuNR@S-MCM-41-DOX released only 17% of the total 
loaded DOX in the duration of 24 h. The drug release was increased within 24 h (29%) under acidic conditions 
at pH 5.5, which is a pH close to the late endosomes and lysosomes in the tumor cell, via protonation of silanol 
OH groups of AuNR@S-MCM-41-DOX; consequently, the electrostatic bond between the positively charged 
DOX molecules and the negatively charged of silanol OH groups of AuNR@S-MCM-41-DOX were dissociated. 
Due to the great solubility of DOX drug at pH 5.5, the release of it was enhanced under these conditions. The 
pH-triggered drug release performance under the tumor acid intracellular medium can increase the antican-
cer capability by liberating the drug in tumor  cells51. Compared with our previous  work46, the DOX release 
rate in AuNR@SBA-15-SH nanocomposite could reach 32% at pH 5.5. These results revealed that mesoporous 
silica MCM-41 were efficient in trapping loaded drugs. Also DOX loading and release in AuNR@S-MCM-41 
nanocomposite were compared with AuNR@SiO2-TAT, which was developed using an in situ grafting-cleavage 
method to modify the bioactive peptide in the core–shell structure of AuNR@SiO2 for providing synergistic 
chemo-photothermal cancer treatment. The loading of DOX in AuNR@S-MCM-41 was higher than that in 
AuNR@SiO2-TAT (22.5%), and the DOX release rate in AuNR@SiO2-TAT was 45% at pH 5.552. By contrast, the 
DOX release behavior of AuNR@S-MCM-41-DOX under 808 nm laser at pH 7.4 exhibited faster DOX release, 
with the release rate of DOX reaching 61% during 24 h. This difference was ascribed to the photothermal effects 
of AuNR@S-MCM-41-DOX. NIR laser irradiation provided a localized increase in temperature, which caused 
the dissociation of weak interactions between DOX and the silanol groups. As the pH of the released solutions 
reduced to 5.5, DOX release was accelerated, achieving a release rate of 92% with laser irradiation. Reducing 
pH may contribute to DOX release by weakening the hydrogen bonds and electrostatic binding between DOX 
and the carrier. Based on these results, the AuNR@S-MCM-41-DOX nanocomposite showed NIR laser and pH 
dual-responsive DOX drug release behaviors, increasing the efficiency of drug delivery.

Cellular uptake
One of the key requirements for delivering anticancer drugs is the capacity to internalize into cells. ICP-OES 
spectrometry was used to examine the penetrating effect and consequent localization of AuNR@S-MCM-41-
DOX nanocomposites in A549 lung cancer cells.

First, nanocomposites with various concentrations (0.316, 0.632, and 1.265 ppm or 0.78, 1.56, and 3.125 nM) 
was incubated with A549 cells for 48 h. Then the gold content endocytosed into cells was obtained using ICP-
OES spectrometry (0.107, 0.31, and 0.851 ppm). The percentage of internalized Au concentration to the dose of 
incubated for each cell was measured to determine the cell uptake efficacy by equation (S1). The A549 cells were 
thoroughly washed with PBS solution before ICP-OES analysis to remove cell-adhered nanocomposites that 
were not internalized. Consequently, ICP analysis demonstrated the concentration of nanocomposites entering 
the cells. Following a 48 h incubation period, the internalized amounts of Au atoms per cell were 4.23%, 6.13%, 
and 8.41%, respectively, indicating that AuNR@S-MCM-41-DOX was uptaken by the cells. This confirms the 
cell uptake of AuNR@S-MCM-41-DOX in a concentration-dependent manner.

In vitro combined chemo/photothermal therapy Assay
To finally exhibit the near-infrared triggered photothermal-chemo therapy effect of the AuNR@S-MCM-41-DOX 
nanocomposite on A549 cancer cells, MTT assays were examined under various conditions. It can be seen in 
Fig. 5A that without irradiation of the 808 nm laser, the AuNR@S-MCM-41 nanoparticles indicated low cyto-
toxicity to A549 cells at different concentrations (0.39–25 nM). The cell viability was more than 82% after A549 
cancer cells were incubated with various concentrations of the AuNR@S-MCM-41 nanocomposite for 48 h. The 
results exhibited that nanocomposite has good biocompatibility and is relatively nontoxic to cancer cells. When 
encapsulating DOX into AuNR@S-MCM-41, the treatment effect of AuNR@S-MCM-41-DOX can be changed 
significantly. The AuNR@S-MCM-41-DOX nanocomposite showed a cell viability of 56% in Fig. 5A, indicating 
that this nanocomposite indeed performed well in preventing the DOX from leaking. The statistically significant 
difference between treated cells with concentrations of 12.5 (p = 0.002698) and 25 (p = 0.000003) AuNR@S-
MCM-41 and AuNR@S-MCM-41-DOX in comparison to treated with cells other concentrations were assessed 
with t-test (Fig. 5A). The results in Fig. 5B demonstrated that the viability of cells after treatment with various 
concentrations of free DOX was 43%. In addition, the results were analyzed and compared to the control group 
via one-way ANOVA (p ˂  0.0001). Free DOX provided a higher IC50 than the AuNR@S-MCM-41-DOX nano-
composite (at equivalent AuNR concentrations). Therefore, after DOX was loaded in the AuNR@S-MCM-41 
nanocomposite, the cell death efficacy in A549 cells through the loading DOX was enhanced (Table 1).
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However, after irradiating the cells with an 808 nm laser, the cell viability of cells treated with various concen-
trations of AuNR@S-MCM-41 dramatically reduced. To assess the therapeutic effect of photothermal therapy, 
the cells were incubated for 45 h with AuNR@S-MCM-41 at concentrations (AuNRs equivalent 0.78, 1.56 and 
3.125 nM). The cell medium was then heated to 37, 42, and 47 °C after 5 min of 808 nm laser irradiation, and 
the MTT assay was done to examine the therapeutic effect of AuNR@S-MCM-41 + Laser after incubation for 
4 h. As seen in Fig. 5C, cell viabilities were negatively correlated with the concentration of the samples. The 
results exhibited that the AuNR@S-MCM-41 under NIR laser irradiation for 5 min with the dose of 3.125 nM 
may obviously cause a higher death rate of A549 cells compared with doses of 0.78 and 1.56 nM. These results 
verified that this nanocomposite has the capability to destroy cancer cells by its great photothermal conversion 
effect. Conversely, under 808 nm laser irradiation, many cancer cells treated with AuNR@S-MCM-41-DOX died, 
leading to an improved treatment effect than that of AuNR@S-MCM-41-DOX and AuNR@S-MCM-41 + Laser 
(Fig. 5C). These findings showed that AuNR@S-MCM-41-DOX can quickly release great amounts of DOX 

Figure 5.  (A) Cell viabilities of the A549 cells after incubation with various concentrations of AuNR@S-
MCM-41 and AuNR@S-MCM-41-DOX, (B) free DOX, (C) Comparative cell viabilities of A549 incubated with 
AuNR@S-MCM-41 or AuNR@S-MCM-41-DOX at different concentrations under exposure to 808 nm laser, 
(D) A comparison of the viability of the A549 cells treated by AuNR@S-MCM-41 + Laser, AuNR@S-MCM-41-
DOX and AuNR@S-MCM-41-DOX + Laser.

Table 1.  IC50 of AuNR@S-MCM-41, AuNR@S-MCM-41-DOX and free DOX after 48 h incubation in A549 
Cells.

AuNR@S-MCM-41 AuNR@S-MCM-41-DOX Free DOX

7.46 nM 5.3 nM 1.302 µM
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through its photothermal conversion action, in addition to being able to induce PTT under 808 nm laser irradia-
tion, leading to the final synergistic chemo-photothermal therapy to A549 cells. In comparison to other in vitro 
experiments, the cell viability of cells treated with AuNRs@S-MCM-41-DOX + Laser was significantly reduced 
(35% cell viability) after exposure to near-infrared radiation at a dose of 3.125 nM AuNR@S-MCM-41-DOX and 
a DOX concentration of 0.0.078 µM. The results were analyzed by two-way ANOVA control groups. To conclude, 
there is a synergist efficacy in the combination therapy in this nanocomposite; the cell viabilities were compared 
to the determined value from the additive effect. Particularly, the viability of cells of AuNR@S-MCM-41-DOX 
(in presence and absence of NIR) and AuNR@S-MCM-41 (in presence of NIR) were examined by MTT assay 
(Fig. 5D), and results were investigated by two-way ANOVA. The gold nanorods concentration in these three 
groups is 3.125 nM, and DOX concentration is the same (0.078 µM). After 45 h of incubation with AuNR@S-
MCM-41 and AuNR@S-MCM-41-DOX, the cancer cells were exposed to the 808 nm laser and had their media 
heated to 37, 42, and 47 °C. Furthermore, cells were incubated with AuNR@S-MCM-41-DOX for 48 h, and the 
viability of cells was 68.2% owing to chemotherapy.

Here, the cell viability of the additive (fadditive) was calculated using the relationship fadditive = fchemotherapy × fPTT, 
where f is the cell viability for each treatment. It’s an additive effect when fcombination = fadditive, but a synergistic 
effect occurs when fcombination is lower than fadditive

53. The experimental cell viability of the combination treatment 
(fcombination) (33.1% at 42 °C and 28.12% at 47 °C) was lower than the computed additive interaction of photother-
mal therapy and chemotherapy (fadditive) (42.98% at 42 °C and 40.1% at 47 °C) of AuNR@S-MCM-41-DOX + Laser, 
although the results indicated no significant changes in the viability of cells (p = 0.38, 0.55). This is expressive 
of the synergistic anti-cancer efficacy of AuNR@S-MCM-41-DOX + Laser. As shown in Fig. 5D, the increasing 
therapeutic efficacy of AuNR@S-MCM-41-DOX + Laser was illustrated at temperatures of 42 and 47 compared 
to 37 °C. The combined chemo-photothermal therapy by AuNR@S-MCM-41-DOX indicated a synergistic effect. 
The results exhibit that PTT combined with chemotherapy showed an enhanced therapeutic efficacy compared 
to single chem- or photothermal therapy.

We tested NIR light-triggered DOX release in cells treated with 0.078 µM DOX loaded AuNR@S-MCM-41 
using 3.6 W/cm2 laser power. This showed 35% viability after NIR exposure, indicating efficacious chemo-
photothermal therapy. Compared to prior work using 5 µM DOX and 20 W/cm2 laser with Au@SiO2, our system 
provides effective therapy at lower drug doses and laser  power54.

Conclusion
In summary, the AuNR@S-MCM-41-DOX nanocomposite was fabricated as a NIR-activated drug delivery struc-
ture for combination chemo-photothermal cancer therapy. This new system has good photothermal conversion 
performance for efficient photothermal therapy. The resulting nanocomposite indicates pH/NIR dual-responsive 
drug release performances, and the loaded DOX can be released quickly under an acidic pH environment and 
NIR stimuli. Cellular uptake studies indicate that the AuNR@S-MCM-41-DOX nanocomposite can be efficiently 
internalized in A549 lung cancer cells and demonstrates good performance in chemo-photothermal combination 
therapy to kill cancer cells compared to single chemo- or photothermal therapy. The results of this work indicate 
that this new nanocomposite has good in vitro biocompatibility and great drug loading capacity, making it a 
promising candidate for combined chemo-photothermal therapy of lung cancer. These promising results will 
encourage us to further appraise the in vivo anticancer efficiency of the nanocomposite.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.
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