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Distributed asynchronous 
measurement system fusion 
estimation based on inverse 
covariance intersection algorithm
Taishan Guo 1, Mingquan Wang 1*, Shuyu Zhou 2,4 & Wenai Song 3,4

For state estimation of multi-source asynchronous measurement systems with measurement missing 
phenomena, this paper proposes a distributed sequential inverse covariance intersection (DSICI) 
fusion algorithm based on conditional Kalman filtering method. It is mainly divided into synchronized 
state space module, local filtering module and fusion estimation module. The missing measurements 
occurring in the system are modelled and described by a set of random variables obeying a Bernoulli 
distribution. The synchronized state space module uses a state iteration method to synchronize 
the asynchronous measurement system at the moment of measurement update and it ensures the 
integrity of the measurement information. The local filtering module uses a conditional Kalman 
filtering algorithm for filter estimation. The reliability of the local filtering results is guaranteed 
because the local estimator designs a method to interact information with the domain sensors. 
The fusion estimation module designs a DSICI fusion algorithm with higher accuracy and satisfying 
consistency, which fuses the filtering results provided by each sensor when the relevant information 
between multiple sensors is unknown. Simulation examples demonstrate the excellent performance 
of the proposed algorithm, with a 33% improvement in accuracy over existing algorithms and an 
iteration time of less than 3 ms.

In the growing information age, single sensor systems can no longer satisfy the growing needs of people’s life. 
In recent years, multi-sensor systems have been widely discussed as a popular research topic in the fields of 
airborne hierarchical networks1, power grid inspection2, disaster rescue3, intelligent logistics4, industrial con-
trol and address exploration5,6. This is due to the fact that multiple sensors can accomplish various kinds of 
complex tasks through collaborative sensing and information sharing, and have the advantages of low-cost and 
high-performance intelligent autonomy. These advantages are derived from the information fusion estimation 
theory. Therefore, information fusion estimation is an important research topic in multi-sensor information 
fusion technology7–9.

In multi-sensor systems, information fusion estimation methods are usually divided into centralized fusion 
estimation and distributed fusion estimation. The principle is to fuse multiple pieces of information into a more 
reliable one according to the corresponding fusion algorithm10–12. In centralized fusion systems, measurements 
from multiple sensors are processed using state measurement augmentation methods, which can yield excellent 
estimation results though. However, when one of the sensors fails or is damaged during operation, the central-
ized system cannot detect and discard the malfunctioning sensor in a timely manner, leading to a decrease in 
the reliability of the fusion estimation results and an increase in the error. In contrast, distributed fusion systems 
have a unique parallel structure. The existence of parallel structure makes it easy to detect and isolate faulty sen-
sors and ensures the correctness of the fusion estimation results, so the distributed estimator has good reliability 
and flexibility13. In order to improve the reliability and flexibility of multi-sensor systems, it is important to use 
distributed fusion systems.

However, in a multi-sensor distributed fusion system, the sensors are transmitted to each other through a 
wireless network. Therefore, it is inevitable that the measurement data from sensors are delayed by the effects of 
network channel blockage and congestion. For example, the phenomenon of data transmission delay in UAVs, 
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unmanned vehicles and unmanned ships cluster systems for high-precision positioning can reduce the credibility 
of the positioning results14. For the phenomenon of delayed measurement transmission, measurement enhance-
ment techniques that combine current measurement with measurement delay and replication retransmission 
are often used to make full use of the delayed measurement data15. However, the measurement enhancement 
technique solves the fusion estimation problem through the augmentation technique, which inevitably results 
in an increase in computational complexity. Literature16 utilizes a Variational Bayes (VB) based approach. It 
combines augmented state vectors, random variables and covariance matrices for joint estimation, which effec-
tively solves the occurrence of one-step random delayed measurement and measurement noise phenomena17,18.

Meanwhile, the occurrence of delay phenomenon must be accompanied by packet loss, which greatly affects 
the performance of the system. In order to ensure the integrity of the measurement data, literature15 investigates 
the optimal filtering problem of the random missing system with Markov chain communication measurement, 
which effectively solves the description of the missing measurement phenomenon. For the uncertain measure-
ment missing phenomenon, an adaptive Kalman filter based on VB was used in literature19 to solve the filtering 
problem of unknown measurement missing. Its method is more accurate compared to existing filtering methods. 
Meanwhile, a set of Bernoulli distributed random variables is proposed in the literature20 to describe the random 
measurement missing phenomenon, and good results are obtained. Although, the measurement delay phenom-
enon can be achieved by increasing the sampling rate of the hardware system, but this will greatly increase the 
cost of using the system. Therefore, how to deal with the measurement delay phenomenon in a low-cost and 
effective way is a very urgent problem.

In daily life, for multi-sensor systems, the measurement sampling frequency varies between sensors because 
of the inconsistent operating performance of the sensors. In the sensor measurement sampling work, when 
the sensor measurement sampling frequency is different from the state update frequency, the system will have 
the problem of asynchronization of the sensor measurement update period and the state update period21. This 
phenomenon will lead to errors in the fusion results if the sensor sampling is not synchronized. In general, since 
the sensor sampling frequency is always smaller than the state update frequency, a commonly adopted method 
is to use state iteration22. It involves transforming the original system with asynchronous sampling into a state 
space model that is sampled synchronously at the moment of measurement sampling23. However, the sampling 
moment of the synchronized state space model is only at the sensor sampling moment, so it leads to the missing 
information of the state update point of the system, which seriously affects the filter’s true estimation of the state 
information24,25. Therefore, how to effectively synchronize the multi-sensor asynchronous measurement system 
is one of the focuses of this paper.

For distributed information fusion theory, distributed fusion technique ensures the reliability and flexibility 
of the system. The fusion technique is processed by the correlation information between sensors. However, in 
multi-sensor systems, as the correlation information between sensors is difficult to be acquired, it leads to the 
inability to fuse the filtering results provided by each sensor26. Therefore, in this paper, the unknown correlation 
required for multi-sensor fusion is analyzed. Currently, the main methods that can solve the fusion estimation 
with unknown correlation are: Covariance Intersection (CI) fusion method, Ellipsoidal Intersection (EI) fusion 
method, and Inverse Covariance Intersection fusion method (ICI). CI fusion method is achieved by param-
eterizing the fusion formula, and it bypasses the fusion formula. by parameterizing the fusion formula, which 
bypasses the discussion of correlation information between sensors and describes it by finding a minimizing 
ellipsoid that characterizes the common information between sensors27. While this approach is easy to under-
stand, the lack of discussion of unknown correlations inevitably leads to overly conservative fusion results28. In 
the pursuit of estimation results with higher accuracy, an EI fusion approach is proposed in the literature29 to 
redefine a parametric method. It ensures the accuracy of the fusion estimation results by finding the maximiza-
tion ellipsoid that can characterize the correlation information and describing out the unknown correlation 
information with explicit expressions30.

However, EI fusion techniques cannot fully guarantee the consistency problem, which leads to the fact that EI 
fusion can only be adapted to some specific systems. In order to obtain the consistency that satisfies the fusion 
results and improve the fusion accuracy at the same time. Literature31 proposes an ICI fusion method, which 
starts from the perspective of the inverse of the covariance matrix and finds the inverse of the correlation infor-
mation by the boundary range information of the inverse covariance matrix, while describing the correlation 
information to ensure the consistency problem of the fusion results32.

In summary, in order to solve the problems of asynchronous measurements, measurement delays and 
unknown correlations occurring in multi-sensor systems, so as to design a low-cost and high-precision dis-
tributed fusion algorithm to estimate the system. Therefore, in this paper, for the state estimation problem of 
multi-source asynchronous measurement system with measurement missing phenomenon induced by network 
channel blocking, a Distributed Sequential Inverse Covariance Intersection (DSICI) fusion estimator based on 
conditional Kalman filtering algorithm is proposed. The system is mainly divided into a synchronized state space 
module, a local filtering module and a fusion estimation module. The system block diagram is shown in Figure 1.

For asynchronous measurements occurring in the system, the Synchronized State Space module uses a state 
iteration method to transform the multi-source asynchronous measurement system into a state space model that 
is sampled synchronously at the moment of measurement update. It ensures the complete filtering effect. Due 
to the occurrence of measurement missing phenomenon induced by network channel blockage or congestion 
in multi-sensor systems, this paper models and describes it by a set of random Bernoulli distributed variables. 
This approach ensures the completeness of the measurement information.

Secondly, for the design of the filter estimator, the local filter module is designed to filter the system by means 
of the conditional Kalman filtering algorithm. The filtered values are output at the moment of measurement 
update and the predicted values are output at the moment of state update. The local filter is also designed to 
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interact information with the neighborhood information under the finite communication domain in order to 
ensure the information interaction between multiple sensors. It ensures the reliability of the local filter.

Finally, for the unknown correlation problem in the fusion process, the fusion estimation module selects the 
ICI fusion algorithm, which has a higher fusion estimation accuracy and meets the fusion consistency, to deal 
with the fusion estimation problem of the unknown correlation information between sensors. The distributed 
sequential approach ensures the reliability and flexibility of the fusion process of multi-source asynchronous 
measurement systems.

Problem description
In the study of control theory, the linear model is deeply favored by researchers for its strict quantitative descrip-
tion of the system state information. However, in real life, considering that multiple sensors may work together 
in a dynamic control system, this phenomenon inevitably leads to the problem of mismatching measurement 
rates between sensors15. Therefore, for the realistic description and estimation of a multi-source dynamic con-
trol system, we consider a multi-source asynchronous measurement system whose system state space model is 
shown as follows:

where x(k) ∈ Rn is the system state vector at time k.yi
(

gik
)

∈ Rmi denotes the measured value of the i sensor 
at sampling moment gik , and gik denotes the sampling period of the i sensor. The process noise ω(k) ∈ Rn and 
measurement noise v

(

gik
)

∈ Rmi obey uncorrelated random white noise with mean 0 and covariance matrix 
Qω > 0 and Ri,k > 0 , respectively. The coefficient matrices A , D and H are constant matrices with appropriate 
dimensions, respectively. The initial state x(0) ∈ N(µ0, P0) is uncorrelated with ω(k) and v

(

gik
)

.
In multi-sensor systems, channel congestion occurs when multiple measurement messages are transmit-

ted due to the limited bandwidth of the network channel. The channel congestion phenomenon induces the 
measurement delay problem, i.e., the link nodes fail to receive the measurement data at the update moment, 
resulting in packet loss. Since the measurement missing phenomenon occurs randomly, this paper de-scribes the 
phenomenon that triggers measurement missing by means of a set of random Bernoulli distribution variables16.

where γi
(

gik
)

 is a random process variable obeying Bernoulli distribution. When γi
(

gik
)

= 1 , it means that the i 
sensor successfully measures the system at moment gik . Conversely, the system can only get measurement noise.

In a multi-source asynchronous measurement system, since the measurement sampling period is a positive 
integer multiple of the state update period, it is necessary to convert the asynchronous sampling system into a 
state space model with synchronous sampling at the measurement sampling time. Taking a sensor with a meas-
urement update period of gi as an example, the state equation with a state update period of gi can be obtained 
by performing gi iterations of Eq. (1).
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Figure 1.   General system block diagram.
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Organize (4) to obtain:

In this way, the multi-source asynchronous sampling system (1) and (3) with measurement missing phenom-
enon is transformed into a multi-source synchronous sampling system. Its state space model is

where W
(

gik
)

=
gi
∑

m=1

AmDω
(

gik + gi −m
)

.

Since the converted synchronous system only samples at moments that are positive integer multiples of the 
measurement update period, it is important to design a filter to estimate the state information at the complete 
moment in a reasonable way.

Conditional Kalman‑based interactive local filtering estimation method
For a multi-sensor system synchronized at the measurement sampling moments, in this section, a conditional 
Kalman local filter is designed to handle the system noise. First, the filtering results for the multi-source complex 
system (6)–(7) synchronized at the measurement sampling moment can be derived according to the Kalman 
filtering principle20. The predicted estimation results of the system are:

The prediction error covariance matrix is:

where e−i  denotes the prediction error and QW denotes the covariance matrix of the process noise of the syn-
chronous system.

The filtering estimation results are expressed as:

where εi
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 denotes the new interest of the filtering process, i.e., the observed value minus the predicted 
observed value.

Due to the Kalman filtering gain, the variance Qεi
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)

 of the new interest εi
(
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 is calculated as follows:

The gain matrix of the filter can be obtained by organizing Eq. (11).
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Since the filtering results are only filtered at moments that are positive integer multiples of the measurement 
sampling period gi , they do not provide a complete description of the state information. To solve this problem, 
the conditional Kalman filtering algorithm is used to design the state estimator21. The estimated amount x̂i,k of 
state information at each moment and the estimation error covariance matrix P̂i,k are discussed below in two 
cases. The flow chart of the conditional Kalman local filter is shown in Fig. 2.

Case 1: When the state update time is synchronized with the measurement sampling time, the state estimate 
is equal to the Kalman filter estimate at the measurement sampling time. The state estimation result 

(

x̂i,k , P̂i,k

)

 
is:

Case 2: When the state update moment is not synchronized with the measurement sampling moment, the 
state estimate is described using the predicted value of the state estimate for the previous moment.

At the same time, information interaction between multiple sensors can ensure the reliability of the multi-
sensor system. In order to obtain effective local filter estimation results, we use the local filter as a node for 
information interaction between sensors, and the node carries out the interaction of the locally estimated filter 
values of other nodes in a limited communication domain. However, due to the limitation of the network channel 
capacity between sensors in a multi-sensor system, here we assume that the range of the effective communication 
domain of the local filter node communicates with only the two nearest nodes to itself23. Here, we take the ith local 
filter node as an example, and the result of the information interaction in the limited communication domain is:

where x̂i,k denotes the estimate at moment k provided by the ith local filter; x̂j,k−1 denotes the state filter estimate 
provided by local filter j in the effective communication domain; G and L denote the gain coefficients of each 
local filter estimation term in the state estimate. The gain coefficients are described by solving the optimization 
problem as follows:
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Figure 2.   Conditional Kalman local filter flow chart.
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In a distributed system, it is crucial to select a suitable fusion method to fuse the filtering results of individual 
sensors in order to obtain more accurate estimation results.

Distributed sequential inverse covariance intersection (DSICI) fusion estimator
In the multi-sensor data fusion process, data fusion algorithms provide more accurate fusion results by fusing in 
an efficient decision-making manner. However, for the fusion process of distributed systems, the fusion process 
is greatly troubled by the fact that the correlation information between sensors is not easily accessible. At pre-
sent, for dealing with the fusion problem of unknown correlations, the commonly used fusion method is the CI 
fusion technique. The CI fusion technique defines the range of unknown correlations by finding a minimizing 
ellipsoid, and although this method is commonly accepted, the CI fusion technique focuses on analyzing the 
fusion formula rather than characterizing the correlations, so it can lead to overly conservative fusion results28. 
In order to obtain fusion estimation results with higher accuracy, the EI fusion technique explicitly describes the 
unknown correlation information by introducing a new estimator in terms of a representation formula, which 
precisely completes the fusion process by finding the ellipsoidal range of the maximized correlation informa-
tion. And the EI fusion technique describes the optimization problem by an algebraic expression, which greatly 
reduces the computational complexity of the system31.

However, EI fusion techniques cannot fully guarantee the consistency problem. EI fusion techniques can 
guarantee consistent estimation only under certain specific conditions. This leads to the fact that EI fusion can 
only be adapted to some specific systems. Literature32 proposes an inverse covariance intersection (ICI) fusion 
method, which starts from the perspective of the inverse of the covariance matrix and finds the inverse of the 
correlation information by the boundary range information of the inverse covariance matrix, while describing 
the correlation information to ensure the consistency problem of the fusion results33. In addition, compared 
with the CI fusion results, ICI fusion can provide more rigorous fusion results and overcome the conservative-
ness problem of CI fusion results. This method avoids both conservative estimation and satisfies the consistency 
problem of the fusion results, and the accuracy of the fusion results is greatly guaranteed.

In the process of multi-sensor data fusion, the general equation for two-sensor based fusion estimation is 
as follows:

where Kfus and Lfus denote the fusion gain and the corresponding covariance matrix is expressed as:

where PAB = PBA denotes the cross-covariance matrix, and the fusion gain is determined by solving the trace 
of the minimized covariance matrix. So, the key to solve the fusion problem is to obtain the information of the 
cross-covariance matrix between sensors.

However, the acquisition of cross-covariance matrix information is very difficult in multi-source systems. 
So, this reason causes the correlation between multiple sensors to become unknown. Therefore, we analyze the 
existing fusion methods (CI fusion, EI fusion and ICI fusion techniques) for which the correlation is unknown. 
The first fusion method to emerge is CI fusion, which is widely used by virtue of achieving consistency in fusion 
results. The CI fusion process is shown below:

where the optimal weight value ω satisfies:

Since the CI fusion process directly parameterizes the fusion Eq. (19), but it lacks the description of the 
cross-covariance matrix information, making the CI fusion method then needs to provide a large range of fusion 
results. Although CI fusion can guarantee the consistency of fusion results, the fusion results are too conservative.

The EI fusion method proposes to solve the problem of overly conservative fusion results. It describes the 
unknown correlation information explicitly by finding an ellipsoid that maximizes the information containing 
the cross-covariance matrix. Explicit expressions can also reduce the computational cost of the fusion process. 
The EI fusion process is described as follows:

where the correlation means γ and variances Ŵ are expressed through the xA and xB information.
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where S denotes the feature vector matrix and D denotes the feature diagonal matrix.
However, the EI fusion method can guarantee the consistency of fusion results only under some specific con-

ditions. In order to obtain a fusion method with high fusion accuracy and satisfy the consistency of fusion results, 
ICI fusion is proposed34. It starts from the perspective of the inverse of the covariance matrix and describes the 
unknown correlation information by finding the boundary information of the intersection region of the inverse 
covariance matrix. The process of ICI fusion is as follows:

where the fusion weights WA and WB satisfy the following rules.

The optimal value of the parameter ω is determined by min
ω

trace
(

PICIfus

)

.
Next, we compare the differences of the three fusion methods by a numerical example. Suppose two ran-

dom variables XA and XB obeying Gaussian distribution35. XA obeys a mean value of xA =
[

0 0
]T and a 

covariance matrix of PA = [2,−1;−1, 1] ; XB obeys a mean value of xB =
[

0 0
]T and a covariance matrix of 

PB = [1/3, 0; 0, 2] . The fusion results of the three fusion methods are shown in Fig. 3.
The area enclosed by the red curve indicates the fusion result of the CI fusion method, the area enclosed 

by the blue curve indicates the fusion result of the EI fusion method, and the area enclosed by the green curve 
indicates the fusion result of the ICI fusion method. The results show that the area enclosed by the CI fusion 
algorithm is the largest. It over-describes the public information of the two random variables, which leads to the 
over-conservative CI fusion estimation results. the EI fusion estimation results guarantee the accuracy of the 
fusion results. However, the consistency problem of the EI fusion results is not clearly demonstrated at present.

Based on the above analysis, we select ICI fusion technique for the design of distributed fusion estimator. Also, 
to reduce the computational cost of the multi-sensor system, we design the fusion process as sequential fusion 
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Figure 3.   Comparison of the fusion results of CI, EI and ICI fusion algorithms.
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by the fusion process requires N − 1 times of fusion of two-two local filter estimates. The distributed sequential 
inverse covariance intersection (DSICI) fusion estimation process is shown as follows:

where the expressions for Wi
a and Wi

b are:

At the same time, we analyzed the consistency of the fusion results of the DSICI fusion estimator. First, a 
comparison of the traces of the error covariance matrix of the first fusion results is shown below:

Then, the results of the second fusion can be obtained based on the iterative approach.

The collation gives:

Based on the mathematical induction method, the final fusion error covariance matrix is smaller than the 
error covariance matrix provided by each filter in the DSICI fusion estimator, which undergoes N − 1 times of 
EI fusion process.

Through the above analysis, the DSICI fusion estimator designed in this paper has good consistency and the 
fusion estimator outperforms the individual filter estimators.

Simulation experiment analysis
In order to visually verify the proposed DSEI fusion estimation algorithm based on conditional Kalman filtering, 
the reliability of the estimation results of a multi-source asynchronous measurement system with measurement 
missing phenomena is guaranteed. In this section, to ensure the boundedness of the system state values, the supe-
rior performance of the DSICI fusion estimator is verified by constructing a stable time-varying linear numerical 
example. The multi-source asynchronous sampling system with measurement deficiencies is shown as follows:

where the state variables x(k) = [x1(k), x2(k), x3(k)]
T , The measurement periods of the measurement equation 

are g1 = 1 , g2 = 2 and g3 = 3 . The state coefficient matrix A = diag(a1, a2, a3) , the expressions of the elements 
of each matrix are:

The measurement matrix of each sensor is:
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The System parameters is h = 0.2 . The measurement misses occurring in each sensor in the system are 
described by random variables γ that obey a Bernoulli distribution, with variable parameters γ1 = 0.9 , γ2 = 0.7 , 
γ3 = 0.4 . The coefficient matrix D and covariance matrix of the process noise are Q = diag(1, 1, 1) , and the 
covariance matrices of the measurement noise are R1 = 0.2 , R2 = 0.3 and R3 = [0.3, 0.1; 0.1, 0.25] , respectively. 
The initial state values and covariance matrices are:

In order to accurately evaluate the performance of the proposed DSICI fusion estimation algorithm, the reli-
ability of the algorithm is verified by analyzing the Root Mean-Square Error (RMSE) of the estimation results.

where x̂li,k denotes the ist component of the 1st conditional local filter value and N = 5000 is the number of 
Monte Carlo runs.

The proposed DSICI fusion estimation algorithm based on conditional Kalman filtering is compared with 
the existing Distributed Sequential Covariance Intersection (DSCI) fusion estimation algorithm by conducting 
simulation experiments to obtain the estimation results of the state information. The state tracking performance 
results are shown in Fig. 4. The red curve shows the actual state value of the multi-source asynchronous measure-
ment system with measurement delay phenomenon, the blue curve shows the DSCI fusion estimation, and the 
green curve shows the DSICI fusion estimation. It can be seen that DSICI achieves better tracking performance 
for the state variables compared to the fusion estimation results of DSCI.

Meanwhile, to further validate the performance of the DSICI fusion estimator. In this paper, by analyzing the 
RMSE of the estimation results of the local filter estimator, DSCI and DSICI fusion estimator, the comparison of 
the RMSE results of each local filter estimator, DSCI and DSICI fusion estimator is shown in Fig. 5. The results 
show that the RMSEs of each state of the DSICI fusion estimation results are smaller than those of the local filter 
estimation. Meanwhile, the RMSE of the DSICI fusion estimation results is also smaller than that of the DSCI 
fusion results, which ensures the accuracy of the fusion results.
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Figure 4.   State tracking performance of DSCI and DSICI fusion estimation algorithms.
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Further, to verify the good estimation performance of DSICI fusion algorithm compared to DSCI fusion 
algorithm in distributed fusion system. In this paper, we compare the traces of the error covariance matrix of 
DSCI and DSICI fusion estimation, i.e., the smaller the trace of the matrix, the smaller the error range. The 
comparison of the traces of the error covariance matrix of the two methods is shown in Fig. 6. The results show 
that the traces of the error covariance matrix of the DSCI fusion results are larger than those of the DSICI fusion, 
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Figure 5.   Comparison of RMSE of local filtering with DSCI and DSICI fusion estimation results.
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and the error range of DSICI is reduced to 33% of that of DSCI, which greatly improves the reliability of the 
system fusion results.

Also, this paper compares the computational time cost of DSCI fusion, DSEI fusion and DSICI fusion meth-
ods in the running process, and the comparison results are shown in Fig. 7. The results show that the iterative 
running time of the DSICI fusion estimation method is smaller than that of the DSCI fusion estimation method. 
Among them, the iterative running time of DSICI fusion estimation method is about 0.002885s, which can be 
controlled within the range of 3ms. While the iterative running time of DSCI is about 0.030756s. The iterative 
running times of the three fusion methods are shown in Table 1. The reason for the low computational cost of 
the DSEI fusion algorithm is that the fusion process optimization problem is described explicitly, and the explicit 
expression will greatly reduce the computational cost reduction of the running process, thus accelerating the 
output of the fusion results.

Conclusion
In this paper, we address the aspects of asynchronous sampling, measurement delays and unknown correlations 
that occur in multi-sensor systems. We propose a DSICI fusion estimation algorithm based on the conditional 
Kalman filtering method. For the phenomenon of measurement delay that occurs in multi-source asynchronous 
measurement systems, a set of random variables obeying the Bernoulli distribution is used to describe it, and, in 
this paper, we use the state iteration method to synchronize the multi-source asynchronous measurement systems 
at the moment of measurement update. It ensures the completeness and accuracy of the measurement data. For 
the problem of state noise and measurement noise in the system, the local filter adopts the conditional Kalman 
filtering algorithm to filter the system noise, and outputs the filtered value when the state update is synchronized 
with the measurement update moment, otherwise outputs the state prediction value, which is a complete fil-
tered estimation of the state information. For the problem of unknown correlation between sensors, this paper 
adopts the DSICI fusion algorithm to fuse the filtering results provided by local filters. The fusion estimation 
error accuracy of this method is improved by 33% compared with DSCI, and the iterative running time can be 
controlled within 3ms, which ensures the reliability of the fusion results and reduces the computational cost of 
the system. Although, the algorithm proposed in this paper is feasible after simulation data analysis. However, 
the implementation of this paper’s algorithm transplanted to the hardware platform (Unmanned vehicles, UAV 
cluster cooperative positioning operations and other fields) is worthy of the author’s deep thought.
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Figure 7.   Comparison of DSCI, DSEI and DSEI fusion estimated running times.

Table 1.   The iterative running times of the DSCI, DSEI and DSICI fusion method.

Fusion method DSCI DSEI DSICI

Running time 0.030756 s 0.002798 s 0.002885 s
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