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Spike synchrony as a measure 
of Gestalt structure
Viktoria Zemliak 1,2*, Julius Mayer 1,2, Pascal Nieters 1 & Gordon Pipa 1

The function of spike synchrony is debatable: some researchers view it as a mechanism for 
binding perceptual features, others – as a byproduct of brain activity. We argue for an alternative 
computational role: synchrony can estimate the prior probability of incoming stimuli. In V1, this 
can be achieved by comparing input with previously acquired visual experience, which is encoded in 
plastic horizontal intracortical connections. V1 connectivity structure can encode the acquired visual 
experience in the form of its aggregate statistics. Since the aggregate statistics of natural images tend 
to follow the Gestalt principles, we can assume that V1 is more often exposed to Gestalt-like stimuli, 
and this is manifested in its connectivity structure. At the same time, the connectivity structure has 
an impact on spike synchrony in V1. We used a spiking model with V1-like connectivity to demonstrate 
that spike synchrony reflects the Gestalt structure of the stimulus. We conducted simulation 
experiments with three Gestalt laws: proximity, similarity, and continuity, and found substantial 
differences in firing synchrony for stimuli with varying degrees of Gestalt-likeness. This allows us to 
conclude that spike synchrony indeed reflects the Gestalt structure of the stimulus, which can be 
interpreted as a mechanism for prior probability estimation.

Neurons in various cortical areas fire synchronously in response to various tasks. First evidence of synchronous 
firing was found in the sensory cortex, e.g. the primary visual  cortex1,  extrastriate2 and primary auditory  cortex3,4. 
Additionally, spike synchrony was later discovered in the primary motor  cortex5 and frontal  cortex6.

However, the function of spike synchrony has been a subject of a long-standing debate in the neuroscience 
community. Two most prominent hypotheses argue that synchrony is either a byproduct of brain  activity7,8, or 
that it serves as a mechanism of binding the perceived information, thus creating a representation of the whole 
from the separate input  components9,10. In the light of this hypothesis, synchrony can be used to perform contour 
 integration11,12.

Along with the binding hypothesis, some research suggests that synchrony in the beta or gamma frequency 
range can serve for attention modulation and relevant stimulus  selection13–15. Synchrony associated with the 
attention distribution can also be observed between multiple functional brain  areas16.

In our work, we argue for an alternative view on the computational role of synchrony: it can indicate the 
Gestalt structure and hence the prior probability of the incoming visual  stimulus17. That is, if the cortical units are 
familiar with the stimulus, they tend to fire synchronously in response to it. We suggest that spike synchrony in 
populations of neurons is an estimator of the match between the stimulus and the stimulus prior that is encoded 
in the network structure.

Additionally, we argue that synchrony, and in turn the estimate of the stimulus matching and the encoded 
prior, is an emergent property that spreads across larger parts of the network. Spike synchrony provides additional 
information which is not directly encoded in the stimulus pattern.

Last but not least, it is worth mentioning that a number of studies on spike synchrony view it in the context of 
brain oscillations of various  frequencies18. However, we want to highlight that we do not rely on oscillatory activ-
ity patterns and their frequency or phase in this paper. Instead, we show that the computational role of synchrony 
arises solely from the noise induced coherence—a mechanism depending on the network connectivity structure.

Synchrony evidence
Spike synchrony has been observed in various behavioral contexts. In the sensory cortex, synchronous firing 
depends on properties of the input. For example, neighboring neurons of the primary auditory cortex with similar 
receptive fields fire simultaneously, which can be seen at all layers between all distinguishable cell  types19. The 
synchronous firing of the distant neurons was shown in the primary somatosensory  cortex20. Spike synchrony 
has been widely observed in the primary visual cortex (V1). It depends on certain geometrical characteristics 
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of the input stimuli: spatial  continuity1 and orientation  similarity21. Thus, neurons of V1 fire synchronously in 
response to continuous visual stimuli and stimuli with homogeneous angle orientation.

Besides the sensory cortex, synchronous firing was found in the executive areas. In the primary motor cortex, 
cells with similar muscle fields tend to fire  synchronously22. There was also evidence that neurons of the primary 
motor cortex fire synchronously with both the performed and the intended  action23. The results of the latter 
might be perceived controversial due to the choice of the analysis method, but they were replicated with use of 
the more robust  techniques24.

Synchronous firing can also correlate to higher cognitive functions. Cells in the middle temporal area (MT) 
fire synchronously in relation to decision  making25. In the prefrontal cortex, the neurons can exhibit simultaneous 
firing during working memory  tasks26,27. The firing of the neurons of the inferotemporal cortex can synchronize 
when monkeys process face  features28.

Neural basis of synchrony
The neural basis of spike synchrony lies in horizontal intracortical  connections29,30. These connections mostly 
arise from pyramidal cells and are parallel to the cortical  surface31. Their important property is that neurons 
which fire in similar contexts tend to form such strong connections. Horizontal connections were found in 
various brain areas, e.g. in the primary motor cortex between neurons representing similar muscle  groups32.

The sensory cortex was also shown to be full of intracortical horizontal connections. For example, cells of 
the auditory cortex that have similar bandwidth and characteristic frequency selectivity are well connected to 
each  other33. Horizontal connections in the somatosensory cortex can be formed even between the distant cells 
which respond to tactile stimuli at the opposing  fingertips34. Interestingly, in this case well connected cells of the 
somatosensory cortex do not have similar receptive fields, but rather are engaged in the common somatosensory 
context.

Since the current research is primarily focused on the primary visual cortex, we describe its horizontal con-
nections and other architectural properties in more detail. V1 area is known to be retinotopically organized, 
i.e. its neurons respond to the stimuli, whose retinal coordinates match the cortical position of these neurons. 
Besides, these neurons have orientation selectivity. Thus, each V1 cell is spatially and orientationally tuned: it 
fires when there is a visual stimulus with the particular angle in the particular region of the retina. The cells that 
are responding to the specific orientation are forming cortical columns, which are in turn organized in hyper-
columns. Columns that constitute one hypercolumn share the similar receptive  fields35.

There are two main factors that influence presence and strength of the horizontal intracortical connections 
in V1: the spatial proximity of the receptive fields, and the similarity of the preferred  orientation36,37. Thus, the 
cells that are responding to spatially neighboring visual stimuli of the similar orientation, tend to have strong 
horizontal connections. On the physiological level, the stronger connections between neurons with similar 
orientation tuning are manifested in larger  synapses38.

At the same time, intracortical horizontal connections are subject to change, learn, and adapt to the experi-
ence. In adults, the plasticity of horizontal intracortical connections is associated with acquiring new  skills39. 
During the development of the visual cortex, first the unclustered and weakly specified horizontal connections 
arise. Later they become more refined and fine-tuned under the control of visual  experience40,41.

Natural image statistics and Gestalt principles
Thus, the horizontal connectivity in V1 reflects the acquired visual experience. This experience can be manifested 
in the form of aggregate statistics of experienced natural visual  stimuli42. There has been numerous research on 
various environmental statistics that can influence neuronal connectivity and neuronal activity patterns (see 
Ref.43 for review). So, what are the relevant statistics of natural visual scenes that shape the horizontal connec-
tivity in V1?

Brunswik & Kamiya have first shown that one of the crucial statistical bases in natural images are the Gestalt 
 principles44. The Gestalt principles describe the mechanism for grouping and interpreting visual elements. The 
elements which are following these principles are more likely to be perceived as a holistic object, rather than 
separate ones. The Wertheimer landmark paper included six Gestalt principles: proximity, similarity, uniform 
density, direction, common fate, good  continuation45. Since then, the Gestalt theory has been highly debatable, 
and various researchers have suggested up to a hundred new grouping  principles46. On the contrary, there is an 
idea that all Gestalt principles are the special instances of a single general Good Gestalt  principle47.

The natural images statistics have been shown to be consistent with certain Gestalt principles, including prox-
imity, continuity and  similarity44,48–51. It was also demonstrated how the Gestalt-based perceptual grouping can 
be shaped and modulated by the visual  experience52,53. Sigman et al. found that the regularities in natural images 
follow the Gestalt continuity principle, and showed how such regularities are reflected in the V1  connectivity51. 
In Onat, Jancke, & König the Gestalt principles were also shown to be manifested in the V1 connectivity, but 
with the natural movies used as stimuli, rather than static  images42.

As summarized in Korndörfer et al. most often experienced and behaviorally relevant natural visual stimuli 
appear to have the Gestalt-like structure, and it manifests at the level of intracortical  connectivity17. And this 
Gestalt-structured connectivity, in turn, is assumed to be the basis of spike synchrony in visual  cortex29–31,36.

Also, Ref.17 suggested the mechanism behind spike synchrony emerging in the system in the presence of 
noise. They showed that the noise-induced coherence is dependent on the connectivity structure and the con-
nectivity strength, and is reflecting a match between the input stimuli and connectivity patterns encoded in the 
network. In our study, we use this mechanism by designing specific connectivity patterns we see in V1, to study 
several Gestalt principles known from psychophysics: proximity, similarity, and continuity (see “Results” for the 
description of said principles and corresponding experiments).
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Results
We used a pulse-coupled fully-excitatory Izhikevich spiking  network54 in a noisy environment, to show that 
neuronal synchrony reflects how closely the visual input stimulus follows the Gestalt principles. Our network 
consists of Izhikevich neurons with additional dynamics of open receptors and neurotransmitter conductances 
(see “Methods” for a detailed model description). Neurons in the model are organized retinotopically, have 
spatial and orientation selectivity, and are connected in all-to-all fashion. The schematic model representation 
is depicted in the left panel of Fig. 1.

The connectivity structure is defined by a connectivity matrix and follows a simple rule: the connection 
strength between two neurons depends on their spatial distance and difference in orientation selectivity. Thus, 
neighboring neurons with shared orientation preferences are strongly connected, whereas the most distant 
neurons with different orientation selectivity form the weakest connections. The preferential connections and 
larger synapses between neurons with similar receptive fields were shown in  V136,38.

Thus, each neuron receives lateral input through the horizontal connections defined in a connectivity 
matrix, and external input from the input images. We simulated 2 s of activity of each neuron. We measured the 
synchrony of their firing responses as the noise-induced coherence, and refer to it as Rsync (see “Methods”).

To study how spike synchrony reflects the Gestalt structure of stimuli, we ran three experiments for 
three Gestalt principles: proximity, similarity, and continuity. Within each experiment, we first generated a 
set of artificial input stimuli, then ran 100 simulation trials of our model on each stimulus (14 stimuli for all 
experiments in total × 100 trials). One run of every trial simulated 1500 ms of neuronal activity. Finally, for each 
input stimulus, we measured and averaged firing synchrony over all 100 trials. Figure 1 shows the experimental 
pipeline.

For each simulation experiment, we used a set of stimuli that followed the Gestalt principles to a different 
degree. In other words, stimuli had gradual Gestalt-likeness. One stimulus consisted of several line segments, 
which were organized in greater or lower accordance with a certain Gestalt principle (see Fig. 8 in "Methods").

(1) The Gestalt principle of proximity implies that single visual items near each other are perceived as an 
aggregation into a larger visual composition. In our context, that refers to input stimuli consisting of two 
segments on various distances from each other. The smaller the distance between the segments, the more 
Gestalt-like the entire stimulus.

(2) Visual components can also be integrated into perceptual groups based on the similarity of their appearance. 
This classification of elements by visual features is an instance of the Gestalt principle of similarity. In our 
work, we interpret similarity as shared angle orientation: if two parts of the stimulus share the similar 
orientation, the entire stimulus is highly Gestalt-like. Hence, the bigger the angle difference, the less Gestalt-
like the stimulus is.

(3) The Gestalt principle of continuity is based on the idea that visual elements are preferably grouped if they 
are organized in a continuous line. Thus, elements with abrupt changes in orientation are more likely to 
be perceived as separate entities. In our experiments, each continuity stimulus consists of 4 segments. 
Segments 1 and 3 share the same orientation and thus constitute a continuous line, and segments 2 and 4 
share another orientation. The smaller the orientation difference between these two continuous lines, the 
more the entire stimulus follows a Gestalt principle.

Figure 1.  Model and simulation pipeline. (A) Model architecture: neurons with spatial and angle preferences, 
with specified connections. All connections of a black neuron with neurons in a neighborhood of 2 are shown. 
A color bar shows the relative connectivity strength. (B) Simulation pipeline: stimuli patterns of various Gestalt-
likeness are sent to the model as Poisson spike trains; spatially- and orientation-selective neurons in the model 
detect angles and become activated in the locations which receive input; spike synchrony is measured across the 
neurons from the activated subsets.
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Essentially, the input stimuli for similarity consist of two lines making contact at a single point, while the 
continuity stimuli consist of two lines crossing each other at the intersection point. The proximity stimuli are 
represented by two lines of the similar angle orientation, located on various distances from one another (see 
“Methods” for a detailed stimuli description).

We measured synchrony of firings of neurons in the model, in response to input stimuli. Importantly, we 
considered only those neurons which were receiving external input from the stimuli. The input images were used 
as a model input in the form of the Poisson spiking process. Please see “Methods” for a comprehensive description 
of every stimulus, and the procedure of transforming image stimuli into Poisson spiking input.

Our main measurement was Group Rsync, and we additionally measured Rsync in pairwise fashion (we fur-
ther refer to it as Avg Pairwise Rsync), to better illustrate the differences visually. Figure 2 provides an example 
of selecting neurons for both measurements.

For Group Rsync, we randomly selected 4 neurons from each stimulus segment and measured the synchrony 
of all their firings together. The amount of neurons to measure within one segment is arbitrary, we tested various 
numbers from 1 to 6 and did not observe any difference in the results. For Avg Pairwise Rsync, we measured 
and then averaged synchrony between all pairs of neurons from similar and different segments of the stimuli 
independently.

Synchrony for minimal and maximal Gestalt-likeness
First of all, we measured the synchrony between firings of neurons receiving input from two different line 
segments (Fig. 3). For the proximity and similarity principles, we considered left and right segments. For the 
continuity principle, the synchrony was measured between neurons which receive input from pairs of segments: 
left and top, left and right, right and bottom, top and bottom. From each segment, 5 neurons were randomly 
selected for synchrony measurements.

Measured synchrony reflected how closely the entire stimulus was following a certain Gestalt principle. Highly 
significant (p < 0.001) differences in synchrony were detected between stimuli with the greatest and the lowest 
Gestalt-likeness for the proximity and similarity principle, and significant difference (p < 0.01) for the continuity 
principle. We further report the results for all three principles.

For the proximity principle, the difference was measured as the size of the gap between two segments. The 
smaller the gap, the stronger the entire stimulus was following the proximity principle. Here, we considered 
stimuli under two conditions: minimal (0 pixels) and maximal (4 pixels) distance between two segments. The 
median synchrony was equal to 0.26 between two segments of the stimulus with a spatial distance equal to 0 (min. 
spatial distance). The median synchrony was equal to 0.22 for segments of the stimulus with the spatial distance 
equal to 4 (max. spatial distance). The non-parametric Wilcoxon rank test showed a significant difference with 
the p-value being less than 0.001.

For the similarity principle, the angle orientation difference between two line segments was measured. 
The smaller the difference, the closer the entire stimulus was following the Gestalt principle of similarity. We 
considered stimuli under two conditions: minimal (0°) and maximal (90°) angle difference between two segments. 
The median synchrony was equal to 0.28 between two segments of the stimulus with an angle difference equal 
to 0° (both segments having equal angle orientation). For the stimulus with a between-segment angle difference 
equal to 90°, the median synchrony was only 0.2. The Wilcoxon rank test showed a significant difference with 
the p-value being less than 0.001.

For the continuity principle, the angle difference between two lines was measured, with a smaller difference 
indicating that the stimulus was following the continuity principle more strongly. We considered stimuli under 
two conditions: minimal (23°) and maximal (90°) angle difference between two lines. For the largest angle 
difference (90°), the median synchrony between segments lying on the same line was equal to 0.306. The median 

Figure 2.  Selecting neurons for synchrony measurements. (A) Group Rsync. Several neurons are selected from 
each stimulus segment, then synchrony is measured for the group of all selected neurons (marked orange in the 
picture). (B) Avg Pairwise Rsync. For each neuron (consider the red neuron as an example), we first measured 
its firing synchrony with every other neuron from the same segment (marked orange) and averaged the result. 
Second, we measured its synchrony with every other neuron from the other segment (marked orange) and 
averaged this result too.
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synchrony between segments of different lines was equal to 0.299. The Wilcoxon rank test showed a significant 
difference with the p-value equal to 0.003. As for the smallest angle difference (23°), the median synchrony 
between segments of the different lines was equal to 0.353. The median synchrony between segments of the same 
line was equal to 0.355. The Wilcoxon rank test showed a non-significant difference with the p-value equal to 
0.34. Thus, the difference in synchrony was more pronounced for a larger difference between the two lines. For 
the smallest difference (23°), the difference in synchrony was insignificant.

The difference in synchrony between more and less Gestalt-like stimuli was more prominent for the proximity 
and similarity experiments, compared to the continuity experiment. At the same time, the overall synchrony 
was greater for both continuity experiment setups (23° and 90° angle difference) than for any of the others. The 
maximal measured synchrony for the continuity experiments exceeded 0.4, while the maximal synchrony for 
proximity and similarity was under 0.35. Such inconsistency can be explained by the greater overall excitation 
in the continuity experiments, since more neurons were receiving both external input and lateral input from 
the horizontal connections. We assume that lateral input is crucial for establishing synchrony, since neurons 
have to interact with each other in a recursive fashion through the synapses. However, all the experiments with 
varying significance levels and effect sizes showed that the Gestalt-likeness of the input is reflected in the spiking 
synchrony of corresponding neurons.

Throughout the experiments we assumed that spike synchrony highly relies on the temporal structure of 
the spike trains, rather than non-temporal characteristics such as firing rate. To test this assumption, we did a 
control measurement for all three experiments. For each spike train, spike times were randomly jittered across 
the time scale. No differences in synchrony were observed between Gestalt-like and non Gestalt-like conditions 
on time-jittered data (see Supplementary Note 1).

Group synchrony and the Gestalt structure of the stimulus
We tested how spike synchrony changes with respect to gradual changes in the Gestalt structure of the stimuli. 
For the Gestalt principles of proximity and similarity, synchrony increases gradually alongside the increasing 
Gestalt-likeness of the stimuli. For continuity, the difference in synchrony between Gestalt-like and non-Gestalt-
like stimuli segments also increases simultaneously with the increasing difference between these segments.

In the proximity experiment, we implemented the Gestalt-likeness of the stimulus as varying spatial dis-
tances between the segments: as the spatial distance increases, the Gestalt-likeness decreases (Fig. 4). We used 
input stimuli with between-segment distances varied from 4 to 0 and measured group spike synchrony for each 
stimulus.

Kruskal–Wallis test showed significant between-group differences with p-value < 0.0005, and the effect size 
equal to 0.22. We further applied nonparametric Dunn test with Bonferroni adjustment for multiple comparisons 

Figure 3.  Rsync differences for most Gestalt-like and least Gestalt-like stimuli. (A–D) Stimuli for proximity, 
similarity, and continuity are described in further detail in Methods. (E–G) Average pairwise Rsync for each 
neuron’s spike train with every neuron from the other segment. Shown in the percentage from maximal 
measured Rsync. (H–J) Group Rsync was measured within a group of 10 randomly selected neurons, 5 for each 
stimulus segment.
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and found statistically significant differences between the following groups: distances 0 and 2 (p < 0.01), 0 and 3 
(p < 0.001), 0 and 4 (p < 0.001); 1 and 3 (p < 0.001), 1 and 4 (p < 0.001); 2 and 4 (p < 0.001). Interestingly, differences 
for distances 1 and 2, 2 and 3, 3 and 4 were not significant. The most Gestalt-like stimulus with the 0 distance 
between segments led to significant differences in synchrony with the stimuli with all the other between-segment 
differences. The most significant differences were observed between stimuli with the greatest (0 distance) and 
lowest (3 and 4 distance) Gestalt-likeness.

In the similarity experiment, the angle difference between the stimulus segments was designed to reflect its 
Gestalt-likeness: a smaller difference corresponds to higher Gestalt-likeness (Fig. 5). Similar to the proximity 
experiment, we used input stimuli with various angle differences from 90° to 0° and measured the group spike 
synchrony.

Kruskal–Wallis test showed significant between-group differences with p-value < 0.0005, and an effect size 
equal to 0.3. The subsequent non-parametric Dunn test with Bonferroni adjustment for multiple comparisons 
showed significant differences between the following groups: angle differences 0° and 23° (p < 0.001), 0° and 45° 
(p < 0.001), 0° and 68° (p < 0.001), 0° and 90° (p < 0.001). Only the most Gestalt-like stimulus with the 0° angle 
difference between segments led to highly significant differences in synchrony with the stimuli with all the other 
between-segment differences.

For each stimulus in continuity experiments, we always compared two groups: with stimulus segments con-
stituting one line or lying on two different lines (Fig. 6). The angle difference between lines varied from 90° to 
23°. Unlike similarity experiments, we did not consider a 0° angle difference for continuity, because in that case 
two lines would be merged into one, and segments 1 and 4, 2 and 3 would coincide.

Since only two-group comparisons were conducted, we used a Wilcoxon rank test. For two smallest angle 
differences between lines and hence the greatest Gestalt-likeness (23°), we have not observed significant 
differences in synchrony. However, the greater angle difference and the lower Gestalt-likeness led to greater 
differences in synchrony. Significant differences were detected for greater angle differences: p < 0.05 for 45°, 
p < 0.001 for 68°, p < 0.01 for 90°. The 90° difference led to the second greatest significance level, and the results 
in general fell in line with our expectations: greater Gestalt-likeness corresponds to greater spike synchrony 
between segments.

There can be multiple reasons to explain the lower difference in synchrony between Gestalt-like and non-
Gestalt combinations of segments (i.e. segments lying on the same or on different lines within one stimulus) 
for 90°. Since we measured the synchrony between segments 1 and 2, 3 and 4 (see Fig. 8 for continuity stimuli 
segmentation), one can observe that spatial distance is lower between 1 and 2 for 90°, than for all other angles. 
Thus, while the angle difference between segments increases, the spatial distance decreases at the same time. In 
accordance with the connectivity structure in V1, both spatial distance and orientation similarity are mapped 
on the interneuronal connectivity strength in our model (see Eqs. 1–5). Since the spike synchrony depends 
on connectivity (see Introduction), it depends on both spatial distance and orientation simultaneously. If the 
connectivity in V1 was organized differently and only incorporated the angle difference, then the spatial distance 
would not have an impact on the synchrony and thus the synchrony would be low for segments with 90° angle 

Figure 4.  Group Rsync for proximity. Comparison of group Rsync for all stimuli conditions in the proximity 
experiment. For every stimulus, 4 neurons were randomly selected from each stimulus segment, and the group 
Rsync was measured between all 8 of them. (A) Proximity stimuli with various distances between the segments. 
(B) Comparison of group Rsync for all the stimuli. (C) Results for non-parametric Dunn test with Bonferroni 
adjustment for multiple comparison, rounded to 4 decimal. * stands for p < 0.05, ** for p < 0.01, *** for p < 0.001.
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Figure 5.  Group Rsync for similarity. Comparison of group Rsync for all stimuli conditions in the similarity 
experiment. For every stimulus, 5 neurons were randomly selected from each stimulus segment, and the group 
Rsync was measured between all 8 of them. (A) Similarity stimuli with various angle differences between the 
segments. (B) Comparison of group Rsync for all the stimuli. (C) Results for non-parametric Dunn test with 
Bonferroni adjustment for multiple comparison, rounded to 2 decimal. *** stands for p < 0.001.

Figure 6.  Group Rsync for continuity. Comparison of group Rsync for all stimuli conditions in the continuity 
experiment, for neurons from continuous and different segments of the stimuli. For every stimulus, 5 neurons 
were randomly selected from each stimulus segment, and the group Rsync was measured between all 10 of 
them. Please see Fig. 8 in Methods for details on stimuli segmentation. (A) Continuity stimuli with various angle 
differences between the segments. (B) Comparison of group Rsync between different and continuous segments 
for all the stimuli.
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difference and higher for segments with smaller angle difference, regardless of the distance between them. Also, 
the continuity stimuli are more complex than similarity stimuli, despite the similar variety at the angle difference. 
Thus, the model receives more overall excitation, which may lead to increase in the system’s response variability 
and unexpected results.

However, it is worth noting that the result of the Wilcoxon test still remains significant in this case. Also, 
we do not observe a significant difference in synchrony for the most Gestalt-like stimulus with the 23° angle 
difference, despite the greatest spatial distance between neurons. These two observations lead to the conclusion 
that synchrony still reflects the Gestalt structure of the continuity stimuli, although the effect is not as pronounced 
as for the similarity experiment.

We also emphasize that the synchrony differences in response to various Gestalt likeness were measured for 
the entire group of activated neurons, which means that the information about the stimulus is shared across all 
neurons receiving input. Thus, synchrony can operate as an emergent phenomenon encoding global information 
about the entire stimulus.

Average pairwise synchrony and the Gestalt structure
Figure 7 illustrates the difference between the Avg Pairwise Rsync within similar and different line segments. 
For all three types of experiments (proximity, similarity, and continuity), Rsync within one stimulus segment 
was higher than between neurons belonging to different segments. At the same time, Rsync both within one 
segment and between two segments was increasing in accordance with the Gestalt-likeness of the stimulus. Thus, 
the smaller the distance between two segments for proximity stimuli (see Fig. 8), the greater both within- and 

Figure 7.  Avg pairwise Rsync. Avg pairwise Rsync measured for each stimulus separately. Only neurons 
receiving the external input are shown. Rsync of each neuron’s spike train with every neuron from the similar 
and the other segment is measured pairwise and then averaged. (A,B) Avg Pairwise Rsync measured for each 
stimulus separately, for proximity and similarity experiments. On the left, for each neuron the synchrony with 
the other neurons of its segment is measured. On the right, for each neuron of segment 1 the synchrony with the 
neurons of segment 2 is shown, and for each neuron of segment 2 the synchrony with the neurons of segment 1 
is shown. (A) Avg Pairwise Rsync is demonstrated for stimuli with various distances between the segments. (B) 
Avg pairwise Rsync is demonstrated for stimuli with various angle differences between the segments. (C) Avg 
pairwise Rsync measured for each stimulus separately, for continuity experiments. On the left, for each neuron 
of segment 1 the synchrony with the neurons of segment 3 is shown, and for each neuron of segment 3 the 
synchrony with the neurons of segment 1 is shown. On the right, for each neuron of segment 1 the synchrony 
with the neurons of segment 2 is shown, and for each neuron of segment 3 the synchrony with the neurons 
of segment 4 is shown. Mean pairwise synchrony is demonstrated for stimuli with various angle differences 
between the lines.
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between-Rsync was. For the similarity and continuity stimuli, the smaller the angle difference between two seg-
ments, the higher the pairwise Rsync between them. Thus, the more similar the stimuli segments were to each 
other – the higher spike synchrony was observed between neurons tuned to different segments of these stimuli.

This illustrates that spike synchrony can be measured not only in a group, but also in a pairwise fashion, 
and still be an indicator of how closely the stimulus is following the Gestalt principles. Since the pairs for 
measurement included neurons within the stimulus on various distances from each other, this stays in line with 
the argument about the global nature of spike synchrony. It should also be noted that overall Avg Pairwise Rsync 
stays maximal for continuity experiments. Again, this observation is consistent with the Group Rsync increasing 
for continuity experiments due to the greater amount of both external and lateral excitatory input to neurons.

Additionally, we investigated how spike synchrony depends on the connectivity structure in the network, since 
synchrony in V1 was shown to arise from the horizontal intracortical connections. Avg Pairwise Rsync appeared 
to be correlated with the connectivity strength between neurons, with the Pearson r correlation coefficient up to 
0.42. It shows that the connectivity structure is reflected in the patterns of synchronous firing to a certain extent. 
For more detail on correlation analysis please see Supplementary Note 2.

Discussion
We showed that fully-excitatory spiking networks in a noisy environment demonstrate synchronous response 
to the Gestalt-like visual stimuli. The better stimuli follow the said Gestalt principles (proximity, continuity 
and similarity), the greater is spike synchrony. This demonstrates the computational role of spike synchrony 
as a mechanism for estimating the match between the stimulus and a prior encoded in a network connectivity 
structure.

Unlike a number of retinotopic modeling studies, our model does not incorporate inhibitory neurons; it is a 
fully-excitatory network. Although inhibitory neurons can induce zero-phase or near zero-phase synchronization 
pattern, we intentionally did not include them in the scope of this study, to investigate the pure effect of noise-
induced coherence. This particular type of synchrony is shaped by the excitatory lateral connections and noise 
in the system, and we aimed to isolate noise-induced coherence from the other dynamics, caused by interactions 
between excitatory and inhibitory neurons.  Reference17 illustrated that presence of the inhibitory neurons in 

Figure 8.  Input stimuli. Input stimuli for experiments in descending order of their adherence to Gestalt-
likeness. (A) Input stimuli for the Gestalt principle of proximity. Each stimulus consists of two segments: 1 
and 2. The spatial difference between segments varies from 4 to 0. (B) Input stimuli for the Gestalt principle of 
similarity. Each stimulus consists of two segments: 1 and 2. The angle orientation difference between segments 
varies from 90° to 0°. (C) Input stimuli for the Gestalt principle of continuity. Each stimulus consists of four 
segments: 1, 2, 3, 4. Segments 1 and 3, 2 and 4 constitute continuous lines. The angle difference between lines 
varies from 90° to 0°.
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the Izhikevich spiking system is not necessary for the emergence of noise-induced coherence, shaped by the 
network connectivity.

In V1, often co-activated excitatory cortical cells are well connected, which reflects the long-term visual 
experience. We argue that synchrony between such strongly connected units can serve as a measure of how well 
the perceived stimulus matches the acquired visual experience. Thus, its increase in response to Gestalt-like 
stimuli (unbroken lines, lines with the segments of similar orientation, etc.) shows that most often-experienced 
behaviorally relevant objects in the visual environment tend to follow the Gestalt structure. This is consistent 
with the natural statistics observations  of44,48–51. That is, if the horizontal connections reflect the most often 
experienced visual objects and serve the basis for spike synchrony, it should be natural for neurons to synchronize 
in response to Gestalt-like stimuli.

From the Bayesian perspective, we demonstrated that synchrony in the model of V1 can be interpreted as a 
familiarity of an encoded stimulus, which is a match of prior probability of an input that is encoded in the network 
structure, and the stimulus that is encoded in the local spike rate of neurons. This mechanism is consistent with 
the observed spiking data recorded under stimuli conditions reflecting the Gestalt  law1. As shown in Ref.17, 
synchrony can provide an estimate for match between a current stimulus and previously learned connectivity 
structure. Our model does not learn the connections directly, but instead uses a predefined connectivity matrix, 
which follows the connectivity rules typically observed in V1. We treat connections as previously learned, or 
pretrained, and calculate the match of connectivity with input stimuli through measuring spike synchrony in the 
system. This mechanism could equally be utilized in models which would actively learn network connections 
different from V1 connectivity.

Alternatively, spike synchrony can be viewed in the light of contour integration, which was previously studied 
in Ref.12 with a similar Izhikevich spiking model. Contours in natural image statistics can often be seen as 
smoothly connected elements, which is in line with the idea of synchrony reflecting commonly occurring natural 
image statistics through V1 connectivity structure. However, when interpreting spike synchrony in an Izhikevich 
network, one should keep in mind that in multi-layer models the absolute values of synchrony can also be 
influenced by the Izhikevich model  parameters55.

The transition of a strictly local encoding of stimulus features, towards an emergent property that forms 
spatially extended representation based on spike synchrony, is a crucial and efficient computational feature. It 
allows separate processing of the stimulus content on the local level, and processing based on global properties 
linked to stimulus familiarity. However, we emphasize that both local and global properties are essential to 
fully characterize the stimulus. Two stimuli can be equally familiar to the system, and yet very different from 
one another. For example, consider one stimulus with a high Gestalt proximity and low Gestalt similarity, and 
another – with high similarity and low proximity. Both stimuli would evoke similar synchrony in the model, 
and only consideration of the local properties, such as active neurons receptive fields, could provide information 
necessary to identify the stimulus. Global synchrony does not replace local features, but rather provides additional 
information.

It can be, for instance, a proxy for how well a stimulus is encoded (low familiarity corresponds to weak 
information and vice versa), or whether the stimulus is new or has been encountered before, regardless of what 
exactly the stimulus is. For agents, animals and humans, this information might be at least as relevant as the 
stimulus information itself. This emergent proxy will allow the agent to plan and perform continuous actions 
that can be stopped if the collected information is sufficient. Such active sampling and inference is discussed 
in different aspects across the fields of cognitive science, neuroscience and machine learning, and seems to be 
best described by the theory of Posterior sampling in reinforcement  learning56. We therefore believe that spike 
synchrony, as an emergent phenomenon of spiking neural networks with strictly local stimulus feature encoding, 
is a computational principle that allows for the inference of global features, i.e. stimulus family, that can be 
relevant for efficient active learning and sensing.

Methods
Input stimuli
In our study, we examined the relationship of spike synchrony and the binding of visual stimulus components 
for three Gestalt grouping cues: proximity, similarity, and  continuity45. The principles can also interact with each 
other, either strengthening or weakening their effects when combined.

(1) Proximity principle: According to Gestalt theory, the principle of proximity states that when single visual 
components are located near each other, they are perceived as forming a larger visual composition. The 
aggregation of individual elements is grouped together to create a new superordinate entity.

(2) Similarity principle: Another principle of Gestalt theory is the similarity principle, which involves 
integrating visual components into perceptual groups based on the similarity of their appearance. This 
principle classifies elements according to their visual features.

(3) Continuity principle: The continuity principle, a fundamental aspect of Gestalt theory, organizes patterns 
into new compositions based on the alignment of their established direction. Conversely, patterns with 
abrupt changes in orientation are partitioned into distinct elements. For intersecting lines, the concept 
of Gestalt-likeness relates to how effectively the lines form a continuous shape or pattern. The continuity 
principle helps distinguish stimuli with visual overlap.

For the experiments, we ran simulations with a spiking neural network receiving artificial stimuli. The visual 
input for our network was generated from simple artificial images of size 20 by 20 pixels. These stimuli represent 
the input for the early stages of the visual pathway, constituting simple cells recognizing edges with location 
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and orientation selectivity and implementing the examples of Gestalt theory principles (1)—(3) respectively. 
Before being presented to the network, input stimuli are partitioned into different channels by an edge detector 
sensitive to orientation. For the edge detector, 2-dimensional kernels are convolved over the input stimuli to 
generate 5 distinct channels fed into the network (see Supplementary Figs. 1–3). This reflects the selectivity of 
the visual cortex to edges of certain angles through hypercolumns and orientation columns. Edges in the input 
stimuli are undirected, limiting the relevant range of orientations from 0° to 180°. Since the size of our networks 
grows exponentially with the number of orientation channels, for reasons of computational efficiency, in the 
experiments only input stimuli with an orientation between 0° to 90° were considered. Sensitivity to the degree 
of orientation was set to 22.5°, resulting in 5 channels for input stimuli of orientations [0°, 23°, 45°, 68°, 90°].

Additionally, we introduced background activity in the form of uniform noise that is added to the input 
stimulus at every simulation step, simulating real-world conditions where input signals are subject to fluctuations. 
The signal-to-noise ratio was set to 0.4, with any higher ratio resulting in the onset of runaway excitation. During 
runaway excitation, the activity within the network is only limited by the spike-rate saturation leading to the 
constant firing of neurons without any meaningful modulation or information processing.

The stimulus is transformed into spiking activity based on a Poisson model of spike generation at a rate of 
40 Hz with a temporal resolution of 0.5 ms. The network receives this probabilistic input from the Poisson spiking 
process—a mathematical model for generating random events that occur independently of each other over time 
with a constant average rate of occurrence. Creating spike patterns probabilistically allows us to capture the 
stochastic nature of neural activity.

A new set of stimuli patterns was created for each experiment, each reflecting a range of Gestalt-likeness of 
the experiment’s Gestalt principle respectively (Fig. 8). The effective representation of the range of degrees in 
Gestalt-likeness closely follows the definition of Gestalt principles, with the assumption that our stimuli models 
similar patterns present in the early processing of the visual pathway sufficiently close.

Input stimuli for the Gestalt principle of proximity are based on the spatial distance between segments. The 
closer the two segments are, the more likely they will be perceived as a group. As the distance between segments 
increases, so does the likelihood of perceiving them as separate entities. Therefore, the degree of Gestalt-likeness 
of stimuli decreases with an increase of range between two segments. A set of 5 stimuli with between-segments 
spatial distances varying from from 0 to 5 pixels, was used in proximity experiments (Fig. 8). Note that the size 
of stimulus segments varies from stimulus to stimulus. Our design choice was to let it vary, but fix the entire 
stimulus size and keep stimuli smaller, for the performance efficiency. The size of stimulus segments did not have 
an impact on the results (see Supplementary Fig. 5).

Input stimuli for the Gestalt principle of similarity are based on the orientation similarity, the similarity of 
segments’ degree of rotation. The closer two segments are in visual appearance the higher their Gestalt-likeness. 
Segments with minimal orientation differences are perceived as having high orientation similarity and are more 
likely to be perceived as a group. As the difference in orientation between segments increases, making them 
visually more distinct, so does the likelihood of perceiving them as separate segments. Therefore, the degree 
of Gestalt-likeness of stimuli decreases. A set of 5 stimuli with 90°, 68°, 45°, 23° and 0° between-segments 
orientation differences increasing in their Gestalt-likeness, was used in similarity experiments (Fig. 8).

Input stimuli for the Gestalt principle of continuity are based on the abruptness of a segment’s change of 
direction in two intersecting lines. Elements arranged in a continuous manner are more likely to be perceived 
as belonging together. Segments with minimal orientation differences are perceived as having high orientation 
similarity and are more likely to be perceived as a continuous line. Additionally, as the difference in orientation 
between two lines decreases so does the likelihood of perceiving the line’s segments as a disjoint part that belongs 
to the other’s segment instead. Therefore, a smaller difference indicates that the stimulus follows the continuity 
principle more strongly. A set of 4 stimuli with 90°, 68°, 45°, and 23° between-lines orientation differences 
increasing in their Gestalt-likeness, was used in continuity experiments (Fig. 8). Unlike in the similarity 
experiments, a 0° angle difference for continuity was not considered for the experiments, since here both lines 
fully merge into one, and segments 1 and 4, 2 and 3 coincide.

All parameters used for generating input stimuli can be found in Supplementary Table 5.

Connectivity
A network architecture was designed to reflect the retinotopic organization of the visual cortex with artificial 
spiking neurons. It comprises a single n × m layer of Izhikevich neurons where n, m correspond to the stimulus 
dimensions. The fixed connectivity of the network structure models the retinotopic organization of the visual 
cortex (V1) and is organized as hypercolumns of neurons selective towards the location and the orientation of 
stimuli. Specifically, the connection strength between neurons is determined by two factors: the spatial proximity 
of the neurons’ receptive fields and the similarity in the angle orientation of the stimuli (see Fig. 1).

(1)  Spatial proximity: Each neuron is receptive to location-specific input from both external stimuli matching 
their retinal coordinates and horizontal connections by all other neurons with their connection strength 
inversely proportional to their distance (Eq. 2). In this way, neighboring neurons with similar receptive 
fields will receive stronger input than distant ones of dissimilar receptive fields. As a distance metric, 
we used the Chebyshev distance  (L∞), which quantifies the maximum difference between corresponding 
components of two vectors in a multi-dimensional space. The distance between two points, A(x1,  y1) and 
B(x2,  y2), in a two-dimensional space is here defined as the maximum absolute difference between their 
corresponding coordinates along the x and y axes (Eq. 1). Compared to Euclidean distance, the Chebyshev 
distance is invariant to the orientation of vectors, treating vectors with horizontal, vertical, and diagonal 
directions equally.
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(2)  Orientation similarity: Neurons within the network are also selective to the orientation of stimuli, which 
is manifested in the formation of orientation-selective cortical columns. A subnetwork of neurons that 
receive input from the same region but select for different orientations represents an orientation-selective 
hypercolumn. All neurons in the network are connected to each other, with a connection strength that is 
inversely proportional to the angle difference (Eq. 4).

Here, α and β stand for the angles which two neurons forming the connection are sensitive to.
Connection weights  Wd and  Wa are scaled with scaling factors for the spatial differences  Sd and angle 

differences  Sa respectively. Later, the resulting connection weights are scaled with a factor  Slat and form the 
resulting lateral connectivity matrix  Wlat.

By taking both spatial distance and orientation similarity into account for building a connectivity matrix, 
our proposed network model emulates a simple retinotopic organization of V1 and provides a mechanism for 
the representation of location and orientation-specific stimuli through the connectivity of neurons within the 
network. Importantly, spatial proximity and orientation similarity have an equal impact on the overall connection 
strength. No self-connections or inhibitory connections were used in our network.

All parameters used for building a connectivity matrix can be found in Supplementary Table 8.

Model
To simulate neurons, we used the Izhikevich model for spiking neural  networks54 with excitatory pulsed coupling. 
The Izhikevich model of a spiking neuron emulates the dynamics of the classical Hodgkin-Huxley  model57 but 
operates more efficiently. It is a two-dimensional system, where each neuron is characterized by two internal 
variables: the membrane potential  vi and the recovery variable  ui. In our network only excitatory connections 
are used (see “Discussion”).

Equations (6) and (8) describe the dynamics of a single neuron i. Its voltage  vi and recovery  ui change over 
time. In Eq. (6), the parameter  Ii defines the entire input to the neuron i. It is further described in Eq. (11), 
(12), (13) ε stands for the voltage noise, and Eq. (7) shows how it is formed: r is a random number taken from a 
uniform distribution between 0 and 1, and modified with a voltage noise scaling factor  Sε set to 0.3.

In Eq. (8), a stands for the timescale of  ui: the bigger it is, the faster is recovery. In our model, we consider 
a = 0.02. The parameter b describes the sensitivity of the recovery variable  ui to fluctuations of the membrane 
potential  vi. We set b = 0.2.

Equations (9), (10) show how the afterspike dynamics of a neuron i. When the value of  vi exceeds the 
activation threshold 30 mV, we record a spike event. After the spike is detected, the value of  vi is reset according 
to Eq. (9), and the value of  ui is updated according to Eq. (10). The voltage reset constant c is set to − 65 mV, and 
the recovery update variable d is set to 6.

The parameter  Ii defines the entire input to the neuron i. It consists of input currents received from lateral 
connections  (Ilat) and the external stimulus  (Iext). The evolution of these currents follows the nonlinear chemical 
model: it describes the faction of open receptors in a synaptic connection, which is driven by a neurotransmitter 
concentration, which in turn depends on the incoming spikes, either lateral or external.

(1)L∞(x, y) = max(|x2 − x1|,
∣∣y2 − y1

∣∣)

(2)Wd = 1/(L∞ + 1)

(3)�α,β = 90◦ − ||α − β| − 90◦|

(4)Wa = 1/(�α,β + 1)

(5)Wlat = (Wd × Sd +Wa × ∗Sa)× Slat

(6)v̇i = 0.04v2i + 5vi + 140− ui − Ii + ǫ

(7)ε = (r − 0.5)× Sε

(8)u̇i = a(bvi − ui)

(9)vi ← c

(10)ui ← ui + d

(11)Ii = Ilati + Iexti

(12)Ilati = (vi − E) ·
∑

j∈J(i)

Wlat
ij × rj
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Here, J(i) is a set of neurons connected to a neuron i.  Wlat is a lateral connectivity matrix (see "Methods" 
"Connectivity"), where each  Wij represents conductance of a synaptic connection between neurons i and j. Thus, 
the lateral input current is represented by a sum of individual input currents from all neurons forming lateral 
connections with the neuron i, weighted by a conductance of each connection.

There is no external connectivity matrix, because each neuron receives external input simply as an 
independent Poisson spiking process, scaled by a factor  Sext. The firing rate of a Poisson process is set to 40 Hz 
(see “Methods” "Input stimuli"). E stands for synaptic reversal potential.

Now, the conductance of every synaptic connection is adjusted by the open receptor fraction r, influenced 
by incoming spikes. For both external and lateral connections, r is driven by neurotransmitter concentration 
in the synaptic cleft  [T]j, which in turn is represented by a pulse of duration τ = 0.02 after each incoming spike.

ri is parameterized, also for both external and lateral connections, by the rise and decay time constants 
α = β = 8. The transmitter concentration  [T]j is the product of two heaviside step functions Θ. They define that 
neurotransmitter is present in the synaptic cleft  ([T]j = 1) starting from the occurrence of a presynaptic spike at 
the moment  Tj, until the moment  Tj + τ.

All model parameters can be found in Supplementary Table 6, and simulation parameters in Supplementary 
Table 7.

Simulations
Separate experiments for the three Gestalt principles were conducted, each with an individual set of stimuli 
generated as described above. Our simulations were run for a total duration of 1000 ms at a temporal precision 
in the model of 0.005 ms, with an additional initial transient period of 500 ms. This transient period was added 
at the initial phase of the simulation during which the network’s state has not yet fully stabilized into its steady-
state behavior. This interval ensures that any synchronous activity as a result of the network’s starting conditions 
will have dissipated, and subsequent synchronous activity is only caused by the input stimulus and the network’s 
connectivity. The activity during the transient period is excluded from the data analysis. For the analysis of the 
spike trains the data were downsampled to 0.5 ms.

Measure synchrony
We measure the temporal synchrony of the neuron spike traces following the procedure from Korndörfer et al. 
2017 by adopting the Rsync metric (Eq. 16)17. It computes the average degree of zero-lag synchrony of the 
network, which ranges from 0 with all neurons firing out of phase, to 1 with all neurons strictly simultaneously 
firing.

Here, Ai is an activation trace of the neuron i from the population S . To retrieve this activation trace, the 
raw binary spike train is first convolved with a causal exponential kernel k(t) =  e–2t, with the timescale = 3 ms. In 
related studies aimed at measuring joint activity of multiple spiking neurons, the timescale varies between 1 and 
10  ms58. Our chosen timescale falls in this range and is comparable to the one of an  EPSP58. The precise choice 
of a timescale does not impact the results, see Supplementary Fig. 4 for details.

Synchrony of a neuron population S is measured on a time interval T . It is given by the variance of the mean 
activation trace of this population, divided by the average variance of all neurons in the population. Intuitively, 
when all neurons are perfectly synchronous, i.e. fire precisely at the same time, the variance of their average 
activation trace is equal to a variance of each individual neuron and, respectively, to their average variance.

In the synchronized case, the sum of signals will display large-amplitude oscillations, while in the 
unsynchronized case, the individual signals will be out of step with each other and their sum will be nearly 
constant. Due to the sensitivity of the measure to the number of active neurons, subpopulations of the network 
are drawn from neurons that receive external input from the stimulus segment. The neurons drawn can be either 
from the same stimulus segment for average within-stimulus synchrony or across stimulus segments for average 
between-stimulus synchrony.

Equipment and settings
Figures 1, 2 were produced using Google Slides web application. Figures 3, 4, 5, 6, 7 and 8 were produced 
programmatically, with use of Python scripts available on the Github repository of the project. Plots for each 
experiment were produced separately, later they were combined into a single Figure using an Inkscape-0.92.3- × 64 
application for Windows. The titles were also added to the resulting figures with use of Inkscape.

(13)Iexti = (vi − E) · rexti × Sext

(14)ṙj = α[T]j(1− rj)− βrj

(15)[T]j = �(Tj + τ − t)�(t − Tj)

(16)Rsync(S, T) =
V̂ar

[〈
Ai (t)�i∈S

]
t∈T〈

V̂ar [Ai(t)]t∈T

〉
i∈S
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Data availability
All data in the work was programmatically generated. The code for generating data, building a model, running 
simulations and analyzing the simulation results, as well as the simulated data logs and statistics, are publicly 
available on a GitHub repository at https:// github. com/ rains ummer 613/ synch rony. Additionally, we assigned a 
DOI to the repository via Zenodo: https:// doi. org/ 10. 5281/ zenodo. 10145 353.
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