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Integration of B‑to‑B trade network 
models of structural evolution 
and monetary flows reproducing all 
major empirical laws
Jun’ichi Ozaki 1, Eduardo Viegas 1,2, Hideki Takayasu 1,3 & Misako Takayasu 1*

We develop a single two-layered model framework that captures and replicates both the statistical 
properties of the network as well as those of the intrinsic quantities of the agents. Our model 
framework consists of two distinct yet connected elements that were previously only studied in 
isolation, namely methods related to temporal network structures and those associated with money 
transport flows. Within this context, the network structure emerges from the first layer and its 
topological structure is transferred to the second layer associated with the money transactions. In this 
manner, we can explain how the micro-level dynamics of the agents within the network lead to the 
exogenous manifestation of the aggregated system statistical data en-wrapping the very same agents 
within the system. This is done by capturing the essential dynamics of collective motion in complex 
networks that enable the simultaneous emergence of tent-shaped distributions in growth rates within 
the agents, together with the emergence of scaling properties within the network in the study. We 
can validate the model framework and dynamics by applying these to the context of the real-world 
inter-firm trading network of firms in Japan and comparing the results of the statistical distributions 
at both network and agent levels in a temporal manner. In particular, we compare our results to the 
fundamental quantities supporting the seven empirical laws observed in data: the degree distribution, 
the mean degree growth rate over time, the age distribution of the firms, the preferential attachment, 
the sales distribution in steady states, their growth rates, their scaling relations generated by the 
model. We find these results to be nearly identical to the real-world data. The framework has the 
potential to be transformed into a forecasting tool to support decision-makers on financial and 
prudential policies.

Over recent years, social, economic, transport, and logistics networks have been enthusiastically investigated. 
Distinct models under the context of complex networks were proposed in order to explain the underlying 
mechanisms associated with the interaction among agents within these systems. We deemed these studies to be 
essential for both theoretical and practical uses, as it can be argued that network science provides a stable and 
consistent generic framework to analyse the complex emerging phenomena observed in these networks. Here we 
give some examples: detecting the rumour diffusion on the SNS network1,2, systemic risk in the banking network 
under economic crisis3,4, and the disorder in supply chains5,6. All these works unveiled significant practical and 
theoretical issues that require careful consideration.

Specifically within the economic and strategic management context, early research7,8 on large inter-firm trade 
networks adopting network and graph theory methods provided significant contribution to the field by bring-
ing to spotlight specific elements of complex economic systems that were clearly understood but not articulated 
in depth. Indeed, a recent article9 by researchers within the field elegantly contextualise the importance of the 
analysis of supply chain networks for policy making, and it further argues for the development of large datasets 
on a global scale.

Here, we highlight the research and work carried out by academics in conjunction with the National Bank of 
Belgium10. Based on records from VAT sales, an extensive dataset was produced on the inter-firm trade network 
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within Belgium in order to derive classic input and output matrices and to analyse the length of supply chains 
within Belgium. The results provide particular insight into how over 80% of the Belgium are fundamentally 
dependent on production export, even though they only operate directly at local market level.

Another example is the seminal research from the New England Complex Systems Institute11 on Corporate 
Competition12. In this cited study, the authors make use of traditional methodologies associated with complex 
networks13 to evaluate the dynamics of a data set on competition networks among firms in the United States. 
More specifically, the authors compare the results of two micro-dynamics competition models to key properties 
of the real-world, encompassing companies across various sectors and industries in the United States. This is done 
in order to highlight three specific mechanisms of network formation, namely (1) a geographical-mechanism, (2) 
the effects of size of companies in shaping the links (i.e. the traditional preferential attachment mechanism) and 
(3) interdependence between firm-size dynamics and the competition network formation, which is essentially 
modeled as a Gibrat-like stochastic process, through a feedback mechanism.

Whereas significant elements of the research described above, such as the role of the preferential attachment 
mechanism, and the interdependence between firm-size dynamics and network structure, our research has sig-
nificant differences in focus leading to very distinct model dynamics, and yet complimentary results. To start, 
we are less preoccupied with the geographical influence on network formation. This is not to say that these are 
not relevant, as the impact of geography within Japan is indeed part of a separate research from the authors. 
However, they have much reduced role and distinct impact when compared to much larger countries such as the 
United States for reasons of density, area and shape. Firstly, in relation to density, over 40% of the total number 
of Japanese transactions involve companies located in Tokyo prefecture. As importantly, the large majority of the 
other companies are located in few prefectures such Osaka, Nagoya and Kyoto that have excellent fast connec-
tions through the rail infrastructure. Furthermore, as a mountainous country, densities in Japan are concentrated 
within the coast. The transport infrastructure, combined the with the geographical nature of the country leads 
to distortions to analysis based solely on Euclidean distances. Secondly, Japan is 26 times smaller than the US, 
indeed it is smaller than the State of California alone which makes most cities within easy reach by air transport 
(i.e. within one hour). Instead of geography, we are much more preoccupied with the effects of mergers and acqui-
sitions that, together with mortality, have a very significant impact of both trade and competition networks14,15, 
and it is not a focus within the referenced study. In addition, our model is based on the principle that the sales 
growth is a function of the structural changes in the network in line with established research7,8,16–19 within the 
field, which is distinct from the approach adopted by the research on Corporate Competition12.

In addition to the distinct emphasis above, our data is based on a physical and monetary exchange network 
among one million companies, from the very large to the smallest firm, and therefore very distinct from a much 
smaller non-physical competition network. The distinction is particularly noticeable on the balance between 
in and out degrees as well as the power law like behaviour of the various quantities within the system that is 
not observed with the competition network. As behaviours differ, the specific methods associated with growth 
mechanism are also distinct.

Shifting focus from economics to the complex systems context, fundamental models for generating networks 
with specific properties have been studied at length. Barabási and Albert13 succeeded in realising scale-free 
networks, in which the degree distribution follows a power law based on the concept of preferential attachment 
(which resembles the early works on cumulative advantage process20,21), where the probability for a node to get a 
link is proportional to the degree of the node. Miura et al.22 observed the significant influence of the preferential 
attachment mechanism in a real-world empirical data set (i.e. the inter-firm trading network of firms) in Japan. 
However, the latter also shows that preferential attachment in isolation fails to explain the negative 1.3 power 
law exponent observed for the cumulative degree distribution of the Japanese inter-firm trading network, as the 
Barabási-Albert model13 inevitably leads to a constant and negative exponent of 2. Moreover, it was also noted the 
merging (or coagulation) of nodes (representing agents) is an intricate process within several dynamic complex 
systems that go beyond the simple dynamics of creation and destruction of nodes. Therefore, an enhanced model 
of the mergers and acquisitions (i.e. coagulation) of companies was proposed. A subsequent study23 provides 
further insights in relation to the network structure (i.e. in view of 3-body motif distributions).

However, while those previous studies succeeded in replicating the static properties of existing networks, 
they had little focus on the their related dynamical or temporal properties. As importantly, these studies were 
predominantly focused on the interactions of the agents13,22,23, and in very few cases16,17,24 on the consistency 
between the statistical properties of the network and the statistical properties of intrinsic quantities of the agents. 
In any event, they did not attempt to explain how the micro-level dynamics of the agents (or nodes) within the 
network are connected to the exogenous manifestation of the aggregated market (or system) statistical data en-
wrapping the very same agents within that market (or system).

Therefore, it is within this context that we place the motivation for our study: We are primarily preoccupied 
with two elements: (a) going a step beyond a point-in-time network analysis to enhance the understanding of 
the essential mechanisms associated with the evolution of the statistical properties of these networks, and (b) to 
couple into a single two-layered model framework the dynamics of interactions between agents (i.e. the tempo-
ral network structure layer) to the intrinsic quantities characterising the agents (i.e. money transport layer). To 
this extent, our work is to be seen as a new framework that uses a number of the building blocks of modelling 
methodologies previously proposed. However, the framework wraps these into a congruous and coordinated 
framework by extending, refining and fine-tuning a number of the underlying processes. In this manner, we 
can explain both the temporal statistical properties of the network as well as those of the agents within a single 
modelling foundation.

Here, it is worth emphasising that our research is not a simple aggregation of models. The modifications to 
the above methods may look at times subtle in nature (as we attempt to minimise unnecessary changes), but 
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these are fundamental to (a) have better alignment to the real-world dynamics and (b) provide results that are 
fully consistent with all core emerging properties of the system.

Our study is structured as follows. Firstly, within the “Methods” section, we introduce the conceptual frame-
work underpinning our evolving complexity model, explain the process flow, and detail the mechanics associated 
with the distinct layers. The model parameters are derived through a step-by-step iterative process based on the 
real-data analysis and also by ensuring that the fundamental quantities associated with the empirical four laws 
for the temporal network structure and the empirical three laws for the network money transport are always 
maintained in a consistent manner. Secondly, “Results” section is divided into the outputs related to the temporal 
network structure layer and the network money transport layer. Both sections are subdivided by an analysis of 
the key quantities characterising the actual data set, their corresponding fitting elements and the distinct model 
simulation results. We finish with a “Discussion” section where we further explore our key findings and potential 
industrial usage of the modelling framework.

Methods
Structure and combination flow
This study is structured as one single framework that unifies and generates full consistency between two distinct 
yet connected layers based on modelling methodologies from previous studies: (1) the Model for temporal net-
work structure layer and (2) the Model for money transport layer. The schematic figure shown in Fig. 1 provides 
a graphic summary of the structure with its embedded process flow and variables to be used. Also, the model 
pseudocodes are shown in Fig. 2. In addition, Fig. 3 provides a zoomed-in and sequential schematic representa-
tion of the process flow for the parameters setting, where the order of derivation and dependencies are explained 
by connecting each of the parameters to the Figs. 4, 5 and 7 within the “Results” section.

In terms of general process flow, the Model for temporal network structure layer dynamically generates a 
simulated network that evolves in time. Within this layer, it is possible to calculate the key properties concerning 
the network structure, such as degree distributions and the age of nodes. By deriving the parameters from the 
real network data and inputting these into the model, we are able to generate a synthetic network that effectively 
replicates the actual network properties.

Outputs from the synthetic network are transferred to the Model for the money transport layer in order to 
estimate the total annual sales (referred to simply as ‘sales’ thereafter) of every node (or firm). Again, by deriving 

Model for temporal 
network structure layer

Model for network 
money transport layer

Annihilation
prob.

Merger
prob.

Split
prob.

Creation
prob.

Partial 
annihilation
prob.

Tim
e Evolution

∑

, , , ,

independent variables: ,

, , , ,

Transport
Calculation

Figure 1.   The overview of the methodological framework. A single framework unifies two distinct yet 
connected layers: (1) the Model for temporal network structure layer and (2) the Model for money transport 
layer. The model parameters are indicated on the right side of each box (layer).
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the parameters from the real-world sales distribution data, we are able to simulate the total sales as well as the 
time-dependent growth rates.

This is done through an iterative process where the initial parameters are then slightly adjusted (to reduce dif-
ferences between the model results and the real data), and the process is re-initiated until convergence is achieved.

With regards to the parameters setting process, as detailed in Fig. 3, the flow starts with the setting of ppa = 0 . 
Within the temporal network structure layer, an optimal value of pm is then obtained by comparing the actual 
data to the simulation results (Fig. 4a,b). α and D from previous studies are validated based on the actual data 
analysis (Fig. 7a), with ν given. It follows that parameters β and F are fitted based on the comparison between the 
actual data (Figs. 5c,d and 7b–d) and simulated results from the best-fitted feeding parameters. The simulated 
values for the tent-shaped growth curves (Fig. 5e,f) are generated and compared to the actual data. The process 
ends if the results are aligned. If not, ppa is changed upwards, and the whole process restarts in an iterative man-
ner until convergence is achieved (2 times in our case). An example of the parameter fitting loop is given in the 
Supplementary Note 1.

Importantly, through the two-layer approach, these simulations provide results that are not only consistent 
with the real financial data distribution observations but also with the underlying embedded network structure. 
To our knowledge, this approach is fundamentally a novel method for the analysis of companies’ performance 
and network structure.

Figure 2.   An overview of the framework through the modelling pseudocodes. Item (a) on the left side consist 
of the pseudocode for the temporal network structure layer. Aij represents the network adjacency matrix of the 
inter-firm trade network with N0 as the target node number and T being total number of calculation time steps. 
We start with a generating at steady state, and we prepare the N0 nodes initially, setting Aij = 0 and T = 100N0 . 
The network dynamics procedure starts with the node number N corresponding to the dimension of Aij . As N 
varies, the node annihilation/creation bias is changed by multiplying δ by the corresponding parameters. The 
simulation ends after T time steps. Item (b) on the top right side corresponds to the pseudocode for the network 
money transport layer. The resulting network adjacency matrix Aij from (a) is an input within the layer. After 
a number of iterative loops, a solution for xk = Sαk is reached, and the sales of each company Sk corresponds to 
the final output. Item (c) at the bottom right is the pseudocode that calculates the yearly growth rate of the firms 
for 10 years. The network is initiated by a steady state of the temporal network model. The time evolution is 
simulated through the temporal network model, and the sales S(y)k  on each year y are estimated using the money 
transport model each year.
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Data sources: financial sales and transaction level data
All data was sourced from the Corporate Credit Report (CCR) database, provided by Teikoku Databank, Ltd. 
(TDB)25, one of the largest corporate credit analysis companies in Japan. The data set contains financial (annual 
sales, number of employees, borrowings, etc.) and corporate information (foundation/establishment dates, share-
holding, etc.) as well as business-to-business trade level data for almost the entire set of Japanese firms. Our 
study relates to data from 2011 to 2020.

The trade level data is used to construct empirical inter-firm trading networks (the benchmark for the outputs 
for temporal network structure layer and related parameterisation). The data has financial records and corporate 
information for 604,759 firms (or nodes) in 2011 and 653,659 in 2020. The total number of recorded business-to-
business trades (or edges/links) was 3,683,716 in 2011 and 4,192,092 in 2020. Correspondingly, the real network 
mean degrees are 6.09 and 6.41, respectively. As a representation of the network, the money flow defines the link 
direction, where a firm i buying (outflow) a product from a supplying firm j (inflow), is represented by the link 
i → j , and the network representation as adjacency matrix is set to Aij = 1.

Moreover, the financial annual sales data of the firms (or nodes) is used to compute the distribution of total 
sales and associated growth rates (the benchmark for the outputs for the money transport layer and related 
parameterisation).

Model for temporal network structure layer (A)
We propose a fundamentally new model for the temporal network structure layer, derived from the model 
originally developed by Miura et al.22. We maintained the general structure of the network with regard to the 
nature of the nodes (representing firms) and edges (representing money flows), as well as the stochastic processes 
within. However, the model dynamics, which were originally based on three core underlying processes (i.e. (a) 

Figure 3.   Parameters setting process flow. Each of the parameters is represented by the oval shapes within blue 
circles, where those within the same circle are calculated together at the same time. The rectangular orange 
shapes characterise underlying data, with the corresponding figures referenced within. The compound lines 
represent the processes that lead to the generation of each parameter. Of these lines, dual arrow lines correspond 
to a fitting process based on the comparison between simulated and actual data, whereas single arrows represent 
parameters simply derived from actual data or already-determined parameters. The dotted lines correspond 
to decision-making process points. The flow starts with the setting of ppa = 0 . (1) corresponds to seeking 
the optimal value of pm by comparing the actual data to the simulation results, calculated solely within the 
temporal network structure layer. (2) represents the actual data analysis where α and D from previous studies 
are validated, with ν given. (3) corresponds to the computation of the fitting parameters β and F based on the 
comparison between the actual data (dual arrows) and simulated results from the best-fitted feeding parameters. 
The process generates the simulated values for the tent-shaped growth curves (rectangle 4e,f). These values 
are then compared to the actual data in (4). The process ends if the results are aligned. If not, ppa is changed 
upwards (or downwards in case of over-estimation) and the whole process restarts.
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Figure 4.   Empirical four laws for the temporal network structure layer. The light-blue background (left side) relates 
to plots for key quantities characterising the actual data set and corresponding fitting elements, whereas the right side 
corresponds to the simulation results, compared to the actual data. Figures (a) and (b) correspond to the in-degree 
and out-degree cumulative distribution functions (CDFs). Figure (a) shows the empirical inter-firm trading network 
in Japan in 2011 and 2020, where the exponent −1.30 can be observed. A fitting function Ce−akk−b for 2020, with 
parameters (a, b,C) = (3.80× 10−4, 1.30, 1.83) is also plotted. Figure (b) shows the results of simulated networks 
of 10 samples at ppa = 0.02 . A data fitting result, where C is adjusted to C = 1.15 , is also plotted as “Data (rescaled)”. 
Figures (c) and (d) correspond to the lifetime distribution of firms in Japan. The lifetime in Fig. (c) is estimated by 
the earliest of the foundation or establishment date, to the bankruptcy or closing date of a company as observed 
between 2011 and 2020. The rates 2.3%, 5.3%, and 1.2% are according to the disappearance rates in the time span 
[0,30], [40,140], and [140,∞) , respectively. Figure (d) relates to the results of simulated networks of 10 samples with 
ppa = 0.02 . The decay constant is consistent with the data. Figures (e) and (f) represent the mean degree, plotted as 
a function of the firm age. Figure (e) is the real data for Japan in 2020, showing an average increase of 1.8% per year. 
The dotted line corresponds to the fit of an exponential function in [0, 100]. Figure (f) shows the simulation results for 
different pm . They are fitted in [0, 100] at pm = 0 and [40, 100] at the other parameters. The average degree growth 
rate is an increasing function of pm . Figures (g) and (h) show the preferential attachment of the newcomers. Figure 
(g) is the real data of the cumulation of the preferential attachment probability for Japan in 2020, with an exponent of 
2 (we fit the data in [10,200]), thus indicating that the probability of a newcomer attaching to a firm is proportional to 
that firm’s degree. Figure (h) plots the simulation results which are consistent with the empirical data.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4628  | https://doi.org/10.1038/s41598-024-54719-0

www.nature.com/scientificreports/

annihilation, (b) creation and (c) merger of nodes), is expanded and enhanced, being complemented by two 
important additional processes: (d) the partial annihilation of nodes, and (e) the split of nodes. This is done for 
a better reflection of the more complex real-world dynamics of business and the observations from the data.

Figure 5.   Empirical three laws for the network money transport layer. The light-blue background (left side) 
relates to plots for key quantities characterising the actual data set and corresponding fitting elements, whereas 
the right side corresponds to the simulation results, compared to the actual data. Figures (a) and (b) correspond 
to the cumulative distribution function (CDFs) of the firm sales S. Figure (a) shows the empirical data in 
Japan in 2011 and 2020, where the exponent −0.98 can be observed. A fitting function Ce−akk−b for 2020, 
with parameters (a, b,C) = (3.39× 10−7, 0.98, 188) is also plotted. Figure (b) shows the results of simulated 
networks of 10 samples at ppa = 0.02 . A data fitting result, where C is adjusted to C = 130 , is also plotted as 
“Data (rescaled)”. Figures (c) and (d) correspond to the scaling relation between degree and sales. Figure (c) is 
a plot of the median for the empirical inter-firm trading network in Japan in 2011 and 2020. The bars show the 
quantiles, with the dotted line representing a power-law scaling. Figure (d) relates to the results of simulated 
networks of 10 samples at ppa = 0.02 . Figures (e) and (f) represent the probability density of the log growth 
rate of firm sales for different sales scale levels. Figure (e) corresponds to the empirical data in Japan during 
2011-2020. The fitting function is 2.93e−6.91|x|0.525 + 3.63e−15.4|x| , where x indicates the log growth rate. We 
plot the cases of S < 103 , 103 ≤ S < 104 , 104 ≤ S < 105 , 105 ≤ S , and all S, where S represent the total sales. It 
is observed that firms with large sales have a narrow distribution. Figure (f) represents the simulation results 
at different scale levels with (N0, pm, ppa) = (106, 0.37, 0.02) . The fitting function of (e) is also plotted for 
reference. We show the cases of S < 103 , 103 ≤ S < 104 , 104 ≤ S < 105 , 105 ≤ S , and 103 ≤ S as “All ( S ≥ 103

)”. We discard the firms of S < 103 in “All ( S ≥ 103 )” because the model has the limitation of not calculating the 
smallest firm sales.
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We explain: Firstly, it is a fact that some companies simply disappear (in particular, the smallest ones) in the 
event of bankruptcy or closure. However, it is also true that a significant number of these companies may also 
continue to trade, albeit normally in much-reduced size, with limited business activities and a still significant 
number of counterparties. One example to illustrate this case is that of Lehman Brothers International Europe 
Ltd.26. The company is part of one of the largest bankruptcies in history. Although the bankruptcy occurred in 
2008, the company continues to exist today (i.e. 2023). The number of counterparties, however, reduced from an 
estimated 22,000–10,000 within a few months after the event, and it is fewer than 100 as of today. Indeed, within 
the US, there are even distinct legal bankruptcy routes: In ‘Chapter 7’, a company is liquidated, and the assets 
are sold to pay creditors. In contrast, in ‘Chapter 11’ a bankrupt company is restructured (but not liquidated) 
under the supervision of court-appointed trustees. Therefore, the introduction of partial annihilation aims to 
address the existing realities of ‘Chapter 11’ cases, which does not result in a total disappearance of a company. 
Secondly, it is also widespread for companies to split. This may be for the reasons of a public offering of a business 
(the co-called IPOs) or simply due to regulation, general restructuring or partners that simply fell out with each 
other. A high-profile example is that of Lloyds TSB Bank. In 2013, Lloyds and TSB were split into two separate 
banks, following a European Commission ruling requiring the entity to divest part of its business on (lack of) 
competition grounds27. In short, the two additional processes are a reflection of real-world dynamics that are 
important and relevant, but that were not present in the previous models.

In summary, our model dynamics consist of five kinds of elementary stochastic processes: (a) annihilation, 
(b) creation, (c) merger, (d) partial annihilation, and (e) split. The respective probabilities, pa , pc , pm , ppa , and 
ps , represent a chance for the process to occur and a node (firm) to be selected under certain rules as follows.

Within the annihilation process (a), a node is uniformly and randomly selected to disappear. All existing 
links attached to the selected node are then deleted.

The creation process (b) generates a new node i within the system. Two exiting nodes j1 and j2 are then 
selected under the preferential attachment mechanism to form one out-link i → j1 and one in-link j2 → i . Thus, 
the attachment probability for selecting node j is kj+1

∑N
z=1(kz+1)

 , where kj is the total degree of the node j, and N 
represents the set of all existing nodes within the system.

The merger process (c) consists of the uniform and random selection of a node i and the selection of another 
node j under the same preferential attachment mechanism defined within the creation process (previous para-
graph). Once both nodes are selected, all links related to i are transferred to j, and node i is eliminated.

The partial annihilation process (d) also uniformly and randomly selects a node within the system which 
continues to exist. However, it partially loses some of its links. The ratio of the lost links is assumed to obey the 
uniform distribution in the range [0,1]. The links chosen for deletion are also uniformly and randomly selected.

The split process (e) is essentially structured as a reversal of the merger process, where a node, chosen under 
the preferential attachment mechanism, transfers a proportion of its links to a newly created node. The propor-
tion of links to be transferred is structured to approximate the reversal mechanics of the merger process. Here, 
a merged node comprises a node of degree k1 picked up by the preferential attachment p1(k1) ∝ (k1 + 1)p0(k1) 
and a node of degree k0 chosen at uniformly and randomly p0(k0) , where p0(·) is the degree distribution, and p1(·) 
is of the preferential attachment. The degree of the merged node is k = k1 + k0 , under a simplifying assumption 
of no overlaps between the links during the merger process. To mirror a reversal of the merger process, the split 
process needs to divide the node into portions k1/(k1 + k0) and k0/(k1 + k0) in order to restore the two nodes 
following the same probability. Considering the property of the preferential attachment, we can assume k1 ≫ k0 
and p1(k1) ≃ p1(k) . This effectively means that choosing the original merger node equates to choosing the split 
node in this specific case, enabling us to approximate k1 as k. Thus, we let the ratio of the given links by the split 
node be r = k0/(k + k0) , where k is the degree of the split node and k0 is the degree of the reference node. These 
are taken uniformly and randomly from the network. The reference node is just selected to determine the ratio, 
and it is not affected by the process itself.

Our core simulation maintains N (the set of all existing nodes within the system) steady at a relatively con-
stant quantity. This essentially means that the total probability of creation of nodes qc must be equal to the total 
probability of destruction of nodes qd . Therefore, the parameters ( pa , pc , pm , ppa , ps ) need to be constrained 
and be mathematically interrelated in order for N to be kept at around a target node number N0 . It follows that

where the left side of the equation relates to the individual processes involving the destruction of nodes qd and 
the right side concerns those related to the creation qc , noting that ppa is the only process that does not involve 
any change in the number of nodes.

As at every time step a process must occur, the following condition also exists

Replacing the elements of Eq. (1), and making use of q = qc = qd , we obtain

Essentially, this means that without any further adjustment, at every time step, there is a probability q that the 
total number of nodes N will either increase or decrease. Therefore, N would be subject to fluctuations obeying 
Brownian motion and will vary in time, resulting in a system beyond a steady state.

In order to maintain stability, we are therefore required to slightly modify the probabilities within the actual 
simulation process

(1)pa + pm = pc + ps ,

(2)pa + ppa + pc + pm + ps = 1.

(3)q =
1− ppa

2
.
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where δ = N−N0

N0
 corresponds to the node imbalance.

Also, as the mechanisms of mergers and splits are essentially the reverse of one another, we also assume these 
to be symmetric, pm = ps . This approach reduces the parameters solely to pm and ppa as all others can be derived 
from Eqs. (1) and (3) above.

The parameter derivation for the temporal network structure layer begins with setting the probability of the 
merger process pm to be consistent with the real degree distribution (Fig. 4a,b), whilst maintaining the probability 
of partial annihilation ppa equal to zero. Parameters for the money transport layer (as described below) are then 
derived. An iterative process introduces increasing values for the probability for the partial annihilation process 
ppa (and therefore adjusting the other network parameters according to Eqs. (1)–(3)) to best fit the negative tail 
of the log growth rate of real sales (Fig. 5e,f). The process is fully repeated (2 times in our case) until convergence 
is achieved. To avoid complexity and redundancy in visualising the parameter estimation, we only plot the final 
fitting results in all relevant figures within this paper (Figs. 4, 5, 6, 7). For information, the results from the first 
iteration are largely aligned to the results for “ ppa = 0 ” as shown by the blue points in Fig. 6.

We have also analysed the following special cases: (a) Moore’s model28 where pm = ppa = ps = 0 , and (b) 
Miura’s original model22 where ppa = ps = 0 . In addition, we will consider the cases where either only the split 
or the partial annihilation processes are included (i.e. where ppa = 0 and ps = 0 , respectively) in order to show 
the need for both processes to be implemented to reliably replicate the actual data, as further explained in the 
“Results” section.

In all cases, we generated networks that converged to a steady state. We started with N0 nodes ( 106 in the final 
simulation) with no links and calculated the model time step for Tst = 100N0 times, which updated the node 
state 100 times on average, leading the network to a steady state22.

In Fig. 2a, we provide the pseudocode for the model for the temporal network structure layer. The initial 
condition is N0 nodes without any link for the steady state of the network, whereas we start with a given network 
for the calculation of the firm growth from a time point. One sample of the simulation consists of the predeter-
mined number of time steps, with each of them looking through the following five processes: (a) annihilation, 
(b) creation, (c) merger, (d) partial annihilation, and (e) split. At each step in the calculation loop, one process 
is chosen at the probabilities p′a , p′c , p′m , ppa , and p′s , respectively. In each process, the corresponding dynamics 
are applied to the system, as previously explained.

Model for network money transport layer (B)
With regards to the money transport layer, the mathematical method from the original proposition suggested by 
Tamura et al.18 is kept unchanged as no fundamental modifications were deemed necessary. However, a partial 
reparameterisation is carried out in order to ensure consistency with the full set of data available. This means 
that the original parameters were either validated or modified to reflect our larger and richer data set.

Variations of the gravity model have been used in economics and social sciences, for instance, in the context 
of estimations of trading amounts between countries29,30. This study adopts the expanded gravity model for the 
money flow between firms suggested by Tamura et al.18 since it best fits the existing data set and our objective to 
build the total sales (an intrinsic attribute of a node) from ‘b-to-b’ relationships (edge attributes).

(4)p′a = (1+ δ)pa , p
′
c = (1− δ)pc , p

′
m = (1+ δ)pm , p′s = (1− δ)ps ,
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Figure 6.   The probability density of the log growth rate of firm sales for different cases of parameters. The 
plot shows the case of 103 ≤ S in the simulation as “All” as in Fig. 5f as well as the fitting function of Fig. 5e for 
reference. The non-symmetric cases of merger and split, (pm, ps , ppa) = (0.37, 0, 0.02) is also plotted as green 
lines and marks. It can be observed that the negative side shrinks and the symmetry breaks. The case where 
partial annihilation is suppressed, (pm, ps , ppa) = (0.37, 0.37, 0) is shown by the light blue lines and marks. The 
density in the negative-side tail is smaller than in the partial annihilation case ( ppa = 0.02).
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We also emphasise that, to achieve our goals, we place significant emphasis on replicating the tent-shaped 
distributions of the growth rate in sales given that distributions resembling this shape format are widely observed 
in complex systems31,32. Specifically, within economic systems, Stanley et al. and other researchers31 indicated 
that the growth rate distribution of the firms is tent-shaped, close to symmetry in each scale, and the typical 
width of the distribution is scaled by the firms’ total sales. Furthermore, the tent-shaped distribution results from 
a random multiplicative process of independent components in the firms; the generalised central limit shows 
the stable distribution of the growth rate, which is close to symmetric tent-shaped32. It follows, therefore, that 
any model attempting to explain the evolving features of an inter-firm trading network must be consistent with 
these observations as well as with the scaling relations observed both at network interaction and agent levels.

As already described, we use the money transport model based on the gravity interaction model18,19,33 for 
the sales estimation. The money flow defines the link direction, where a firm i buying (outflow) a product from 
a supplying firm j (inflow) is represented by the link i → j , and the network representation as adjacency matrix 
is set to Aij = 1 . The original gravity interaction model18,19,33 approximates that the total money flows out of a 
firm is proportional to the firm sales to the power of α ∼ 0.9 . It also indicates that the quota of the money flows 
to each trading partner is proportional to the partner’s sales to the power of β ∼ 0.3 . The inflow from and the 
outflow to the environment (i.e. not captured by the network) are represented by F and νSαk  , respectively. In that 
case, the simultaneous equations of the balance of the money flow at a stationary state are given as18

where Aij is the adjacency matrix of the trading network, Sk is the total sales of the firm k, DSαk  is the total flow 
out of the firm k, β is the exponent of the weight of each outflow, ν is the strength of the flow to the environ-
ment, and F is the flow from the environment to each node. The model determines the sales of all firms once the 
network and the parameters (α,β ,D, ν, F) are given. The annual money flow from node i to node k is given as

(5)
∑

i

AikS
β

k
∑

j AijS
β
j

DSαi − (D + ν)Sαk + F = 0,

Figure 7.   Illustration for the parameter estimations within the network money transport layer. Subplot (a) 
shows the sensitivity and best fit for the parameters α and D, where axis y represents the median of the total 
outflow of money from the bucket of nodes i as a function of the sales Si of the bucket of nodes i in 2011–2020 in 
Japan. In order to reflect the sensitivity of the range selection for solely preserving consistent data, we show the 
bars for three distinct data ranges, [0.1,5], [0.2,5], and [0.5,5]. The parameter set ( α = 0.89 , D = 1 ) is justified 
within the thresholds arbitrariness. Subplot (b) indicates the reasonable estimation range for parameter β/α for 
the range [0.2,5]. We consider node i and related outflows, plotting the normalised sales of the counterparty j, 
s
(i)
j = Sj/

∑

k AikSk and normalised outflow ϕij = fij/
∑

k fik , where fij is a flow amount from node i to node 
j. The dotted line is estimated when β/α = 0.25 . Subplot (c) corresponds to a heat map for different levels of 
parameters F and β/α where higher levels of colours (either red or blue) indicate the error of the exponent a in 
the scaling relation S = Aka between the degree k and sales S (when comparing the model result to the empirical 
value 1.35, as plotted in Fig. 5c,d). The numbers within each box correspond to the resulting exponent a 
obtained for the modelling combinations of F and β/α . Ten sample networks are generated using the parameter 
set (N0, pm, ppa) = (106, 0.37, 0.02) to calculate the scaling relations. Subplot (d) is a similar heat map to (c) 
where the error of the coefficient A in the scaling relation S = Aka between the degree k and sales S is shown 
instead. The empirical value of A is 14.2.
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The solution of this non-linear equation (Eq. 5) is calculated by the following repeated substitution until con-
vergence is achieved, which corresponds to the Jacobi method in Linear algebra:

The parameter determination begins with estimating α and D by analysing the actual data by plotting the total 
outflow of each firm as a function of its sales. As some level of inconsistency exists in the data (e.g. an appar-
ently not suitable case that the total outflow is 10 times larger than the annual sales), only data within a certain 
range [ThL, ThH] for the ratio of the total outflow to sales were used in the analysis. We adopted three ranges, 
[ThL, ThH] = [0.1,5], [0.2,5], and [0.5,5]. From the plots in Fig. 7a, the best-fit parameters α and D slightly vary 
depending on the range selected, but the parameters set (α,D) = (0.89, 1) in the previous study18 confirmed to 
sit comfortably within these range boundaries and therefore kept unmodified.

Once the above parameters are set, we follow on by plotting the normalised money outflows ϕij = fij/
∑

k fik 
(where fij is a flow amount from node i to node j) as a function of the normalised sales of counterparty j, 
s
(i)
j = Sj/

∑

k AikSk . This is done in order to identify the reasonable boundaries of β unperturbed by the sales 
scale. We observe that β is estimated as β/α ≃ 0.25 as shown in Fig. 7b. We then refine the parameter β and define 
F in order to obtain a reasonable fit for the real data. The adequacy of the fitting is shown in Fig. 7c,d, where the 
exponents and coefficient in the scaling relation between the degree and sales (as plotted in Fig. 5c,d) in each 
parameter set are visualised and represented by the heat maps of the errors of the exponent and coefficient in the 
scaling relation. Also, we checked the suitability of ν from the previous study simultaneously.

The pseudocode for the model for the network money transport layer is shown in Fig. 2b. The input for the 
model is the transaction network Aij calculated in the temporal network structure layer. For example, the calcula-
tion of the sales growth rate requires the sales of each firm in each year. To do this, we prepare the network for 
each year from the temporal network structure layer, and we simulate the sales using the networks. The simula-
tion is essentially the iterative looping over of simple substitution of the sales vector xk = Sαk  to the right side 
in the Eq. (7) to update xk . The vector xk is finally converged in the case of the parameter sets used in the study.

Results
The results section is divided into the outputs related to (A) the temporal network structure layer (Fig. 4) and 
(B) the network money transport layer (Figs. 5 and 6). Both sections are subdivided by

•	 (left sides of Figs. 4 and 5, light-blue background) an analysis of the key quantities characterising the actual 
data set with fitting functions, which determines the base parameters ( N = 106, pm = 0.37, ppa = 0.02 , 
α = 0.89,β/α = 0.25,D = 1, ν = 0.1, F = 25 ) from the process described in the Methods section; and

•	 (right sides of Figs. 4 and 5) the distinct model simulation results, compared to the actual data, and the dif-
ference between simulations departing from the base parameters above; and

•	 (Fig. 6, separately) highlights the results of the modelling simulations when parameters related to new pro-
cesses of partial annihilation and split of nodes are turned-off (i.e. ppa and ps set to zero in isolation).

The temporal network structure layer (A)
Each horizontal pairs of plots within Fig. 4 correspond to a key property characterising the four empirical laws 
of a network structure. These are: the degree distributions in Fig. 4a,b, the lifetime/age distributions in Fig. 4c,d, 
the mean degree growth over time in Fig. 4e,f, and the preferential attachment in Fig. 4g,h.

Data analysis (A1)
We start with the degree distributions in Fig. 4a on the top left row as the most fundamental property of a 
network. It is noted that the cumulative distribution function (CDF) obeys a shape similar to a power law 
with an exponent of -1.30. Moreover, splitting the data between in-degree and out-degree provides very simi-
lar distributions. The fitting function is a truncated power law function of the degree k, F(k) = Ce−akk−b , 
where the exponential factor describes a cutoff from the system size. The fitting parameters in Fig. 4a were 
(a, b,C) = (3.80× 10−4, 1.30, 1.83).

We follow on by plotting the lifetime distribution of the firms that disappeared in 2011–2020, Fig. 4c. The data 
is consistent with an exponential distribution with the mean disappearance rate of 2.3% for the short span of 30 
years, 5.3% for the longer span of 40–140 years, and 1.2% for the longest over 140 years. The reciprocals of the 
timescales correspond to the average firm disappearance rate per year. While the timescale for the intermediate 
span of 40–140 years was in line with previous research by Miura et al.22, our work highlights a new feature: the 
timescale varied with time and changed abruptly around 1880 and 1985. These years are thought to be aligned 
with periods of major changes in the economic background of Japanese history: the Meiji Restoration was in 
1868, and the high yen recession in 1986, which led to the asset price bubble collapse in 1992.

The plot within the third row, Fig. 4e, shows the firm growth in degree over time. We observe an exponential 
growth on average, with the mean growth rates both in-degree and out-degree around 1.7%, as reported by 
Miura et al.22.

(6)fik =
AikS

β

k
∑

j AijS
β
j

DSαi .

(7)Sαk ←
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D + ν

(

∑

i

AikS
β

k
∑

j AijS
β
j

DSαi + F

)
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Lastly, within the bottom row, Fig. 4g, we investigate the preferential attachment from the newcomers. Sup-
pose that a newcomer node comes into the system accompanying a few links which connect to existing nodes 
and that the connection probability pi to the existing node i is conditioned only by the degree ki as pi = p(ki) . 
To investigate the function p(k), we plot the cumulative P+(k) =

∑k
k′=0 p(k

′) =
∑k

k′=0 N(new → k′)/N(k′) 
estimated by the empirical data in Fig. 4g, where N(new → k′) is the number of links from the newcomer nodes 
to the existing nodes of degree k′ , and N(k′) is the number of nodes of degree k′ . The figure indicates that the 
preferential attachment was proportional and consistent with the previous study22 as the simulation was pro-
portional to the degree to the power of 2.

Model simulation (A2)
We plot the degree distribution in Fig. 4b at ppa = 0.02 and various combinations of ( pm,N0 ). At pm = 0.0 , 
the model was close to Moore’s model28. The degree distribution, as expected, did not obey a power law. As pm 
is increased, the tail of the distribution stretches, and the power law-like behaviour emerges. The power-law 
exponent of −1.3 , derived from the empirical data, is obtained when pm = 0.37 . The cutoff of the power law 
stretches as the node number N0 increases. The degree distribution of the empirical trading network, as well as 
its power law tail, is largely replicated at the parameter set (N0, pm, ppa) = (106, 0.37, 0.02) . Ten network samples 
were generated for each parameter set.

Beyond the static property, we move on to the temporal properties of the steady state. The timescale of one 
step in the simulation was fit by comparing the node disappearance ratio per year between the simulation and 
the central part of the empirical data (the time span [40,140] in Fig. 4c): (pa + pm)T1/N0 equals 0.053, where 
T1 is the number of simulation time steps corresponding to 1 year. It results in the relation T1 = N0/9.261 when 
(pm, ppa) = (0.37, 0.02) . The reason for choosing the time span [40,140] is that the major firms in the actual 
network are built up within such a range. The simulated age distribution is shown in Fig. 4d, and the exponential 
distribution with the same time constant as the actual data over 35 years ago was reproduced.

Within the simulation, we also evaluated the general trend of growth of firms over time. The mean of the 
in-degree and the out-degree conditioned by the firm age is shown in Fig. 4f. The firm growth rate was appar-
ently dominated by the parameter pm . The difference where the age was close to zero came from the degree of 
the newcomers in the simulation fixed to 2. Overall, the exponential growth over time of the firm beyond the 
newcomers was consistent with the actual data at pm = 0.37.

Lastly, we confirm the simulation replicates the existence of the preferential attachment mechanism for the 
newcomers as being proportional to the degree of a connecting firm. Similarly to the empirical data analysis, we 
plot the cumulative probability for the preferential attachment in Fig. 4h, where the exponent 2 is reproduced.

The network money transport layer (B)
In a similar manner to the previous subsection (A), each horizontal pair of plots within Fig. 5 corresponds to a 
key property characterising the three empirical laws of sales and money transport. These are: the sales distribu-
tions in Fig. 5a,b, the scaling relations between the degree and sales in Fig. 5c,d, and the sales growth rate in 
Fig. 5e,f, for the monetary properties.

Data analysis (B1)
In Fig. 5a, we observe that the cumulative distribution of sales S is approximated by a power law with the expo-
nent −0.98 . We made use of a fitting function similar to the degree distribution process, Fig. 4a. The parameters 
were estimated as (a, b,C) = (3.39× 10−7, 0.98, 188).

The scaling relation between degree and sales is shown in Fig. 5c. Total sales S largely scales as a function 
of the degree k as S ∝ k1.35 . These properties were consistent with the previous studies of Japanese inter-firm 
trading networks16.

The final property is the firm growth rate Si,y/Si,y−1 , which is of a temporal nature, where Si,y is the annual 
sales of the firm i and year y. The firm growth rate in sales is plotted in Fig. 5e. The log growth rate distribution 
was approximately symmetric and tent-shaped. However, such symmetry is not maintained when companies are 
clustered into subgroups of sales orders of magnitude. The figure shows that significant growth for larger firms 
is less likely than for smaller firms, a fact already observed in other works14,31; the variance of the log growth 
rate decreases with the sales scale.

Model simulation (B2)
We observe that the integrated model reproduces the key properties characterising the three empirical laws of 
sales and money transport, when using the base parameters described in the first paragraph of the “Results” 
section.

Firstly, the sales distribution is plotted in Fig. 5b. Similar to the degree distribution, the tail of the distribu-
tion stretches as pm is increased and finally the power law-like behaviour emerges; the cutoff of the power law 
stretches as the node number N0 increases. The model result at the base parameter is very closely aligned with 
the empirical sales distribution, with an exponent of approximately −1.

The simulated scaling relation between degree and sales is shown in Fig. 5d. Here, changes to the parameters 
associated with the network layer (i.e. pm and N0 ) are largely insensitive as the parameter β affects the exponent, 
and the scale is dominated by F.

We previously stated in “Methods” section that we place significant emphasis on replicating the tent-shaped 
distributions of the growth rate of the elements that are widely observed in those complex systems31,32, and that a 
core objective of our integrated model is to explain the evolving features of an inter-firm trading network where 
the tent-like shape naturally emerges from these dynamics. As a result, we place significant importance on the 
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results shown in Fig. 5f. Here, starting with the steady state achieved after Tst = 100N0 time steps from the ini-
tial state, we continued to simulate the network dynamics to analyse the dynamical properties. The growth rate 
distribution was calculated by simulating the time steps corresponding to 10 years, where the procedure for this 
calculation is shown in the pseudocode in Fig. 2c. The tent-shaped distribution naturally emerged as observed in 
Fig. 5f. The distributions of all the firms (yellow line) were consistent in both the data and the simulation results. 
Also, the sales growth rate had a narrower tail on the positive side as the firm sales were more significant. Those 
two results differed in the positive-side growth rate distribution of the smallest firms. In the simulation, we used 
the money transport model to estimate the firm sales, which had the limitation of not calculating the small firm 
sales well because the minimum firm sales in the simulation is determined by Sαk ≥ F

D+ν
≃ 23 from Eq. (5). As 

a result, the smallest firm category was not simulated correctly. However, the simulation explained the real data 
well for the firms with 103 sales or over. We also note that the more minor firm sales were more volatile, as our 
data analysis and the previous studies reported31.

Lastly, in order to highlight the importance of the two additional model dynamics proposed by our study 
within the temporal network structure layer—namely, the partial annihilation of edges and the split of nodes—
we show results where the split process is turned off ( ps = 0 ) (yellow in Fig. 5f) and separately where partial 
annihilation is also turned off (ppa = 0) (blue in Fig. 5f). Both results show significant worsening in the fitting 
to the actual data. In particular, where (ppa = 0) , the tail on the negative side of the growth rate is smaller than 
the actual data, which demonstrates that the split process in isolation does not fully explain the shrinking of 
firms. In short, both processes are required. Moreover, if we were to break the symmetry of the merger and split 
processes ( pm > 0, ps = 0 ), the symmetry of the growth rate is also broken down. This can be observed in Fig. 5f, 
where the log growth rate in the non-symmetric case, pm = 0.37 but ps = 0 is plotted. It is possible to note that 
the distribution on the negative side is shrunk, and it largely becomes not tent-shaped.

Discussion
We developed an integrated model framework based on two distinct yet connected layers of modelling method-
ologies that were previously subject to a reasonable amount of research but in isolation from each other.

Through our approach, we were able to create a methodology that is fundamentally and solely dependent 
on the micro-level dynamics of interactions among agents to replicate the quantities and explain the emerg-
ing phenomena arising not only at the structural network level (network properties), but also at the structural 
economic market level (agent intrinsic properties) in both case from a static as well as temporal perspective. In 
essence, it could be argued that our work provides a solid example of a comprehensive simulation method of a 
complex system with a significant level of consistency.

Moreover, we highlight the importance of the micro-level activities of startups, mergers, acquisitions, disin-
vestment and bankruptcy to the formation of the tent-shaped growth rate distribution of sales of firms that it is 
commonly observed at the structural economic market level. In particular, the introduction of the split process is 
indispensable to the formation of the log growth rate symmetry observed in the real data. Here we further detail 
the scope and analysis within our research. Firstly, this study revisited the preferential attachment mechanism and 
validated that it is proportional to the node degree as indicated in the previous study by Miura et al.22. Hence, we 
validated the broader existence of the preferential attachment under the Barabási and Albert model. However, 
an unmodified version of the model would not be consistent and fit the observed degree distribution’s exponent 
larger than −3 (in the cumulative distribution function, −2 ), whereas we can show that the inclusion of the 
merger mechanism achieves that effect. Here we emphasise again that the inclusion of the merger mechanism is 
not solely a mathematical solution, it simply aims to reflect the real life dynamics of business where mergers and 
acquisitions are a constant feature that significantly changes the size and the structure of the supply chain of firms.

Secondly, we also carried out specific additional and target analysis on a small region of Japan, Tokyo’s 23 
wards, (see Supplementary note 2), to demonstrate that within our network the geographical distance does not 
have a significant effect on the degree distribution of firms. These results are distinct from the studies of that of 
Braha et al.12. However, this is not surprising given that (a) the nature of the networks are very distinct (i.e. a real 
trade network in our study as opposed to a derived competition network that become naturally biased towards 
larger companies that produce publicly available financial report); (b) the size of the networks are of substantially 
different scales and (c) the fact that the countries involved (Japan in our case and US in that study) have very 
significantly different demographics both in terms of area as well as density.

Thirdly, this study has broken the limitations of the previous study by Miura et al.22. We investigated the 
case of no split process and showed that the tent-shaped distribution of the actual growth rate is not achieved 
without the split process.

As importantly, we also show the limitations arising from potential modelling oversimplifications. This is 
illustrated by the need to take into account the multifaceted aspects of bankruptcy (i.e. annihilation and partial 
annihilation of edges) dependent on the sales scale, in order for the tent-shaped growth rate distribution to be 
closely replicated, including its variance scaled to a degree.

We also believe our parameterisation method, where each parameter to the model is based on a serialised, and 
iterative, step-by-step process, is essential to a better understanding of the importance, effect, and sensitivity of 
each underlying dynamical process in isolation. Here, we highlight that it is only by following this process we can 
identify that the merger process supports the mean growth rate of the system, while the split process makes the 
log growth rate symmetric. In contrast, if we were to adopt methods aiming at solving all parameters simultane-
ously through optimisation targets and functions, in the vein of machine learning, the link between each of the 
individual underlying processes, and their related impact might be missed. We firmly believe that these methods, 
albeit computationally elegant and trendy at present, tend to be less fit for the purposes of understanding the 



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4628  | https://doi.org/10.1038/s41598-024-54719-0

www.nature.com/scientificreports/

fundamental system dynamics at compartmentalised, sub-component levels. Though, we accept that this is an 
area of choice and vigorous debate.

As the framework reliably replicates the key quantities of the complex economic system of firms in Japan, 
one can speculate that it would be highly feasible to adapt the framework to a forecasting tool based on ‘what-if ’ 
scenarios where the inputs may be essentially driven by financial and prudential policies (government support 
for companies to avoid full bankruptcy or decision of splitting companies to improve market competition) and 
the outputs the overall effect to the economy (as growth of sales and total sales as highly associated with GDP 
growth and value). Some additional level of work and potential refinements would be required, however.

Lastly, we highlight two limitations of our work. Firstly, as described within the “Results” section, the frame-
work does not replicate well the growth rate of very small firms, and further work can be done in the future to 
refine such shortcomings. Since we observed from a recent, separate work, that geographical trade distance dis-
proportionately affects the behaviour of small firms, we can hypothesise that their sales growth might be highly 
disturbed. Therefore, future evolution of the proposed framework may include a geospatial perspective. Secondly, 
it is not possible from the data to directly observe companies that underwent partial bankruptcy and companies 
that have split. Ideally, we would like to compare the real number of events to those generated by the model (in 
a similar manner we did for newcomers) so that the parameters could be refined even further. However, this is 
a difficult limitation to be addressed.

Data availability
The data that support the findings of this study are available from Teikoku Databank, Ltd.25,34 but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are however available from the corresponding author M.T. (contact: takayasu.m.aa@m.titech.
ac.jp) upon reasonable request and with permission of Teikoku Databank, Ltd.
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