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Multi‑objective genetic 
algorithm calibration of colored 
self‑compacting concrete using 
DEM: an integrated parallel 
approach
Vahid Shafaie  & Majid Movahedi Rad *

A detailed numerical simulation of Colored Self‑Compacting Concrete (CSCC) was conducted in this 
research. Emphasis was placed on an innovative calibration methodology tailored for ten unique CSCC 
mix designs. Through the incorporation of multi‑objective optimization, MATLAB’s Genetic Algorithm 
(GA) was seamlessly integrated with PFC3D, a prominent Discrete Element Modeling (DEM) software 
package. This integration facilitates the exchange of micro‑parameter values, where MATLAB’s GA 
optimizes these parameters, which are then input into PFC3D to simulate the behavior of CSCC mix 
designs. The calibration process is fully automated through a MATLAB script, complemented by 
a fish script in PFC, allowing for an efficient and precise calibration mechanism that automatically 
terminates based on predefined criteria. Central to this approach is the Uniaxial Compressive Strength 
(UCS) test, which forms the foundation of the calibration process. A distinguishing aspect of this 
study was the incorporation of pigment effects, reflecting the cohesive behavior of cementitious 
components, into the micro‑parameters influencing the cohesion coefficient within DEM. This 
innovative approach ensured significant alignment between simulations and observed macro 
properties, as evidenced by fitness values consistently exceeding 0.94. This investigation not only 
expanded the understanding of CSCC dynamics but also contributed significantly to the discourse 
on advanced concrete simulation methodologies, underscoring the importance of multi‑objective 
optimization in such studies.
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Abbreviations
SCC  Self-compacting concrete
CSCC  Colored Self-compacting concrete
DEM  Discrete element method
PFC  Particle flow code
GA  Genetic algorithm
MOGA  Multi-objective genetic algorithm
UCS  Uniaxial compressive strength
PBCM  Parallel bonded contact model
PBPM  Parallel bonded particle model
LPBM  Linear parallel bond model
H  Model height
W  Model weight
V  The velocity of loading platen
σc,Exp  Experimental peak compressive stress
EExp  Experimental Young module

OPEN

Department of Structural and Geotechnical Engineering, Széchenyi István University, 9026 Győr, Hungary. *email: 
majidmr@sze.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54715-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4126  | https://doi.org/10.1038/s41598-024-54715-4

www.nature.com/scientificreports/

νExp  Experimental Poisson ratio
σc,Nu  Numerical peak compressive stress
ENu  Numerical Young module
νNu  Numerical Poisson ratio
Rmin  Minimum radius
Rmax
Rmin

  Maximum to Minimum radius ration
ρ  Ball densiy
gi  Installation bond gap
φ  Friction angle
µ  Friction coefficient
K∗  Normal-to-shear stiffness ratio
K
∗  Parallel bond normal-to-shear stiffness ratio

E∗  Effective modulus
E
∗  Parallel bond effective modulus

σt   Parallel bond tensile strength
c  Parallel bond cohesion
Pb  Parallel bond

Self-compacting concrete (SCC) and colored self-compacting concrete (CSCC) have gained significant attention 
in the construction industry due to their unique properties and wide range of applications. The design of SCC 
requires a careful balance of material components to achieve workability, flow without segregation, and stability, 
considering factors like yield stress and plastic  viscosity1. SCC’s development has significantly improved construc-
tion durability while self-compacting mortars (SCMs) offer enhanced filling capability in congested structures, 
resulting in cost and labor reduction for concrete repair and  rehabilitation1–6. Incorporating pigments into SCC 
transforms the appearance of concrete structures, providing a range of colors and textures and opening up new 
architectural  possibilities7–9. CSCC combines the fluidity and filling capacity of SCC with the aesthetic appeal 
of traditional colored concrete, providing versatile options for intricate architectural  designs1,10. The examina-
tion of the performance attributes of CSCC and its potential applications in the field of civil engineering offers 
a promising pathway for continued investigation and exploration.

Following the advancements in the realm of SCC and CSCC, the intricate balance between their compo-
nents and their broad applications has indeed streamlined construction procedures and broadened architectural 
 horizons1,7,9. However, the key to understanding these materials on a granular level and predicting their behaviors 
under varying conditions lies in the realm of numerical simulation. The Discrete Element Method (DEM) has 
rapidly become an indispensable tool for analyzing the intricate mechanical behaviors of a range of materials, 
encompassing rocks, concretes, and other composite substances. Within the vast ambit of rock mechanics, PFC, 
as a DEM-oriented software, demands precise calibration to ensure its simulations align with real-world condi-
tions. The significance of such calibration is highlighted, noting that even minute deviations in micro-parameters 
can have profound implications on the outcomes of numerical simulations, especially in physical experiments 
like unconfined compression  tests11. The continuous evolution of DEM methodologies has led to the introduc-
tion of innovative models. A prime example is the Weibull linear parallel bond  model12. This model presents a 
paradigm shift in how heterogeneous rocks are simulated, offering an efficient means to study their nonlinear 
mechanical behaviors. The continued development in this domain accentuates the critical importance of micro-
parameter calibration. It became imperative for simulations to mirror the intricacies of real-world scenarios, 
ensuring accuracy and reliability in predictions. The detailed investigations  by13,14 further emphasize the nuances 
and complexities inherent to material interfaces and the pivotal role of boundary conditions in influencing out-
comes. Such research endeavors, combined with the ongoing evolution of DEM methodologies, highlight the 
field’s commitment to achieving unparalleled precision and robustness in simulations.

In the foundational stages of DEM calibration, the primary method was rooted in trial-and-error  techniques15. 
This hands-on, heuristic approach necessitated an iterative cycle of adjusting unknown input parameters to 
align DEM simulated outcomes with observed bulk behaviors. While seemingly straightforward, this method 
encountered challenges. The innate simplicity of this approach was constrained by the multi-dimensional nature 
of parameters and the computational rigor required for comprehensive DEM  simulations16. In the evolving realm 
of DEM calibration, a multitude of optimization techniques have been deployed to ensure accuracy. The Leven-
berg–Marquardt method, known for its aptitude in residual  minimization17, is complemented by techniques such 
as the Nelder-Mead  simplex18 and the weighted least squares  approach19. Other prominent strategies include the 
Gauss–Newton  algorithm20, enhanced simulated annealing  algorithm21, Differential Evolution (DE)  algorithm22, 
and Particle Swarm Optimization (PSO)23. Notably, genetic algorithms have gained traction, highlighting the 
wide array of computational approaches leveraged in this  field16,23,24.

In the realm of engineering optimization, the genetic algorithm (GA), rooted in the principles of natural 
selection and species evolution, emerges as a robust and adaptable  tool25,26. As a meta-heuristic technique, the 
GA is renowned for its efficacy in resolving complex, multi-modal, and sizable problems, often yielding satis-
factory rather than precise solutions. Characterized as a probabilistic method, the GA is capable of producing 
diverse outcomes from identical initial conditions, thereby generating high-quality solutions in multi-objective 
scenarios. The applicability of GAs is influenced by various factors including problem complexity, constraint 
types, variable nature, and objective functions. While advantageous in exploring extensive and intricate search 
spaces, GAs are recognized for their potential computational intensity and variable performance contingent upon 
specific problem  parameters27–29. Despite these limitations, the utility of GAs in engineering, where a balance 
between solution accuracy and computational efficiency is paramount, remains undisputed.
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When confronting scenarios that require consideration of multiple bulk properties, the analytical task often 
transitions into a multi-objective optimization problem (MOOP)16. Delving into the history of computational 
strategies, multi-objective evolutionary genetic algorithms (MOEAs)16,24,30–33 have consistently showcased their 
effectiveness in navigating these intricate challenges. Building on this foundation, the present study introduces an 
advanced DEM calibration approach. By integrating MATLAB’s Genetic Algorithm (GA) with PFC3D software, 
we have formulated an automated, concurrent, and iterative procedure adeptly tailored for calibrating the micro-
parameters of ten unique CSCC mix designs. This systematic approach ensures congruence between PFC3D 
simulations and observed macro properties, offering insights into the intricate behaviors of CSCC and setting a 
precedent for subsequent PFC3D simulations. The experimental basis of our research is fortified by the insights 
 from34, providing a deep dive into the interfacial bond strength of colored SCC repair layers. By integrating 
such foundational data with cutting-edge numerical methodologies, as exemplified by the differential evolution 
calibration method  by22, our research stands at the nexus of traditional experimentation and contemporary 
computational techniques.

What sets this research apart is its novel approach to calibration. Our work introduces a fresh perspective to 
the field, particularly by embracing multi-objective optimization and deploying an automated parallel calibra-
tion process. Unlike typical practices in rock mechanics or geomechanics, where both triaxial and uniaxial tests 
are conducted together for calibration, the focus in this study is specifically placed on the uniaxial compressive 
strength (UCS) test for calibrating CSCC models. This approach, tailored to the context of concrete, emphasizes 
the UCS as a standard test, diverging from the broader range of tests often utilized in rock or geomechanical stud-
ies. The calibration of the Poisson’s ratio, based on UCS test results and considering both axial and lateral strain 
measurements, is addressed. This aspect of the calibration process highlights the adaptation and refinement of 
traditional methods to suit the specific properties of CSCC. This research is also pioneering in its focus on CSCC, 
especially by factoring in the pigment’s influence on cohesive micro-parameters, a feat seldom explored in previ-
ous studies. Furthermore, the concurrent calibration across ten distinct mix designs accentuates the depth and 
complexity of our approach. In culmination, the primary aim of this paper is to present a refined DEM calibration 
framework, emphasizing the novelty of our approach in multiple dimensions, from the integration of advanced 
optimization techniques to the detailed exploration of CSCC behaviors. As the research progresses, it becomes 
imperative to acknowledge the symbiotic relationship between computational methods and hands-on experi-
mentation, emphasizing that one complements the other, enriching our understanding of materials like CSCC.

The structure of this paper is delineated as follows: Section "Materials and methods" elucidates the ’Materi-
als and Methods’ employed; Section "Results and discussions" presents ’Results and Discussions’, drawing upon 
the findings and their implications; and Section "Conclusion" concludes the study, summarizing key outcomes.

Materials and methods
The baseline experimental data and methodologies underpinning the present research are detailed herein. Ini-
tially, a revisit to a prior experimental investigation on CSCC repair layers is made, detailing the specific mix 
designs and their associated uniaxial compressive strength (UCS) test results. These experimental findings serve 
as the cornerstone for the subsequent numerical study. Following this, the numerical modeling approach, employ-
ing the PFC3D software, is expounded upon, detailing the calibration and validation processes set against the 
experimental results. This methodological framework ensures a thorough exploration of the interfacial bond 
strength of CSCC repair layers, bridging both experimental and numerical perspectives.

Experimental description of interfacial bond strength of coloured SCC repair layers
The foundation for the current numerical study is based on the findings from a preceding experimental inves-
tigation into the interfacial bond strength of CSCC repair  layers34.

Mix designs from the experimental study
In the referenced investigation, ten unique SCC mixes were meticulously formulated and evaluated. Mix 1 (Fa10) 
served as a control mix devoid of any pigments. Mixes 2 through 10 incorporated pigments—namely green, red, 
or blue—at levels of 5%, 10%, or 15% by weight, replacing the cumulative weight of cement and fly  ash34,35. The 
entirety of these mix designs form the basis for the present numerical analysis.

Specimen details and UCS results
For the experimental investigation, cubic specimens of dimensions 15 cm × 15 cm × 15 cm were prepared. 
These samples were subjected to UCS tests across all ten mix designs (Fig. 1), providing essential data on the 
stress–strain relationships and the characteristic compressive strengths of each mix. These details are critical for 
the subsequent numerical modeling. The experimental data revealed a decrease in compressive strength for all 
SCCs with pigment addition. This reduction in strength correlated with the percentage of pigment replacement. 
Specifically, with a 10% replacement of cement and fly ash by weight, the compressive strengths of blue, green, 
and red SCCs decreased by 14%, 18%, and 42%,  respectively34.

Fundamentals of DEM modelling with PFC3D
The discrete element method (DEM) is a numerical method used to simulate the behavior of granular materi-
als, such as sand, gravel, and  concrete36. DEM modeling is based on the concept of treating each particle as an 
individual entity that interacts with other particles and the surrounding environment. Numerical simulation is 
a more advanced analysis method based on computer resources, and it is different from the traditional labora-
tory test method. The DEM is used to solve the problems of discontinuous media by analyzing the interlocking 
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contacts of discrete  elements37. PFC3D is a software package developed by Itasca that uses the DEM method to 
simulate the behavior of granular  materials38,39.

To replicate the behavior of bonded or cohesive materials like concrete, PFC3D employs the Parallel Bonded 
Particle Model (PBPM). This model incorporates various contact models and has been endorsed for its capabil-
ity to emulate the macroscopic characteristics of such materials, as well as shed light on the micromechanical 
phenomena underpinning these  behaviors38,40. Considering the cemented nature of the experimental specimens 
used in this study, the Parallel Bonded Contact Model (PBCM) is the chosen approach.

Parallel bonded particle model (PBPM)
PFC3D uses a bonded particle model to simulate the behavior of granular materials. The bonded particle model 
is a type of DEM model that represents the particles as a collection of bonded particles. The bonds between the 
particles are modeled as springs, which can deform and break under different loading  conditions39. The paral-
lel bond model is a type of bonded particle model that can be used to simulate the behavior of materials that 
undergo significant deformation, such as  concrete38,40. A parallel bond can be envisioned as a set of elastic springs 
with constant normal and shear stiffnesses uniformly distributed over a disk in 3D. The parallel bond model can 
transmit both a force and a moment, while the contact bond model can transmit only a  force39,40.

The linear parallel bond model (LPBM) delineates two interaction interfaces: a minuscule, tension-free chan-
nel and a broader, bonded channel, both bearing distinct forces (Fig. 2). The former mirrors a standard linear 
model, showing no resistance to relative rotation shifts and adhering to a Coulomb shear force limit. The latter, 
termed the "parallel bond", aligns with the initial interface when bonded, resists relative rotation, and maintains 
linearity until a strength threshold breaks the bond. As the material reaches its conclusive phase, bonds are 
established at grain-grain contacts where the gap is equal to or narrower than the installation gap ( gi). The nor-
mal and shear stiffnesses are configured based on designated deformability parameters, specifically E∗ and k∗ , as 
described in the parallel bond deformability method. Concurrently, the remaining characteristics of the second 
interface are congruent with those outlined in the parallel-bond subset of the linear parallel bond  model39,41.In 
its unbonded state, it bears no load. This configuration, when paired with inactive dashpots and a null reference, 
aligns with Potyondy and Cundall’s  conceptualization38.

In Fig. 2, part (a) presents a detailed depiction of the parallel bonded interface. Here, Fc   signifies the aggregate 
force exerted at the contact interface. Other forces including Fl , Fd and F correspond to the linear, damping, and 
parallel bonded forces, respectively. Meanwhile, part (b) showcases the operational dynamics and associated 
rheological constituents of the linear parallel bond model.

Given the intricate nature of CSCC, with its unique blend of materials and properties, leveraging the Paral-
lel Bonded Particle Model in PFC3D becomes indispensable. The detailed granular representation and bond 
mechanics provided by this model ensure a more realistic simulation of the concrete’s behavior under varied 
conditions. As deeper insights into the composition of CSCC are gained, special consideration must be accorded 
to the incorporated pigments. These not only enhance the aesthetic appeal of concrete but also significantly 

Figure 1.  Schematic UCS test setup for CSCC.
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contribute to its mechanical properties due to their cementitious  nature34. Within the framework of the Parallel 
Bonded Particle Model, these pigments are envisioned as integral components of the cemented matrix, interacting 
both at inter-particle levels and with other concrete constituents. Such interactions can be effectively captured by 
the bond mechanics of the model, underscoring the synergy between aesthetics and structural integrity, thereby 
paving the way for an enhanced understanding and potential optimizations of CSCC.

Numerical model setup
The present study employed PFC3D version 7.0 to devise a comprehensive numerical model, drawing upon 
experimental findings from ten distinct mix designs detailed earlier. Central to this approach, within the context 
of a homogeneous model, was the meticulous calibration of micro-parameters, strategically aligned with their 
corresponding macro-parameters of CSCC. The calibration process heavily relies on the UCS test, a cornerstone 
in PFC3D concrete modeling, specifically tailored to address the unique properties of CSCC and diverging from 
the broader range of tests (triaxial, biaxial,..) typically used in rock or geomechanical studies. MATLAB’s Genetic 
Algorithm (GA) was integrated with PFC3D to streamline and optimize the calibration, enabling an automated, 
iterative optimization of the micro-parameters across the ten unique CSCC mix designs. During simulations, 
the loading platens, which mimic diametral compression, are represented using rigid plate walls. The top wall is 
set to a constant velocity of V = 0.01 m/s, while the bottom plate remains static (Fig. 3).

Model geometry and boundary conditions
The fundamental properties of CSCC cubic specimens based on comprehensive literature reviews and sensitivity 
analyses are initialized in this phase. A model size of a 0.15 m cube is established, with ball properties accordingly 
applied. Particle size distribution is managed by setting both upper and lower particle radius limits, with the sizes 
then uniformly distributed across this range. Therefore, the ratio of the maximum to minimum particle radius 
( Rmax
Rmin

 ) serves as a more relevant parameter to effectively capture the influence of particle size  distribution42. Fol-
lowing the literature review, the preliminary sensitivity analyses were conducted to refine our choice of particle 
 sizes11–14,43–46. These analyses were crucial in determining how different particle size distributions impact the 

Figure 2.  Schematic diagram of LPBM’s structure (modified  from39,41).

Figure 3.  PFC3D model setup; UCS test.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4126  | https://doi.org/10.1038/s41598-024-54715-4

www.nature.com/scientificreports/

macro-level properties of CSCC in our simulations. Based on this, a minimum radius ( Rmin = 0.002 m) and a 
ratio of maximum to minimum radius ( Rmax

Rmin
 = 1.5) were selected, ensuring that these values optimally represent 

the aggregate distribution within CSCC while maintaining computational efficiency. The variation coefficients 
for the three primary macro-properties were found to escalate as the specimen heterogeneity increases with 
the radius ratio. It is advisable to maintain the radius ratio within 1 to 2 to attain a satisfactory coefficient of 
variation, ideally around 5%21,46,47. Ball density is set at 2600 kg/m3, aligned with the aggregate properties from 
experimental  tests34. Table 1 presents the model geometry micro-parameters, which remain constant for all ten 
mix designs. This foundation ensures that the subsequent simulations are grounded on realistic configurations.

Static LPBM Micro‑parameters
Leveraging prior research and preliminary sensitivity analysis, pivotal micro-parameters, including gi , φ , µ are 
pre-defined to their optimal values, offering a consistent baseline across all ten  specimens11–14,21,43,44,46,48. This 
strategic fixity, like the adoption of a 35° friction angle (ϕ), was instrumental in minimizing iteration time while 
maximizing calibration, accuracy, ensuring a more streamlined calibration process for the other six micro-
parameters (Table 2).

Algorithmic optimization of CSCC micro‑parameters calibration
Achieving an accurate and robust numerical model depends on the precise calibration of micro-parameters to 
match the macroscopic properties observed in experimental studies. A classic Multi-Objective Genetic Algorithm 
(MOGA) approach within MATLAB scripting, and the PFC3D fish scripting facilitated this automated calibra-
tion process. In this research, MATLAB’s Genetic Algorithm (GA) was integrated with the PFC3D software, 
creating an automated and iterative optimization process for calibrating the micro-parameters of ten distinct 
CSCC mix designs. The calibration methodology, grounded on a sequence of systematic steps, was designed to 
ensure convergence between the simulations in PFC3D and the observed experimental macro properties. Ini-
tially, MATLAB launched PFC3D simulations using a set of initial parameters. During these simulations, PFC3D 
generated output data, like stress–strain profiles, which were stored in designated files and directories. MATLAB 
then extracted this data, marking the beginning of a crucial multi-objective optimization phase. In this phase, 
the Genetic Algorithm optimized the numerical macro parameters based on the data from PFC3D. Following 
the optimization, MATLAB modified the parameter input files for PFC3D with the optimized values, leading 
PFC3D to perform new simulations with these updated parameters. This iterative calibration process, essential 
for aligning micro-parameters with experimental benchmarks, was managed within MATLAB. It involved assess-
ing the newly generated numerical macro parameters against experimental data using fitness value calculations. 
Parameters meeting the optimization targets were considered validated, and their associated micro-parameters 
were calibrated accordingly.

The calibration continued with MATLAB checking the termination criteria for each of the 10 CSCC mix 
designs after every iteration. MATLAB initiated another iteration loop otherwise, when not all termination cri-
teria for the 10 CSCC mix designs were met. This loop involved adjusting micro-parameters based on Genetic 
Algorithm operations including mutation, crossover, and selection, after which the adjusted micro-parameters 
were used to update PFC3D’s input files for the subsequent run. This process repeated iteratively until the ter-
mination criteria for all mix designs were satisfied, showcasing a comprehensive and efficient calibration loop 
that effectively exchanges information between MATLAB and PFC3D.

Building on this structured approach, the numerical model was adeptly fine-tuned for CSCC simulations in 
PFC3D, capturing the intricate behavior of the unique mix designs. Figure 4 presents the flowchart illustrating 

Table 1.  Model geometry’ micro-parameters; constant for all ten mix designs.

Model geometry and boundary conditions

Modelheight,H(m) 0.15

Modelwidth,W(m) 0.15

Minimumradius,Rmin(m) 0.002
Rmax
Rmin

1.5

Porosity 0.1

Balldensity, ρ (kg/m3) 2600

Dampingcoefficient 0.5

Table 2.  Static micro-parameters; adapted for all ten mix designs.

Parallel bond micro-parameters

Installationbondgap, gi(m) 5.0e−5

Frictionangel,φ(◦) 35

Frictioncoefficient,µ 0.7
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the iterative calibration of concrete specimen microparameters, showcasing the integrated optimization dynam-
ics between PFC3D and MATLAB.

Optimization framework
In recent decades, the genetic algorithm (GA) has emerged as a noteworthy method for optimizing structural per-
formance. Rooted in the principle of ’Survival of the Fittest’, GA operates on a population of chromosomes, apply-
ing genetic operators such as mutation and crossover to introduce variations in each computational  iteration49. 
It has been highlighted that the inherent nature of certain research problems necessitates the consideration of 
diverse objective functions. In such contexts, the adoption of multi-objective optimization becomes indispen-
sable, ensuring a more comprehensive calibration approach that addresses the multifaceted objectives intrinsic 
to the  study16,24. Precision in defining objectives and understanding design needs are paramount. In this paper, 
multi-objective optimization has been employed to minimize the mean squared errors (MSE) in the six micro-
parameters of the parallel bond ( K∗

,K∗, E∗, E∗, σt , c) in PFC3D. This objective function is designed to ascertain 
optimal values for the ten CSCC mix designs, emphasizing the direct or indirect influence of design variables 
on the function.

Calibration process
Building on the GA framework, MATLAB, serving as a control-based system, orchestrates the calibration pro-
cess in tandem with PFC3D. Upon defining the initial configurations, MATLAB sends commands to PFC3D 
to initiate the model based on these settings. Once established, the calibration undergoes iterative refinement, 
with MATLAB overseeing and controlling each iteration. Throughout this process, selections are made based 
on the fitness values, reflecting the ongoing convergence of simulations toward the experimental macro proper-
ties. Calibration terminates when the MSE for the 10 mix designs aligns with the experimental test properties, 
signaling the genetic algorithm to cease and report the optimal micro-parameters. In this paper, multi-objective 
optimization has been utilized to minimize the mean squared errors (MSE) or maximize the fitness values of 
three numerical macro parameters ( νNu ,ENu, σ c,Nu ) resulting in the calibration of the six microparameters 
(K

∗
,K∗, E∗, E∗, σt , c) of the parallel bond in the PFC3D. The defined objective functions are multi-faceted and 

parallel to determine the optimal values for the ten CSCC mix designs. Three objective functions have been 
employed as described below:

Figure 4.  Flowchart of calibrating micro-parameters of CSCC via parallel genetic algorithm.
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Objective functions. Upon the determination of the numerical values for νNu ,ENu, σ c,Nu , they are contrasted 
against the respective experimental benchmarks using objective functions (Eq. 1). Should a high degree of con-
gruence or approximation between these metrics emerge (Fitness value ≥ 0.9 ), the corresponding micro-param-
eters are deemed as calibrated. With this affirmation of calibration, the iterative method unfolds, centering on 
the calibration of the remaining mix designs. This iterative repetition refines the simulated macro parameters, 
drawing them closer to the target metrics.

Utilizing these objective functions as a basis for comparison, the structured calibration process enriches the 
numerical model for CSCC simulations in PFC3D, capturing the intricate behavior of the specific mix designs. 
Subsequent sections delve deeper into the specific steps of the optimization.

Initial settings and value assignment. The foundational step in our simulation workflow involves initializing 
the model geometry and boundary conditions to ensure consistency throughout the simulations. Simultane-
ously, initial values for six parallel bond micro-parameters are strategically determined from literature, ensuring 
an efficient and informed starting point. Alongside, three other static parallel bond micro-parameters ( gi , φ , 
µ ) are designated fixed values within MATLAB, enhancing the calibration process’s efficiency. Recognizing the 
influential role of pigments in the CSCC on the mechanical properties of concrete, their effects are methodically 
incorporated at this stage, ensuring a holistic representation of the CSCC’s behavior.

Furthermore, experimental macro parameters ( νNu ,ENu, σ c,Nu ) from laboratory UCS tests across all ten mix 
designs are cataloged within MATLAB, resulting in a dataset of 30 reference records. After these meticulous 
adjustments and assignments, the parameters for the genetic algorithm are set as outlined in Table 3. MATLAB, 
with these parameters in place, crafts the initial population, instigating the first iteration and prompting PFC3D 
to run a model rooted in these initial values.

Population size. The size of the population is one of the most crucial parameters for evolutionary algorithms. 
Proper configuration aids significantly in reducing computational load and decreasing the execution time of an 
 algorithm50,51. Considering the high computational overhead for evaluating each population in this study, the 
population size has been set at 20.

Crossover. The crossover operator is used to recombine two chromosomes, aiming to produce superior chro-
mosomes. During the genetic algorithm’s crossover operation, the genetic material of two chromosomes from 
the previous generation’s population crossover results in new chromosomes in the current  generations49. In 
other words, the recombination process mixes genes present in two chromosomes, thereby producing new chro-
mosomes in the current population. The percentage of the population subjected to crossover is crucial. Usually, 
a larger percentage of the offspring population is produced through crossover. Furthermore, within DEM mate-
rial calibration, distinct micro-parameters hold varying degrees of significance. While some parameters operate 
independently, others are intricately interlinked. As a result, designating a crossover strategy for DEM calibra-
tion does not squarely fit into traditional lower or upper crossover  frameworks22. Therefore, in this study, 70% of 
the generated population will be created by crossover.

(1)Objective Functions =



















Min(MSE) ≡ Max Fitness value







If
νNu ≈ νExp
ENu ≈ EExp
σc,Nu ≈ σc,Exp

Fitness value ≥ 0.9 ↔ Calibration boundary
0 ≤ Fitness value ≤ 1.0

Table 3.  Parameters of the genetic algorithm.

Parameters

Population size 20

Crossover probability 0.7

Mutation probability 0.3

Number of crossover offspring 2× (Round
(

Crossover probability ×
Population size

2

)

) = 14  

Number of mutation offspring Round
(

Mutation probability × Population size
)

= 6  

Maximum of variables (Max_var)

K
∗
,K∗ = 3.0

E
∗ , E∗ = 1e11

σ t , c = 1e8

Minimum of variables (Min_var)

K
∗
,K∗=1.0

E
∗ , E∗ = 1e8

σt  , c = 1e5

Maximum number of iterations 50
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Mutation. The mutation operator is considered one of the most essential evolutionary processes to achieve an 
optimal solution in the genetic  algorithm52. In the mutation operation, new information is added to the search 
process in the genetic algorithm randomly. Given that mutation naturally occurs infrequently, the percentage of 
the mutated population is set at 30% of the initial population.

Selection. One of the common and widely used operators for selecting from the generated populations is the 
Roulette-Wheel Selection  method49. In this operator, the probability of selecting a chromosome is calculated 
proportional to its fitness. Therefore, the likelihood of selecting the i-th chromosome will be proportional to its 
fitness.

Parameter range strategy. To optimize computational efficiency and enhance accuracy, a strategic approach 
was adopted for defining the range of the six micro-parameters. Instead of relying on an inherently broad range 
from zero to an indefinite value, we established a more focused and intelligent range. This decision was informed 
by a thorough investigation of prior research related to concrete or synthetic rock, coupled with sensitivity 
 analyses14,21,22. Such a strategic range not only facilitates MATLAB’s intelligent selection within a contextually 
relevant span but also ensures convergence of the algorithm and the practical applicability of the solutions. The 
specific minimum and maximum values defining this range for each micro-parameter can be found in Table 3.

Number of iterations and termination condition. The termination criteria of an algorithm play a pivotal role 
in determining its execution time. It has been observed that initially, the progress of the genetic algorithm in 
solving a problem is quite commendable, and better solutions are achieved with each iteration. However, in 
later stages or subsequent iterations, only marginal improvements are observed. In this study, the iteration of 
the genetic algorithm will continue until the value of the objective function reaches a predefined threshold. By 
default, a value of 50 iterations has been set for this purpose. If the predefined conditions for achieving the opti-
mal solution are met before 50 iterations, the execution of the algorithm will halt.

Calculate numerical macro parameters. The calculation of νNu ,ENu, σ c,Nu is executed by performing the UCS 
test. This allows for the determination of Poisson’s ratio, Young’s modulus, and the peak compressive stress. 
Figure 5 illustrates the schematic calculation cycle for these parameters. Resultant axial stress–strain and axial 
stress-lateral strain curves provide the foundation for Eqs. (2) and (3), enabling the computation of E and the 
Poisson  ratio53.

where E = modulus of elasticity, (GPa), σ2 = Axial stress corresponding to 40% of UCS, (MPa), σ1 = Axial stress 
corresponding to an axial strain, ε1 , of 50 millionths, (MPa), and ε2 = Axial strain produced by stress σ2.

where ν = Poisson’s ratio, εl2 = Lateral strain at mid-height of the specimen produced by stress σ2 , and εl1 = Lateral 
strain at mid-height of the specimen produced by stress σ1.

Validation process
The core of this validation process is centered around the fitness value calculation, which is fundamentally 
based on minimizing the Mean Squared Error (MSE) between the numerical macro-parameters and their 

(2)E =
(σ2 − σ1)

(ε2 − 0.000050)

(3)ν =
(εl2 − εl1)

(ε2 − 0.000050)

Figure 5.  Calculation of νNu, ENu, σc,Nu based on UCS (Visualized  from53 and revised  from22).
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corresponding experimental values. This approach ensures that the calibrated numerical parameters closely 
reflect the experimental data, thereby validating the effectiveness of our calibration methodology for CSCC.

Fitness value calculation of macro-parameters. Fitness value plays a pivotal role in guiding the GA’s search 
through the solution space. In our calibration process, the fitness function aims at minimizing deviations 
between the numerical macro parameters produced by the PFC3D and the experimental benchmarks. A widely 
adopted approach for such optimization tasks is to compute the Mean Squared Error (MSE) between the numer-
ical (predicted) and experimental (observed) values, which can be expressed as:

For each mix:

where n is the number of macro parameters.

The fitness value can then be inversely related to the MSE:

This formulation ensures that solution sets closely mirroring experimental records are assigned higher fitness 
values, guiding the GA toward optimal calibration. A higher fitness value, inversely related to the MSE, indicates 
a more accurate calibration. The fitness value for each numerical macro parameter is calculated through a GA 
in MATLAB, which also controls and runs the PFC3D simulations. This iterative validation process is applied 
until all 30 numerical macro parameters are accurately generated and validated against their corresponding 
experimental values, ensuring each parameter meets the predefined acceptance criteria.

Implicit calibration of micro-parameters through macro-level validation. In the intricate dynamics of numeri-
cal modeling, the interplay between micro-parameters ( K∗

,K∗, E∗, E∗, σt , c) and their resultant macro param-
eters (νNu ,ENu, σ c,Nu) is foundational. By achieving a precise calibration of numerical macro parameters against 
experimental benchmarks, an implicit assertion is made: the underlying micro-parameters are likewise accu-
rately calibrated. This is premised on the fact that the numerical macro parameters are direct manifestations 
of the micro-parameters set within the PFC3D environment. Thus, when macro outcomes closely align with 
experimental data, it validates the micro-parameter settings for each mix design.

Results and discussions
Validation of numerical macro‑parameters
Following the meticulous calibration process facilitated by the integration of MATLAB’s Genetic Algorithm 
with PFC3D, the numerically derived parameters— Poisson’s ratio (ν), Young’s modulus (E), and compressive 
strength ( σ c,)—were juxtaposed against their experimental analogs. Table 4 presents this comparative analysis 
in detail, underlining the proficiency of the model in reflecting empirical observations.

Figure 6a,b depict the numerical and experimental stress–strain curves for all ten mix designs, playing a 
crucial role in determining the E and σ c for each. Notably, the calibration process achieved high accuracy in 
capturing the peak stress values and Young’s modulus, aligning with the primary objectives of this research. 
Upon detailed examination, while a degree of similarity is evident between the numerical and experimental 
stress–strain curves, certain differences are observed. These variations, particularly the reduced ductility observed 

(4)MSE =
1

n

n
∑

i=1

(Numericali − Experimentali)

2

(5)=
1

3

(

(

νNu − νExp
)2

+
(

ENu − EExp
)2

+
(

σc,Nu − σc,Exp
)2
)

(6)Fitness value =
1

1+MSE

Table 4.  Validated numerical macro-parameters (experimental results  from34).

CSCC Numerical results Experimental results

Mix ID νNu ENu (GPa) σc,Nu (MPa) νExp EExp (GPa) σExp (MPa)

Fa10 0.2035 34.73 53.81 0.2053 34.51 53.9

Blue5 0.2035 33.07 49.29 0.2057 33.1 49.6

Green5 0.2035 31.98 46.83 0.2046 32.12 46.7

Red5 0.2035 28.67 37.13 0.2039 28.78 37.5

Blue10 0.2035 31.98 46.41 0.2041 31.95 46.2

Green10 0.2036 31.31 43.96 0.2044 31.18 44.0

Red10 0.2035 26.47 31.54 0.2051 26.34 31.4

Blue15 0.2036 30.43 41.65 0.2049 30.31 41.6

Green15 0.2035 29.01 38.80 0.2055 29.2 38.6

Red15 0.2035 25.35 29.81 0.2037 25.74 30.0
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in the numerical curves compared to the experimental data, underscore the precision in our modeling and point 
towards areas that merit further exploration, rooted in some different reasons.

In our DEM simulations, significant challenges arise in accurately capturing complexities such as aggregate 
crushing, grain boundary sliding, and the closing of pre-existing cracks within the bonded particle  model15. 
These limitations particularly affect the stress–strain curves, leading to notable differences between the simulated 
and experimental results. Further contributing to these discrepancies is the simplification of particle (ball) size, 
shape, and form in our numerical model. Necessary for computational manageability, these simplifications do 
not entirely mirror the more intricate aggregate shapes and grading curves typical of actual CSCC. This issue is 
compounded by the variability in aggregate distribution and the extensive use of spherical balls (44,628) in the 
model, which complicates the precise matching of numerical results to experimental data. Insights from previous 
studies have highlighted that the free rotation of particles in the model can induce early  yielding54,55.

Additionally, the use of the LPBM in the simulations tends to produce a more linear stress–strain curve, 
contributing to the observed variations in ductility and strain characteristics compared to the more complex 
responses seen in the experimental data. It is important to note that the study’s primary focus was the develop-
ment and validation of a calibration process using a multi-objective genetic algorithm, targeting micro–macro 
level mechanical properties with a particular emphasis on σ c , E, and ν. While we endeavored to achieve high 
accuracy and equality for these three macro parameters, for other aspects such as ductility and strain at peak 
stress, a degree of similarity was deemed sufficient for the objectives of this research. Addressing the full spectrum 
of CSCC’s mechanical behavior, especially the detailed non-linear responses and microcracking phenomena, 
was beyond the scope of this study. Future work will aim to refine the model to better align with experimental 
observations, taking into account the insights gathered and the limitations identified.

Figure 7 showcases the dynamic nature of the iterative calibration process, unraveling the nuances of how 
various numerical macro-parameters evolve across 33 iterations.

In Fig. 7a, the trajectory of the νNu values over the calibration iterations is vividly illustrated. As the iterations 
unfurl, a discernible trend emerges where the Poisson ratio values consistently edge toward the experimental 

Figure 6.  (a) Numerical stress–strain curves; (b) experimental stress–strain  curves34; from UCS tests for all ten 
mix designs.

Figure 7.  Iterative calibration progression of numerical macro-parameters. (a) Evolution of νNu across 
iteration; (b) progression of ENu and σc,Nu across iterations.
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benchmarks. This alignment underscores the intrinsic linkage of the Poisson ratio to the micro-parameters 
K

∗
,K∗ . The calibration of the Poisson ratio is not an isolated endeavor but is inherently intertwined with the 

precise modulation of other numerical macro parameters. A calibration boundary, delineated at a Poisson ratio 
of 0.19, serves as a pivotal reference. Values ascending beyond this threshold resonate with the set criterion, echo-
ing the intricate dance of calibration that juggles the macro and micro realms seamlessly. Turning to Fig. 7b, the 
iterative calibration journey of both the ENu and σ c,Nu is delineated. As the optimization forges ahead in a parallel 
manner, there is an incisive moment when the numerical values inch closer to one of the experimental touch-
stones. Upon sensing this convergence, the corresponding value is earmarked, and the calibration pivot shifts to 
the remaining mix design datasets. A pivotal realization dawns: the calibration of Young’s modulus is intrinsically 
tethered to the modulation of the micro-parameters E∗

, E∗ . Conversely, fine-tuning the compressive strength 
demands nuanced adjustments of the σ t, c micro-parameters, ensuring alignment with experimental insights.

In Fig. 8, the evolution of fitness values across 33 iterations is vividly illustrated, casting light on the intricate 
calibration journey navigated by the Genetic Algorithm. This algorithm, fundamentally rooted in the quest for 
optimal micro-parameters, is driven to bridge the chasm between numerical simulations and experimental 
benchmarks. The dual trajectories portrayed in the figure—one spotlighting the best fitness values per iteration 
and the other tracing the mean fitness value—serve as a testament to this diligent expedition toward optimization.

The initial 20 iterations can be perceived as the algorithm’s formative phase, where it meticulously hones its 
calibration instincts. Transitioning from this phase, the subsequent 13 iterations crystallize into a commend-
able achievement: the precise calibration of all ten mix designs. This progression, from foundational training to 
triumphant calibration, showcases the GA’s adeptness in mastering the intricate calibration landscape.

Remarkably, throughout this journey, the fitness values for all ten mix designs consistently soar beyond 
the 0.94 threshold, a significant achievement when juxtaposed against the established benchmark of 0.9. Such 
unwavering attainment of elevated fitness scores, indicating a successful validation of the macro parameters, is 
emblematic of the algorithm’s capability to adeptly traverse the solution space, refining its path towards optimal 
micro-parameter configurations that mirror experimental findings.

Collating these insights, it becomes unequivocally clear that the calibration methodology, bolstered by the 
Genetic Algorithm, stands as a meticulously curated approach in this study. This rigorous process evidently 
validates the macro parameters, as demonstrated by the pronounced alignment between the numerical and 
experimental stress–strain curves, while showing a degree of similarity, particularly in ductility and strain at 
peak stress, effectively validates the macro parameters. This alignment, further reinforced by the consistently 
high fitness values, underscores the model’s capacity to capture the essential mechanical nuances, despite the 
slight variations. These results vouch for the calibration framework’s robustness and precision, particularly in 
the accurate calibration of the three macro parameters—Uniaxial Compressive Strength, Modulus of Elasticity, 
and Poisson’s Ratio. While the study does not encompass the full spectrum of CSCC’s mechanical behavior, 
such as detailed non-linear responses and microcracking phenomena, the findings provide a solid foundation 
for future work aimed at refining the model to achieve even closer alignment with experimental observations.

Calibrated micro‑parameters
The micro-parameters tabled are a testament to the calibration’s meticulousness, intertwined with the inherent 
behaviors of the CSCC mix designs (Table 5). A key observation across the dataset is the consistency in K∗

,K∗ , 
both consistently hitting the upper boundary of 3.0. This outcome, while initially established as the maximum 

Figure 8.  Fitness value evolution across 33 iterations for ten mix designs.
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in the smart range strategy, underscores its importance. Literature reviews and our current findings converge on 
this value, highlighting its pivotal role in representing the material’s intrinsic characteristics.

The Young’s moduli, E∗

, E∗ , present values within the defined calibration bounds. Their range, although 
broad, aligns with the experimental trend. These values represent the stiffness attributes of the CSCC, and their 
calibration provides insights into the material’s resistance to elastic deformation. The trend in the compressive 
and tensile strengths, embodied by σt and c respectively, offers a clear indication of the CSCC’s ability to withstand 
stresses. They stay within the anticipated bounds, and their calibrated values are a testament to the algorithm’s 
capability to match real-world experimental data closely.

It is essential to note that the calibration process, underpinned by the Genetic Algorithm, was not an arbitrary 
pursuit. The initial bounds, set based on a literature-backed smart range strategy, played a crucial role. The algo-
rithm’s journey, from initial bounds to the calibrated values, reflected its inherent ability to navigate the solution 
space effectively. The results, especially the attainment of the upper bound for K∗

,K∗ , signify the algorithm’s 
finesse in aligning with real-world expectations and the validity of the set bounds.

Pigments’ role in the entire calibration process warrants special attention. Their introduction, especially in 
substantial proportions, has a nuanced effect on the CSCC’s micro-parameters. While it would be clear that 
the pigments influence the mechanical properties of the CSCCs, the calibrated micro-parameters encapsulate 
these effects. The values, particularly of σ t , c , E∗ and E∗ are inherently reflective of the composite structure of 
the CSCC, including the pigments. This holistic representation ensures that the cumulative impact of the mix 
design, inclusive of the pigments, finds its voice in the calibrated micro-parameters.

In summation, the presented calibrated micro-parameters, when compared to the set bounds and experimen-
tal data, emphasize the robustness of the calibration methodology. The tabled values offer a holistic understand-
ing, ensuring the influence of components like pigments is effectively integrated, setting a solid foundation for 
future endeavors in concrete simulations.

In this study, our calibration process primarily centered on the UCS test to align the micro-parameters in 
the DEM model with the macro-level mechanical properties of hardened CSCC. This focus was guided by the 
objective to simulate and understand the long-term structural behavior of CSCC. We recognize the significance 
of early-age properties such as viscosity, yield stress, and flow characteristics (typically assessed through slump 
flow, L-box, V-funnel, and rheometer tests) in distinguishing SCC from conventional concrete. These properties 
are crucial in evaluating the workability and flowability of SCC in its fresh state, ensuring ease of placement and 
adequate filling capacity without segregation. While our current study did not directly simulate these early-age 
properties, the calibrated model based on UCS provides a robust foundation for future expansions. Such expan-
sions could potentially include the simulation of SCC’s distinctive rheological properties, offering a comprehen-
sive understanding of both its hardened and fresh-state behaviors. The inclusion of these aspects in future work 
would enhance the applicability of the model, particularly in scenarios where the fresh-state properties of SCC/
CSCC are as critical as its hardened state.

The multi-objective genetic algorithm’s versatility in calibration applications is profoundly illustrated by its 
successful implementation in diverse fields, extending well beyond the confines of our current study. Notably, 
its potential in soil and rock mechanics is significant, especially in contexts where triaxial and biaxial tests are 
prevalent for calibrating numerical models. One study in the realm of cohesive bulk materials, particularly coal, 
employed the Non-dominated Sorting Genetic Algorithm (NSGA) to optimize parameters of an Elasto-Plastic 
Adhesive contact model. This approach effectively captured varied stress states and history dependencies in coal, 
aligning simulations closely with experimental shear stress measurements. Another research project unveiled 
a universal framework for calibrating microscopic properties in granular materials, utilizing the NSGA-II. This 
framework, designed for industrial-scale applications and adaptable to all DEM simulation setups, successfully 
balanced model accuracy with computational efficiency, highlighting the use of Pareto dominance principles to 
manage trade-offs between conflicting objectives. These instances not only underscore the genetic algorithm’s 
adaptability across different materials and simulation challenges but also emphasize its potential to contribute 
to a wide range of industrial applications and computational modeling fields, paving the way for future research 
and advancements.

Table 5.  Calibrated micro-parameters for ten CSCC mix designs.

CSCC Parallel bond micro-parameters

Mix ID K
∗

K∗ E
∗ (GPa) E∗ (GPa) σt (MPa) c (MPa)

Fa10 3.0 3.0 15.75 15.75 8.1 10.0

Blue5 3.0 3.0 15.00 15.00 7.4 9.0

Green5 3.0 3.0 14.50 14.50 7.0 8.8

Red5 3.0 3.0 13.00 13.00 5.5 7.0

Blue10 3.0 3.0 14.50 14.50 7.0 8.4

Green10 3.0 3.0 14.20 14.20 7.0 7.0

Red10 3.0 3.0 12.00 12.00 5.0 5.0

Blue15 3.0 3.0 13.80 13.80 6.4 7.0

Green15 3.0 3.0 13.15 13.15 5.8 7.0

Red15 3.0 3.0 11.50 11.50 4.6 5.0



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4126  | https://doi.org/10.1038/s41598-024-54715-4

www.nature.com/scientificreports/

Conclusion
In the advanced realm of structural engineering research, the intricate behaviors of CSCC have been consistently 
explored. This investigation was meticulously designed to shed light on these nuances, aligning sophisticated 
numerical simulations with experimental findings more closely than ever before.

The core of this study revolved around the precision calibration of micro-parameters across ten distinctive 
CSCC mix designs. This was achieved by leveraging MATLAB’s Genetic Algorithm in conjunction with PFC3D 
software, forging an innovative calibration pathway. This union birthed an automated, multi-objective optimiza-
tion process, transcending traditional calibration methods and aligning simulations with the subtleties observed 
in real-world CSCC experiments.

Key contributions and insights from this study include:

1. The pioneering methodology, integrating MATLAB’s Genetic Algorithm with PFC3D, introduced an auto-
mated and systematic approach to multi-objective optimization for CSCC. This process significantly improves 
upon traditional trial-and-error methods, enabling precise calibration of micro-parameters for ten dis-
tinct CSCC mix designs concurrently. This orchestrated calibration not only augmented precision but also 
streamlined computational efficiency. The genetic algorithm has proven to be both versatile and robust, 
demonstrating its effectiveness in a wide range of calibration applications across various material behaviors 
and industrial contexts.

2. The successful validation of the three numerical macro parameters—Uniaxial Compressive Strength, Modu-
lus of Elasticity, and Poisson’s Ratio—in our study directly led to the calibration of the associated micro-
parameters. This outcome, supported by consistently high fitness values exceeding the 0.94 threshold, not 
only validates the macro parameters but also ensures the accurate calibration of micro-parameters, demon-
strating the precision and reliability of our methodology.

3. The inclusion of pigments in the CSCC mix, while elucidating certain behaviors, also accentuated the com-
plexity of the calibration challenge. However, their influences were adeptly encapsulated within the calibrated 
micro-parameters, offering a holistic insight into the mechanical attributes of the mixes.

Nevertheless, inherent constraints and challenges were observed. Utilizing PFC3D for concrete simulations, 
while innovative, may have limitations in capturing certain granular behaviors specific to concrete. Similarly, 
while the Genetic Algorithm offers a robust calibration mechanism, its efficacy is intrinsically tied to the defined 
parameter bounds, suggesting potential areas for further refinements and broader applications.

In essence, this research has marked a substantial leap in the domain of concrete simulations. It underscores 
the merits of juxtaposing advanced computational tools with rigorous experimental data to derive profound 
insights. Future research trajectories should consider deeper exploration into the long-term behaviors of CSCC 
mixes under diverse conditions, continually refining our understanding and applications in the realm of struc-
tural engineering.

Data availability
The data presented in this study is available upon corroborated re-quest from the corresponding author.
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