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Tuning attention based long‑short 
term memory neural networks 
for Parkinson’s disease detection 
using modified metaheuristics
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Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily 
affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The 
clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and 
postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and 
being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments 
that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate 
symptoms. This study explores the potential of utilizing long‑short term memory neural networks 
(LSTM) with attention mechanisms to detect Parkinson’s disease based on dual‑task walking test 
data. Given that the performance of networks is significantly inductance by architecture and training 
parameter choices, a modified version of the recently introduced crayfish optimization algorithm 
(COA) is proposed, specifically tailored to the requirements of this investigation. The proposed 
optimizer is assessed on a publicly accessible real‑world clinical gait in Parkinson’s disease dataset, 
and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best‑constructed 
models.

Keywords Parkinson’s disease, Medical diagnosis, Long-short term memory neural networks, Crayfish 
optimization algorithm, Optimization

Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder primarily affecting the dopa-
minergic system in the basal ganglia, and it impacts millions of individuals  worldwide1. The initial description 
of PD was provided by James Parkinson in his essay “An Essay on the Shaking Palsy”2, published in 1817. This 
essay is often regarded as groundwork for Parkinson’s disease understanding. James Parkinson’s essay described 
several key clinical characteristics of the disease, encompassing resting tremors, muscle rigidity, bradykinesia 
(slowness of movement), and postural instability. He referred to the condition as “shaking palsy,” emphasizing 
the tremors observed in the individuals affected by the disease.

Currently, PD diagnosis primarily relies on clinical evaluation without reliable diagnostic  tests3, and it can be 
imprecise and inherently subjective. Standardized rating tools, such as the Unified Parkinson’s Disease Rating 
Scale (UPDRS), were developed to assess various aspects of PD symptoms. Additionally, the finger-tapping test 
(FTT), as part of UPDRS, can serve as a clinical marker for evaluating motor performance. FTT is a psychomotor 
task that involves repetitive tapping movements for evaluating motor function in individuals affected with PD. 
The FTT involves tapping by the thumb or middle finger as quickly and accurately as possible over a set duration. 
Variations of the test include unilateral and bilateral tapping, with the latter offering insights into coordination 
and symmetry. Individuals with PD exhibit impaired finger-tapping performance compared to healthy controls. 
Key findings in studies include reduced tapping speed (bradykinesia), increased variability in tapping intervals, 
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and reduced tapping amplitude. FTT can be a promising tool for detecting PD in early stages by combining it 
with other tools and measurements.

Artificial intelligence (AI) has revolutionized healthcare by offering data-driven solutions for complex medical 
problems. In medical datasets, deep learning methods, have demonstrated exceptional potential in extracting 
intricate patterns. In healthcare, the application of Long Short-Term Memory (LSTM) networks, a type of recur-
rent neural network (RNN) is particularly promising for analyzing medical data. Additionally, metaheuristic 
optimization algorithms have emerged as powerful methods for optimizing the parameters of complex models, 
enhancing their performance.

An extensive literature review suggests that there is a research gap concerning the application of optimized 
LSTM networks for Parkinson’s diagnosis. Additionally, the application of emerging optimizers such as the 
crayfish optimization algorithm (COA)4. has yet to be explored. The main focus of this work is to address this 
issue presenting a novel diagnostic approach for PD by combining the capabilities of deep LSTM networks, 
optimized by a modified metaheuristic algorithm. The primary goal of this work is to address the need for early 
and accurate PD diagnosis. An additional scientific contribution of this work is a proposal for a modified version 
of the COA that tackles some of the observed drawbacks of the original algorithm.

For the experiments, a dataset comprising recordings from inertial wearable sensors with gyroscopes is 
employed. This dataset encompasses recordings collected from individuals affected by PD, those with atypical 
PD, and healthy control subjects. During data acquisition, a 3D gyroscope was meticulously positioned inside 
the patient’s shoe soles, and participants were instructed to walk down a well-lit path while counting backward 
from 500 in increments of 7, known as a dual-task walk test. Multiple trials were conducted for each participant, 
and it’s important to note that the data exclusively pertained to the right hand, which was typically the more 
affected hand in these individuals.

The primary scientific contributions of this work can be outlined as follows:

• A proposal for a novel time-series classification-based approach for PD detection in affected individuals.
• An innovative application of the recently proposed COA for parameter optimization of LSTM tasked by PD 

diagnosis.
• A modified version of the COA specifically developed for this study and to address the drawbacks of the 

original algorithm.

Background and related works
The integration of AI into the realm of medical diagnostics has garnered substantial scholarly interest and is 
effecting a profound transformation within the healthcare sector. AI presents a promising technique to enhance 
the accuracy of medical diagnoses, reduce healthcare costs, and improve patient outcomes. AI has been widely 
applied in radiology to assist in the diagnosis of diseases from X-rays, CT scans, and MRIs. Notable applica-
tions include the early detection of lung cancer CT scans using a 3-dimensional deep learning  algorithm5 and 
the identification of diabetic retinopathy using networks trained by a dataset of retinal fundus  photographs6. 
AI-driven pathology, particularly in the field of digital pathology, has advanced the accuracy of cancer diagno-
sis and tumor classification. Deep learning models have been employed to aid pathologists in identifying and 
grading  cancers7. In cardiology, AI has shown potential in analyzing electrocardiograms (ECGs) for arrhythmia 
 detection8 and echocardiograms for cardiac disease assessment. Preceding works have demonstrate impressive 
results for arrhythmia detection by integrating optimization techniques to tackle large search spaces for parameter 
 optimization9 exceeding 98% accuracy.

Machine learning and deep learning methodologies have unequivocally exhibited their efficacy in the field of 
neurodiagnostics. These sophisticated algorithms are adept at parsing intricate neurophysiological data, encom-
passing medical imagery, electrophysiological measurements, and behavioral evaluations, thereby culminating 
in heightened precision and expedience in the diagnostic process. AI-enabled systems are poised to contribute 
significantly to the timely identification and categorization of neurological disorders, including but not limited 
to Alzheimer’s disease, multiple sclerosis, and intracranial  neoplasms10,11. AI has engendered notable enhance-
ments in the scrutiny of electrophysiological data, encompassing electroencephalography (EEG) and magne-
toencephalography (MEG) signals, with the express purpose of diagnosing and overseeing conditions such as 
epilepsy, sleep disorders, and various other neurological maladies. Deep learning algorithms remain essential 
for the identification of aberrations, the precise localization of epileptic foci, and the prognostication of seizure 
occurrences. Khan et al. conducted an evaluation, comparing two distinct deep learning  methodologies12.

The utilization of the finger-tapping test as a diagnostic modality for Parkinson’s disease has garnered atten-
tion within the realm of clinical investigation. This test serves as an evaluative measure of the motor function 
and dexterity of the fingers, presenting itself as a prospective instrument for the early detection and continuous 
monitoring of Parkinson’s disease. Akram et al13. developed a new Distal Finger Tapping (DFT) test to assess 
distal upper-limb function in PD patients, focusing on kinetic parameters like kinesia score (KS20), akinesia 
time (AT20), and incoordination score (IS20). The DFT test effectively discriminated between PD patients and 
controls, with KS20 exhibiting the highest sensitivity (79%) and an area under the receiver operating character-
istic curve (AUC) of 0.90. In a research undertaken by Williams et al14. a new computer vision technology, Dee-
pLabCut, was used to track and measure finger tapping in smartphone videos to objectively assess bradykinesia 
in Parkinson’s disease. The computer measures, including tapping speed, amplitude, and rhythm, correlated well 
with clinical ratings from movement disorder neurologists, demonstrating its accuracy (Spearman coefficients 
ranged from −  0.50 to −  0.74, p < .001). DeepLabCut offers a ’contactless’ and easily accessible method for quan-
tifying Parkinson’s bradykinesia during clinical examinations, with potential applications in other neurological 
disorders characterized by altered movements.
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Preceding works have tackled PD diagnosis using MRI image analysis reporting outcomes raining form 
78%15 to 88%16. However, the use of MRI is significantly higher d to shoe mounted sensing systems. One major 
advantage of the proposed approach is the significantly lower diagnosis costs as well as greater availability of 
diagnosis tools. Researchers also considered handwriting analysis for diagnosis. The  paper17 tested several classi-
fiers with the best accuracy demonstrated by the Naive Bayes models aching an accuracy of 88.63%. Researchers 
have considered the use of generative adversarial networks to tackles issues associated with data availability for 
gait freezing in PS  patients18. Models trained on the augmented data arrained a reported an exceeding of 90%, 
however the use of data optimization techniques has not considered in this work. There is an evident research gap 
for using timeseries PD detection, as well as the application of parameter tuning via metastatic algorithms in the 
field of PD diagnosis. This work seeks to address the observed gap by proposing a low cost AI powered approach.

Attention based LSTM
The  LSTM19 represents a variant of RNNs. These networks retain prior information and incorporate it into 
their processing of current input data. However, a limitation of traditional RNNs is their inability to effectively 
capture long-term dependencies, mainly because of the vanishing gradient issue. LSTMs, on the other hand, are 
purposefully engineered to avoid these challenges associated with long-term dependencies.

The cell state is a crucial component of the LSTM network, which is designed to capture and carry informa-
tion over long-term dependencies. The hidden state is computed at each time step based on the cell state and 
the input at that time step. It serves as the output of the LSTM at each step and contains information that the 
network has learned to be significant for making predictions. The third main element of LSTMs is the gates and 
they incorporate three different gates for controlling the information flow, the forget gate, the input gate, and 
the output gate. These gates play an important role in LSTMs to selectively modify and utilize information from 
the cell state, managing the flow of data within the network. This capability empowers LSTMs to grasp and apply 
both short-term and long-term dependencies in sequential data.

The forget gate decides which information from the prior cell state should be forgotten. The input gate is 
responsible for deciding which new information should be incorporated into the cell state. The output gate 
regulates which information should be extracted from the cell state and utilized in generating the hidden state 
and output of the LSTM. The LSTM defines the gate, forget gate, cell state, output gate, and hidden state through 
the following mathematical formulations:

where it refers to input gate activation at time t, xt is the input at time t. The hidden state and the cell state at time 
t − 1 are referred to by ht−1 , and t − 1 respectively. Cell state at time t − 1 is denoted by ct−1 . Wxi ,Whi ,Wci , bi are 
the weight matrices and bias vectors for the input gate. σ denotes the Sigmoid activation function.

where ft denotes the forget gate activation at time t.

where ct denotes the cell state at time t. tanh refers to the hyperbolic tangent activation function defined as 
follows:

where ot denotes the output gate activation at time t.

where ht denotes the hidden state at time t.
The attention phenomenon lacks a precise mathematical definition, and its incorporation into the Luong 

attention-based model should be viewed as a mechanism. Networks capable of operating with this attention 
mechanism and possessing LSTM characteristics are considered attention-based. The primary goal of such a 
mechanism is to assign varying weights to the input sequence, allowing for the capture of data and the utiliza-
tion of input-output relationships. The fundamental resolution for this architecture involves implementing a 
second network.

In pursuit of this objective, the authors opted for the Luong attention-based model. The weight, denoted as 
wt , is computed for each timestep t in the source during the decoding process of the attention-based encoder-
decoder, with the constraint �swt(s) = 1 and ∀s;wt(s) ≥ 0 . The hidden state ht serves as a function representing 
the predicted token for the corresponding timestep, given by �swt(s) ∗ ĥs.

Various mathematical applications of the attention mechanism exhibit differences in how they calculate 
weights. In the Luong model, the computation involves applying the softmax function to the scaled scores of 
each token. The matrix Wa linearly transforms the dot product of the decoder’s ht and the encoder’s ĥs to obtain 
the score.

(1)it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

(2)ft = σ(Wxf xt +Whf ht−1 +Wcf ct−1 + bf )

(3)ct = ft · ct−1 + it · tanh(Wxcxt +Whcht−1 + bc)

(4)tanh(x) = ex − e−x

ex + e−x

(5)ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

(6)ht = ot · tanh(ct)
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Metaheuristics and hyperparameter optimization
Metaheuristic algorithms have many successful implementations in different areas, including wireless sensor 
 networks20, hybridizing by K-means algorithm for text-document  clustering21, tuning LSTM  models22, con-
volutional neural network architecture  design23, feature  selection24, fraud  detection25,26, and many  others27–29.

In the domain of metaheuristics, hyperparameter optimization has a crucial role when tuning the opera-
tions of specific algorithms. Hyperparameter optimization is the process of selecting the right configuration 
of hyperparameters in a specific method for a given optimization problem. The choice of hyperparameters 
significantly influences the algorithm’s convergence, robustness, and overall efficacy. It is important to note that 
hyperparameter optimization itself is an NP-hard problem and metaheuristics are shown to be successful for 
tackling NP-hard optimization problems.

The NP-hardness of hyperparameter optimization arises from the large search space of possible configurations 
and the computational effort required to identify the optimal set of hyperparameters. In an NP-hard problem, 
the time required to find an optimal solution grows exponentially with the problem size, making it impractical 
to perform an exhaustive search. Therefore, finding the best set of hyperparameters efficiently is a formidable 
challenge. To tackle the NP-hard nature of hyperparameter optimization, metaheuristics offer an efficient and 
effective approach. Metaheuristics are a class of optimization algorithms that are designed to handle complex, 
large-scale problems, often characterized by non-linearity and high dimensionality.

It is important to highlight that no one-size-fits-all solution exists when it comes to optimization problems. 
This assertion is underpinned by the No Free Lunch (NFL)30 theorem, which stipulates that no universally opti-
mal approach functions equally well for all existing problems. Consequently, the diverse field of metaheuristics 
has emerged, each with its own set of advantages and disadvantages. Selection is essential when determining 
an appropriate metaheuristic for a given problem domain, considering the problem’s characteristics and the 
algorithm’s strengths and weaknesses.

Proposed method
This section presents the base Crayfish Optimization Algorithm (COA)4, as well as the inspiration behind the 
preparation of an altered version used for the purposes of our research. Subsequently, details and pseudocode 
of the modified algorithm are provided.

Original crayfish optimization algorithm
The  COA4, a novel optimization metaheuristic emulates the foraging, avoidance, and social behavior patterns 
observed in crayfish  populations4. This algorithm leverages principles from the biological realm to tackle opti-
mization problems in various fields using three distinct operating phases. These phases are designed to establish 
an equilibrium of exploration and exploitation. In the initial “summer resort” stage, COA focuses on exploring 
potential solutions. Subsequently, the “competition” and “foraging” stages simulate the exploitation phase. Transi-
tions between these stages are influenced by temperature control. Elevated temperatures prompt crayfish to seek 
shelter or engage in competition for shelter, while optimal temperatures dictate foraging strategies based on food 
size. Temperature regulation enriches COA’s level of randomness and bolsters its global optimization capabilities.

The following equations describe the functioning of the COA:

here P denotes the population, k the dimensionality of said problem and N the population limit, Xi,j is the posi-
tion of an agent in the i and j coordinate. Agents are randomly dispersed across the search space according to:

in which ll represents the lower limit, ul the upper limit and rnd is sued to introduced randomness. A major 
influence of agent behavior is simulated temperature defined as per the following.

Once temperatures exceed 30 agents choose to locate a cooler region to vacation and resume foraging at a more 
appropriate temperature. Agent intake can be approximately assumed to be normally distributed and can be 
determined in accordance with:

where µ denotes the optimal agent temperature, and σ and C define control parameters for the given algorithm. 
Crayfish will fight for cave space. This is simulated by the algorithm as a random event with a 0.5 probability of 
occurring once tmp exceeds 30 as:

(7)X = [X1,X2, · · · ,XN ] =

















X1,1 · · · X1,j · · · X1,dim

... · · ·
... · · ·

...
Xi,1 · · · Xi,j · · · Xi,dim

... · · ·
... · · ·

...
XN ,1 · · · XN ,j · · · XN ,dim

















(8)Xi,j = lbj +
(

ubj − lbj
)

× rand,

(9)temp = rand × 15+ 20

(10)p = C1 ×
(

1√
2× π × σ)

× exp

(

− (temp− µ)2

2σ 2

))

(11)Xt+1
i,j = Xt

i,j − Xt
z,j + X shade
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with z denoting a random agent. Positions are therefore adjusted in accordance with other competing individual 
agents.

Agent positions are updated according to:

During the foraging phase, COA will progress towards the most effective solution, bolstering the algorithm’s 
ability to exploit resources and ensuring robust convergence capabilities.

Modified crayfish optimization algorithm
While the original COA algorithm demonstrates decent performance, it is a relatively novel algorithm with a lot 
of room for growth. Testing conducted using CEC standard evaluation methods suggests a lack of exploration 
can be associated with this algorithm. The modified version attempts to tackle this deficiency by introducing 
two new mechanisms.

The first introduced mechanism comes from the  ABC31 algorithm. Depleted solutions are rejected if they do 
not show improvement and are replaced by newly generated solutions. Given the limited number of iterations 
conducted in this experiment, solutions that do not improve are rejected after two iterations if no improvement 
is observed. This approach has been shown to boost exploration. The second mechanism introduced is quasi-
reflective learning (QRL)32. This technique is utilized to generate new solutions further boosting exploration. 
Additionally, this mechanism is utilized for the initial generation of potential solutions in the initialization stages 
of the algorithm. Quasi-reflected component z of the solution of a given solution X is determined as:

where lb and ub denote lower and upper bounds of the search space and rand denotes a random value within 
the given interval. The introduced algorithm is named the modified COA (MCOA). The pseudocode for the 
described optimizer is presented in 1.

Set initial parameter values
Initialized population using QRL mechanism
while T > t do

Determine simulated temperature Temp
Utilize appropriate COA to update agent locations depending on Temp
Determine agent fitness using an objective function
for agent p in Population do

if p did not improve for 2 iterations then
Generate new solution using QRL mechanism sand replace p

end if
end for

end while
return Optimal solution from the population

Algorithm 1.  Pseudocode for the described MCOA algorithm

Experimental setup
To establish the quality of the introduced approach, data from a publicly available clinical study is  utilized33 that 
can be found on the following link https:// physi onet. org/ conte nt/ gaitp db/1. 0.0/. The data is sourced from a col-
lection of shoe-mounted accelerators, specifically chosen for its representation in a clinically significant study 
conducted by experts in the field. Moreover, the dataset is publicly available and exhibits well-organized data. 
One challenge associated with this dataset is its presentation in text format.

The preprocessing phase involves converting it into a suitable data frame, ensuring proper formatting, and 
applying labels to each patient’s sample. Patient details, including their status, are provided in a separate text file, 
and labels are assigned to each utilized sample based on this information. The dataset contains no missing values 
and all values are normalized therefore appropriate as inputs for a model. The original data is structured as a 
time series, and information from various patients is amalgamated to construct a balanced and unified dataset 
for time-series classification using the TensorFlow time series generator. The number of lags is set to 15, and a 
batch size of 1 is employed in the process.

Network architecture parameters including the number of layers and neurons per layer are optimized for an 
LSTM attention model (LSTM-ATT). Constraints for these two parameters as as follows [1, 3] layers and [5, 15] 
neurons per layer. Additionally, training parameters are selected. The number of training epochs, dropout, and 
learning rate are optimized in ranges [30, 60], [0.05, 0.2], and [0.0001, 0.01] respectively. Early stooping is also 
utilized to prevent overtraining with the threshold set to 1/3 of the selected number of training epochs. Respec-
tive ranges are presented in Table 1.

Several metaheuristics are included in a comparative analysis of LSTM-ATT hyperparameter tuning. The 
introduced MCOA algorithm alongside the original  COA4 are tested. Several well-established algorithms are 

(12)Xt+1
i,j = Xt

i,j + X food × p× (cos(2× π × rand )− sin(2× π × rand ))

(13)X
qr
z = rand

(

lbz + ubz

2
, xz

)

https://physionet.org/content/gaitpdb/1.0.0/
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included in the comparison as well such as the  GA34,  PSO35, FA 36,  GWO37, BSO 38 and  COLSHADE39 algorithm. 
All metaheuristics are implemented under identical testing conditions with a population size of five agents and 
with six allocated iterations for optimization. All metaheuristics are implemented specifically for this study with 
control parameter values set to those suggested in the original works. Finally, experiments are repeated 30 times 
to ensure a valid comparison that accounts for some of the inherent randomness in these algorithms.

To facilitate a comparison between the optimization potential of the assessed algorithms standard testing 
metrics including accuracy, precision, recall, and f1-score are utilized. To support the optimization process error 
rate is used as the objective function determined as per the:

An additional metric Cohen’s kappa is included as it may provide a better assessment of datasets that have an 
inherent imbalance. These metrics are used as the indicator function during the optimization and outcomes are 
logged through the entire process for each evaluated algorithm. The metrics are calculated according to:

where vo denotes the observed and ve expected values.
A flowchart of the proposed process is provided in Fig. 1.

(14)Error_rate = 1− Accuracy

(15)κ = vo − ve

1− ve

Table 1.  Hyperparamaters and their respective ranges.

Hyperparameter Lower boundary Upper boundary

Learning rate 0.0001 0.01

Dropout 0.05 0.2

Epochs 30 60

Number of LSTM layers 1 3

Neurons in LSTM layers 5 15

Neurons in attention layer 5 15

Figure 1.  Flowchart of the proposed model evaluation process.
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Simulation outcomes
Objective function outcomes during simulations in terms of best, worst as well as mean and median outcomes 
are provided in Table 2 and in terms of indicator function in Table 3.

As can be observed in Table 2 as well as Table 3 models optimized by the introduced MCOA attained the 
best outcomes in terms of objective and indicator functions in all test cases. Furthermore, admirable stability 
has been demonstrated across all cases. Algorithm stability is further showcased in the distribution plots for the 
objective and indicator functions shown in Fig. 2

As shown in Fig. 2 the introduced modified metaheuristic demonstrates reliable outcomes ahead of compet-
ing algorithms. The introduced algorithm outperformed the original version of the algorithm as well as others 
included in the comparative analysis. Convergence rate changes in the observed algorithm can be seen in the 
convergence graphs in terms of objective and indicator functions in Fig. 3 and average objective and convergence 
graphs shown in Fig. 4.

Table 2.  Overall objective function simulation outcomes. The best metrics’ values are in [bold].

Method Best Worst Mean Median Std Var

LSTM-ATT-MCOA 0.125813 0.148952 0.134325 0.130152 0.008094 0.000065

LSTM-ATT-COA 0.146059 0.200083 0.172110 0.180870 0.021438 0.000460

LSTM-ATT-GA 0.149985 0.233654 0.193699 0.198223 0.033702 0.001136

LSTM-ATT-PSO 0.134387 0.202045 0.156409 0.143167 0.025779 0.000665

LSTM-ATT-FA 0.156595 0.194815 0.172751 0.163413 0.016863 0.000284

LSTM-ATT-GWO 0.138106 0.175705 0.158599 0.165272 0.016807 0.000282

LSTM-ATT-BSO 0.129739 0.209173 0.167875 0.165995 0.027242 0.000742

LSTM-ATT-COLSHADE 0.137796 0.172606 0.161264 0.167441 0.012960 0.000168

Table 3.  Overall objective function simulation outcomes. The best metrics’ values are in [bold].

Method Best Worst Mean Median Std Var

LSTM-ATT-MCOA 0.748827 0.701928 0.731501 0.739508 0.016297 0.000266

LSTM-ATT-COA 0.707837 0.601260 0.656257 0.638878 0.042468 0.001804

LSTM-ATT-GA 0.700919 0.533430 0.613713 0.605194 0.067357 0.004537

LSTM-ATT-PSO 0.731195 0.597622 0.687709 0.712931 0.050836 0.002584

LSTM-ATT-FA 0.687746 0.611343 0.655393 0.674519 0.033671 0.001134

LSTM-ATT-GWO 0.723903 0.649335 0.683318 0.670287 0.033142 0.001098

LSTM-ATT-BSO 0.741141 0.583429 0.664764 0.667567 0.054118 0.002929

LSTM-ATT-COLSHADE 0.725207 0.654987 0.678131 0.665418 0.026003 0.000676

Figure 2.  Outcome distributions for the objective and indicator function outcomes.
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An improvement in convergence rate can be observed for the introduced algorithm. The original COA 
showcases a slow convergence after stagnating at a local minimum. However, the modification introduced in 
this work helps the agents locate a better solution within the solution space. A detailed comparison between the 
best-performing models is showcased in Table 4.

As shown in Table 4 the introduced algorithms demonstrate the highest accuracy and a high f1-score for both 
PD and control group identification. However, admirable results are shown by the PSO and BSO algorithms 
in terms of PD and control group when observing precision alone. These outcomes are to be expected as per 
the NFL, no single approach will work equally well across all metrics and test cases. Further details of the best-
performing model are shown in Fig. 5.

Finally, to facilitate experimental repeatability, the hyperparameter choices made by optimizers for the best-
performing models are presented in Table 5.

Outcome statistical validation
Within the realm of optimization problems, the assessment of models emerges as a crucial focal point. Under-
standing the statistical significance of implemented enhancements becomes imperative, as a reliance solely on 
outcomes falls short of establishing the superiority of one algorithm over another.

According to prior  investigations40, a judicious statistical assessment should transpire only subsequent to 
the thorough sampling of the evaluated methods. This involves the establishment of objective averages across 
numerous independent runs, with an additional prerequisite that the samples adhere to a normal distribution 
to preclude erroneous conclusions. The utilization of objective function averages remains an unresolved inquiry 
in the comparison of stochastic methods among  researchers41.

In order to establish the statistical significance of the observed results, the optimal values from 30 independent 
executions of each metaheuristic were employed to construct the samples. However, the judicious application of 
parametric tests necessitated verification. To this end, compliance with the recommendations  of42 was ensured, 
encompassing considerations of independence, normality, and homoscedasticity of data variances.

The independence criterion is met by virtue of initializing each run with a pseudo-random number seed. 
Nevertheless, the normality condition remains unmet, as evidenced by KED plots shown in Fig. 6 and substanti-
ated by Shapiro-Wilk test outcomes for single-problem instance  analysts43. By performing the Shapiro-Wilk test, 
p-values are generated for each method-problem combination, and these outcomes are presented in Table 6.

The conventional significance levels represented by α = 0.05 and α = 0.1 indicate the potential rejection of 
the null hypothesis ( H0 ). This implies that none of the samples, spanning diverse problem-method combinations, 
adhere to a normal distribution. These findings signal the failure to meet the normality assumption, a prerequisite 
for the robust application of parametric tests. Consequently, the verification of homogeneity of variances was 
considered unnecessary.

Figure 3.  Algorithm convergence in terms of objective and indicator function outcomes.

Figure 4.  Average algorithm convergence in terms of objective and indicator function outcomes.
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Given the unmet prerequisites for the reliable use of parametric tests, non-parametric tests were employed for 
subsequent statistical analyses. Specifically, the Wilcoxon signed-rank test, acknowledged as a non-parametric 
statistical  method44, was conducted on the MCOA method and all alternative techniques in the conducted 
experiment. The same data samples utilized in the preceding normality test (Shapiro-Wilk) were applied for 
each method. The outcomes of this analysis are detailed in Table 7.

Table 7, which presents the p-values obtained from the Wilcoxon signed-rank test, demonstrates that when 
tackling LSTM-ATT optimization the proposed MCOA method achieved significantly better performance than 
all other techniques in all three experiments.

The p-values for all other methods were lower than 0.05. Therefore, the MCOA technique exhibited both 
robustness and effectiveness as an optimizer in these computationally intensive simulations. Based on the 

Table 4.  Detailed metric comparison between the best performing models. The best metrics’ values are in 
[bold].

Method Metric Control Parkinson’s Accuracy Macro avg Weighted avg

LSTM-ATT-MCOA

Precision 0.916741 0.837348 0.874187 0.877045 0.878041

Recall 0.829907 0.920746 0.874187 0.875327 0.874187

F1-score 0.871166 0.877069 0.874187  0.874117 0.874043

LSTM-ATT-COA

Precision 0.864271 0.843484 0.853941 0.853877 0.854138

Recall 0.848247 0.859928 0.853941 0.854087 0.853941

F1-score 0.856184 0.851626 0.853941 0.853905 0.853962

LSTM-ATT-GA

Precision 0.911200 0.801774 0.850015 0.8564866 0.857860

Recall 0.783757 0.919686 0.850015 0.8517215 0.850015

F1-score 0.842687 0.856692 0.850015 0.8496893 0.849514

LSTM-ATT-PSO

Precision 0.876414 0.854711 0.865613 0.865563 0.865835

Recall 0.858928 0.872643 0.865613 0.865785 0.865613

F1-score 0.867583 0.863584 0.865613 0.865583 0.865634

LSTM-ATT-FA

Precision 0.904270 0.795534 0.843405 0.849902 0.851267

Recall 0.776703 0.913541 0.843405 0.845122 0.843405

F1-score 0.835646 0.850464 0.843405 0.843055 0.842869

LSTM-ATT-GWO

Precision 0.880697 0.843699 0.861894 0.862198 0.862663

Recall 0.845022 0.879636 0.861894 0.862329 0.861894

F1-score 0.862491 0.861293 0.861894 0.861892 0.861907

LSTM-ATT-BSO

Precision 0.923059 0.826636 0.870261 0.874848 0.876058

Recall 0.814792 0.928587 0.870261 0.871689 0.870261

F1-score 0.865553 0.874651 0.870261 0.870102 0.869988

LSTM-ATT-COLSHADE

Precision 0.923832 0.813368 0.862204 0.868600 0.869986

Recall 0.796856 0.930918 0.862204 0.863887 0.862204

F1-score 0.855659 0.868182 0.862204 0.861920 0.861763

Support 4962 4719

Figure 5.  Best performing model PR plot and confusion matrix.
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statistical analysis, it can be concluded that the MCOA method outperformed most of the other metaheuristics 
investigated in all four experiments.

Conclusion
This work tackles PD detection from patient gate data collected from a show-mounted accelerometer sensor 
as a noninvasive way for early diagnosis. Timely treatments are crucial for battling this neurodegenerative dis-
ease as there is currently no way of undoing the damage caused by the condition. This task is tackled through 
the application of AI algorithms. Attention-based LSTM models are trained on real-world data, and asses on 
their ability to detect signs of the condition. Furthermore, an altered variation of a relatively novel algorithm is 
proposed and applied to hyperparameter tuning to improve model performance. The introduced approach has 
shown admirable outcomes with the best-constructed models exceeding 87% accuracy. Meticulous statistical 
validations confirmed the observations and enforced that the introduced MCOA outperformed the original 
algorithm when applied to hyperparameter optimization of LSTM-ATT networks as well as competing optimiz-
ers in a statistically significant way.

Table 5.  Hyperparameter choices made for best-performing models constructed by optimizers.

Method Learning rate Dropout Epochs Layers Neurons L1 Neurons L2

LSTM-ATT-MCOA 0.010000 0.050000 60 1 15 N/a

LSTM-ATT-COA 0.010000 0.059956 60 2 14 10

LSTM-ATT-GA 0.010000 0.180735 60 1 15 N/a

LSTM-ATT-PSO 0.010000 0.052466 60 1 15 N/a

LSTM-ATT-FA 0.009148 0.153722 44 1 12 N/a

LSTM-ATT-GWO 0.010000 0.200000 60 2 15 15

LSTM-ATT-BSO 0.010000 0.200000 60 1 15 N/a

LSTM-ATT-COLSHADE 0.008276 0.200000 60 1 15 N/a

Figure 6.  Objective function KDE plot.

Table 6.  Shapiro-Wilk scores for the single-problem analysis for testing normality condition.

Experiment MCOA COA GA PSO FA GWO BSO COLSHADE

PD LSTM-ATT 0.035 0.032 0.022 0.027 0.027 0.031 0.018 0.012

Table 7.  Wilcoxon signed-rank test findings.

MCOA versus others COA GA PSO FA GWO BSO COLSHADE

PD LSTM-ATT 0.040 0.044 0.045 0.033 0.025 0.034 0.035
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Like any research, this study is not without its limitations. The inclusion of optimization algorithms in the 
comparative analysis has been restricted due to computational constraints. Similarly, the optimization process 
is constrained by the use of limited model population sizes. The potential for improved outcomes exists with the 
allocation of additional resources. Moreover, the current testing is based on the limited available data samples 
from dual-task walking tests with accelerometers, as only a restricted amount of data is presently accessible for 
Parkinson’s disease diagnosis.

Future research aims to refine early detection methods and explore other contemporary recurrent networks 
for addressing the task at hand. The introduced optimization algorithm will also be investigated for potential 
applications in computer security and hyperparameter optimization.

Data availability
The datasets used and analysed during the current study is freely available from the following URL: https:// physi 
onet. org/ conte nt/ gaitp db/1. 0.0/.
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