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Classification of hand and wrist 
movements via surface 
electromyogram using the random 
convolutional kernels transform
Daniel Ovadia 1, Alex Segal 2* & Neta Rabin 3

Prosthetic devices are vital for enhancing personal autonomy and the quality of life for amputees. 
However, the rejection rate for electric upper-limb prostheses remains high at around 30%, often due 
to issues like functionality, control, reliability, and cost. Thus, developing reliable, robust, and cost-
effective human-machine interfaces is crucial for user acceptance. Machine learning algorithms using 
Surface Electromyography (sEMG) signal classification hold promise for natural prosthetic control. 
This study aims to enhance hand and wrist movement classification using sEMG signals, treated as 
time series data. A novel approach is employed, combining a variation of the Random Convolutional 
Kernel Transform (ROCKET) for feature extraction with a cross-validation ridge classifier. Traditionally, 
achieving high accuracy in time series classification required complex, computationally intensive 
methods. However, recent advances show that simple linear classifiers combined with ROCKET 
can achieve state-of-the-art accuracy with reduced computational complexity. The algorithm was 
tested on the UCI sEMG hand movement dataset, as well as on the Ninapro DB5 and DB7 datasets. 
We demonstrate how the proposed approach delivers high discrimination accuracy with minimal 
parameter tuning requirements, offering a promising solution to improve prosthetic control and user 
satisfaction.

Surface electromyography (sEMG) is a non-invasive technique for measuring the electrical activity of muscle 
groups on the skin surface. The usage of sEMG for clinical diagnostics began in the 1960s. Nowadays, sEMG 
plays a central role in many applications, including clinical diagnostics, human-machine interactions and more. 
One such realm where sEMG plays a crucial role is control for prosthetic devices. Prosthetic devices play one of 
the key factors in personal autonomy, by affecting the life quality for amputees. During the past decade, multiple 
prosthetic hands have become available in the market, yet the rejection rate for electric upper-limb prostheses 
is roughly 30% due to dissatisfaction about issues like function, ease of control, reliability, and cost1. Therefore, 
achieving a high level of reliability, robustness, and low cost of human-machine interfaces is important for user 
experience and their acceptance of the prosthetic hand. A machine learning algorithm based on sEMG classifica-
tion could potentially allow the user a natural control of the prosthesis.

Various control methods for prosthetic hands have been introduced and investigated. Among them are sEMG, 
as mentioned above2–7, electroneurography (electroneurographic signals, requiring an interface directly with the 
peripheral nervous system or the central nervous system)8–10, mechanomyography (measures the vibrations of 
muscle fibres during motion)11–13, and force myography, which detect changes in the pressure patterns between 
the limb and socket caused by the contraction of the forearm muscles)14–17. Two major advantages of sEMG are 
existence of low-cost options, and its non-invasive nature.

Our objective is to improve the classification of the hand and wrist movements based on the sEMG signals, 
represented as time series. To this end, we apply a novel approach, using a variation of Random Convolutional 
Kernel Transform (ROCKET)18,19 as a feature extraction method, combined with a cross-validation ridge clas-
sifier. The majority of the methods for time series classification which achieve state-of-the-art accuracy have 
high computational complexity and extensive training time even for smaller data sets. With the recent success 
of convolutional neural networks for time series classification, it also been shown that simple linear classifiers 
using ROCKET can achieve state-of-the-art accuracy with much less computational expense (see Ref.18). In order 
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to further improve the classification, we suggest to couple the ROCKET features with a cosine similarity matrix 
that codes the relationship between the measured channels. This matrix is computed based on the ROCKET 
representation, and it is a complementing way to code the movemoent pattern.

The performance was evaluated on three different datasets. The first dataset, taken from the UCI repository20, 
was previously used by Sapsanis et al.21. The data contains 6 movements recorded by two channels that measured 
the electrical activity of the hand muscles at 500 Hz. The second dataset is the NinaPro DB5 and DB7 data sets. 
DB5 includes 53 movements using 16 electrodes (signal channels)4. DB7 includes a subset of DB5’s movements. 
It uses 12 electrodes, and was tested on 22 participants, 2 of them are amputees. The proposed model achieved 
accuracy of 98± 2.54% for the UCI dataset. For the NinaPro DB5 dataset, accuracies of 93.65± 2.99% for the 8 
channels data and 98.27± 1.35% for 16 channels data were achieved. Accuracies of 97.97± 3.88% were achieved 
for the DB7 dataset, however, the avarage accuracy for the amputee subjects was 87%.

The results were compared with the ones reported in Ref.22, and with feature based calssifiers, taking features 
that were suggested in Refs.23 and 24. We show that the suggested ROCKET based algorithm outperform previous 
studies’ results while classifying a larger amount of hand and wrist movements. To the best of our knowledge, 
this is the first time that ROCKET / miniROCKET is being utilized for classification of sEMG signals.

The rest of this paper is organized as follows. Section  "Related work" overviews recent related work. 
In Sect.  "Methods" the utilised methods and dataset are described. The proposed algorithm is given in 
Sect. "ROCKET based classification of sEMG hand and wrist movements". Section  Experimental results details 
the experimental results. Last, conclusion are discussed in Sect. Conclusion.

Related work
This work continues multiple previous attempts to implement a movement classification algorithm using sEMG 
as our main input. Attempts to control hand prostheses were made already in the late 60s25. Since then, many 
new approaches and developments were proposed. These methods may be coarsely branched into two categories, 
depending on the way features are computed. The first is based on feature computing and engineering, construct-
ing features that capture the characteristics of the signal in the time and frequency domain. Then, machine 
learning or deep learning tools are applied on the feature space for classification. The second is deep learning 
approaches, which take the signal as input and build one unified machine to learn features and classify the signals 
based on the formed representation. In what follows, recent papers that follow either the feature engineering or 
feature learning approach are reviewed. In addition, we point out to recent papers that incorporate ideas from 
the deep learning models into feature extraction based techniques.

The work of Phinyomark et al.26 examined 37 time and frequency domain features for EMG signal classifica-
tion tasks and idetified strong and redundant features. They grouped the features into four categories based on 
what the features capture, these are, energy and complexity information methods, frequency information method, 
prediction model method, and time-dependence method. Features within each group are redundant. In general, 
a small number of time domain features were shown to perform better than using a small number of frequency 
domain features. Mean absolute value (MAV), waveform length (WL), and Willison amplitude (WAMP) from 
the first and secound group, where shown to produce robust and accurate classification results. In a later paper, 
Phinyomark et al.27 examined the classification accuracy of myoelectric pattern recognition when the train and 
test samples are recorded over a relatively long time period. To do so, 50 time and frequency domain features 
were computed. Sample entropy was found to be a strong and stable feature, additional robust features are the 
cepstral coefficients (CC), modified mean absolute value, root mean square (RMS) and WL. Some of these were 
proposed and investigated in earlier work26,28,29. A further analysis of the feature space that is commonly used for 
EMG classification was carried out in Ref.30. Topological tools were used to create charts from 58 features over 
several datasets. The method selects representetive, non-redumdant features. Some of these identified features 
are WL, difference absolute mean value (DMAV) and difference absolute standard deviation value (DASDV) 
from the energy features group, maximum fractal length (MFL), sample entropy and WAMP from the non-linear 
and frequency group.

The work of Pizzolato et al.4 aimed to compare between six different sEMG setups using identical hand move-
ments classification task. Features were extracted from overlapping windows. The following five features, which 
were also used in previous work31,32, were computed. These are RMS, time domain statistics33, Histogram, Mar-
ginal discrete wavelet transform and the concatenation of all these features. Then, machine learning algorithms, 
such as support vector machine (SVM) and random forest, were applied for classification (accuracy of 69.04%). 
In Ref.23, the authors consider a set of features that perform well in taking into account force level variables. 
This type of analysis is important for transradial amputees. A set of features that are invariant to the force level 
are identified, there are modified spectral moments, which are based on features that were suggested in Ref.34.

Jiang et al.35 preformed optimization for classification of high-density sEMG signals (256 channels) by feature 
extraction and data augmentation methods. 50 known temporal-spectral-spatial domain features, including a 
new introduced feature denoted by the spatial synchronization (SS) feature, which measures the synchroniza-
tion of waveforms between neighbor channels were used. 15 feature optimization techniques, and seven classi-
fiers were evaluated for classification of 35 hand gestures. The SVM classifier achieved the highest classification 
accuracy (91.9%), this result was achieved with an optimal feature set that includes the SS feature along with 
ten other features.

Sri-iesaranusorn et al.22 applied a deep neural network to a set of computed features that were sectioned using 
a sliding window. Features included RMS, MAV, WL, mean absolute value slope, zero crossings and slope sign 
changes. The model was evaluated on a publicly available database from the Ninapro project (sEMG databases for 
advanced hand myoelectric prosthetics). The data set included sEMG signals for 41 different hand movements 
(from Ninapro DB5 and DB74). The classification accuracy was 93.87%± 1.49%.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4134  | https://doi.org/10.1038/s41598-024-54677-7

www.nature.com/scientificreports/

Time frequency features, like the short time Fourier transform (STFT) and wavelet based representations were 
investigated in several papers. In Rabin et al.36, the feature space was composed of STFT matrices of the signals. 
The data set included sEMG signals from 5 subjects who perform 6 different hand movements. The dimension 
of the STFT was reduced with principal component analysis (PCA) and diffusion maps. K-nearest neighbors 
(KNN) was used for classification ( 94.8%± 3% ). A different approach by Shi et al.37 suggested a feature extraction 
method based on the wavelet packet transform (WPT) and principal component analysis (PCA) for reducing 
the dimension of the feature vector. The results were compared with a model that uses computed features: MAV, 
RMS and the wavelet transform coefficient (WTC). Additionally, the authors proposed a method based on the 
scale unscented Kalman filter (SUKF) and neural network (NN) that was used for lower limb motion classifica-
tion (average accuracy - 93.7%). In a recent paper38, the deep wavelet scattering transform (WST) was applied 
for EMG pattern recognition. The main advantage of WST is its invariant properties, which makes this transform 
robust in terms of distortions. The results were shown to outperform features that were extracted by the wavelet 
transform (WT) and the wavelet packet transform (WPT).

Deep learning approaches create features from the input signals, these features are optimized to solve the 
defined learning task. Several papers utilize an image-type input. For example, in Ref.39, a convolutional neu-
ral network was applied on spectrograms calculated from the signals. Results were evaluated on the NinaPro 
DB2 and DB3 datasets, and showed to achieve improved accuracy compared to SVM based classifiers. While 
CNN models manage to capture the saptial relationship of the input, they don’t have the ability to code long 
term temporal relationships. Long Short-Term Memory (LSTM) can overcome this limitation. Karman et al.40 
proposed a hybrid CNN and LSTM model for classification of hand activity. Multi-channel EMG signals were 
first fed into convolutional layers, followed by bi-directional LSTM layers. Then, two fully connected layers were 
evoked for classification. Experimental results were reported for several NinaPro datasets and the UCI gesture 
dataset and classification accurcy was shown to improve the state of the art methods. Another recent paper that 
aims to capture both spatial and spectral dependencies in by Shen et al.41. The authors applied a Convolutional 
Vision Transformer and Stacking Ensemble Learning for sEMG hand movements classification. This method 
allows fusion of sequential and spatial features of sEMG signals with the parallel training. The evaluated data 
sets were from the Ninapro database (49 movements from DB2 and 12/17 movements from DB5, 80.02% and 
76.83%/73.23%, respectively). Last, in Ref.42 a spatio-temporal framework extended the well known Dynamic 
time wrapping (DTW) similarity to operate in a spatial setting and was combined with an LSTM model. Results 
were provided for four public datasets, including some from the NinaPro project, and were shown to be more 
accurate than other deep learning methods. However, since DTW is computationally expensive, the method 
may not be the most suitable for real time classification.

Deep learning models have shown advantages in learning both spatial and long term temporal connections. 
Nevertheless, their black box nature, together with the need for a large training set and computational complex-
ity, remain a limitation. To overcome this drawback, the work of Khushaba et al.24 adapts ideas from the deep 
learning framework and combines them with feature extraction techniques. Feature extraction was carried 
out as a first step, where the features were stored in a matrix representation. These feature matrices went under 
spatio-temporal convolutions that enabled to learn short and long term temporal dynamics. The method was 
tested on the DB5 and DB7 NinaPro datasets, it benefits of low computational cost and was shown to improve 
the accuracy of deep learning models.

Following the spirit of Ref.24, seeking for robust time series classification techniques that enjoy a low-com-
putational cost, we mention several new methods that may be suitable for coding EMG signals. Among them, 
Shapelets based algorithms43, Random Convolutional Kernel Transform (ROCKET) with its variations18,19, com-
binations of Markov Transition Field (MTF), Gramian Angular Field (GAF) and various neural networks44–46. 
Shapelets are a family of algorithms that focus on finding short patterns, called shapelets, appearing anywhere 
in the time series. A class is then distinguished by the presence or absence of one or more shapelets somewhere 
in the series47. The MTF and GAF encode times series to 2D images, which can serve as an input to a neural 
network46,48. ROCKET algorithms use a large number of random convolution kernels in conjunction with a linear 
classifier (ridge regression or logistic regression). Every kernel is applied to each instance. From the resulting 
feature maps, the maximum value and a novel feature, proportion of positive values (PPV), are returned (see 
details in Sect. "Methods"). A study by Ruiz et al.49 compared multiple times series classification algorithms on 
various data sets and concluded that ROCKET is the recommended choice for time series classification due to 
high overall accuracy and remarkably fast training time. As stated above, in this work we evaluate the perfor-
mance of the ROCKET transform as a new way for feature extraction for sEMG signals. The transform computes 
many features, this resembles the type of information that is learned by a CNN. However, since there is no net-
work to train, the computation is fast and simple and also fits datasets of limited size. In addition, in this work 
we followed a setting in which the ROCKET features are extracted from the entire movement (without using 
overlapping windows), thus, the features capture long range temporal information. Additionally, multi-channel 
relationships were added into the model as additional features.

Methods
This section provides the essential mathematical background for the ROCKET and channel similarity techniques, 
which were utilized in this work, as well as the dataset.

ROCKET and MiniROCKET
At its core, ROCKET is a a method for time series transformation, or feature extraction18. The extracted features 
contain information related to series class membership, which can be modeled by a linear classifier. By default, 
ROCKET transforms time series by applying convolution with 10, 000 random convolution kernels which have 
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random length chosen from {7, 9, 11} , weights drawn from the standard normal distribution N (0, 1) , bias drawn 
uniformly from U(−1, 1) , dilation and padding chosen randomly. For feature extraction, ROCKET uses using 
global max pooling and proportion of positive values (PPV).

Denote by X(t) the time series vector of length n, by ω the convolution kernel and the bias vector by b. Then, 
the global max pooling is defined by

where

and

This way, each kernel generates two features for a given time series X(t),  resulting in approximately 20, 000 
features per time series.

miniROCKET (MINImally RandOm Convolutional KErnel Transform)19 is a nearly deterministic reformula-
tion of ROCKET that is roughly 75 times faster on larger datasets and with roughly equivalent accuracy. Recently 
it has become the default implementation of ROCKET. MiniROCKET uses only kernels of length 9 with weights 
drawn from the set {−1, 2} so that their sum is 0. This implies a total of 84 possible kernels, before dilation and 
bias. Limiting the structure of the kernels allows a significantly faster computation. The exact value of the two 
selected kernel weights {−1, 2} is not important as long as the kernel weights sum to 0, which ensures that the 
kernels are sensitive only to the relative magnitude of the input. For each convolutional kernel, the bias is drawn 
from the convolutional output of one random training sample. Note that the bias selection is the only random 
component of the MiniROCKET. In addition, MiniROCKET uses only the PPV feature (see Eq. (3)) and omits 
the global max pooling (see Eq. (2)). Reducing the pooling step to a single feature yields approximately 10, 000 
features per time series.

The computational complexity of ROCKET and MiniROCKET is linear in the num-
ber of kernels, the number of training examples and the time series length, formally 
O( num. of kernels × num. of samples × signal length) . In terms of space complexity, ROCKET doesn’t 
store any intermediate values. MiniROCKET stores 13 additional copies of each input time series signal.

Cosine similarity
Cosine Similarity is a measure of similarity commonly used in data analysis for comparison of two finite series. 
To this end, the sequences X(n), Y(n) are represented as vectors in Rd , where d is their length. Then, the cosine 
similarity of X and Y is defined by

Note that SC(X,Y) is cosine of the angle between X and Y, and thus it results in similarity range from −1 (exactly 
opposite) to 1 (the same).

Ridge regression and classification
Ridge regression is a modification of regular linear regression, which enables reducing the influence of less 
important features, using L2 regularization (see Ref.50). Assume we have a linear model Y =

∑n
i=1 biXi .

Using ordinary least squares, we can find (bi) by minimizing argminB �Y − XB�22, where B is the vector 
(b1, . . . bn) . The key difference for Ridge regression is using an L2 penalty term, and minimizing the following term

Notice that case � = 0 is the ordinary least squares. On the other hand when � tends to ∞ , the coefficients tend 
to 0, which will imply under-fitting. Thus, choosing the correct � is a key factor in classification.

The above provides an algorithm for classification (without over-fitting) in cases where there are significantly 
more features than samples. To this end, a set of possible values for � was chosen. For each value, Ridge regres-
sion was preformed, leaving one of the samples out for validation. This is known as Cross Validation Ridge 
Classifier. Leave-one-out cross-validation is a special case of cross-validation where the number of folds equals 
the number of instances in the data set. Thus, the learning algorithm is applied once for each instance, using all 
other instances as a training set and using the selected instance as a single-item test set. We use a ridge regression 
classifier, which has the advantage of fast cross-validation for the regularization hyper-parameter and works very 
well when the data-set is not very large compared to the number of features.

(1)GMP = max
i
(X ∗ ω)(i)

(2)(X ∗ ω)(i) =

lkernel−1∑

j=0

X(i + j) · ω(j)

(3)PPV =
1

n

∑

i

[X ∗ ω − b > 0]

(4)SC(X,Y) =
�X,Y�

�X� · �Y�
.

(5)argmin
B

�Y − XB�22 + ��B�22.
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The dataset
The first dataset, taken from the UCI repository, was obtained by taking sEMG measurements from 5 subjects 
while performing the following 6 movements (see Fig. 1a):

•	 Holding cylindrical tools (Cylindrical).
•	 Supporting a heavy load (Hook).
•	 Holding small tools (Tip)
•	 Grasping with palm facing the object (Palmar).
•	 Holding spherical tools (Spherical) and f) holding thin objects (Lateral)

Each movement was recorded by two channels that measured the electrical activity of the hand muscles at 500 
Hz. Subjects were asked to repeat each movement for 30 times. The recordings included only the records of the 
muscle activity, meaning there were no need for segmentation.

The second data set used in the work was taken from the Ninapro database. It’s a publicly available multi-
modal database to foster research on human, robotic and prosthetic hands and on machine learning based control 
systems. We focused on the DB5 dataset but show some results on the DB7 datasets, which includes two amputee 
subjects. DB5 was recorded with two Thalmic Myo armbands (see Ref.4). Each Myo armband has 8 sEMG single 
differential electrodes (a total of 16, however, the database can be used to test the Myo armbands separately as 
well). The top Myo armband is placed closed to the elbow with the first sensor placed on the radio humeral joint, 
as in the standard Ninapro configuration for the equally spaced electrodes; the second Myo armband is placed 
just after the first, nearer to the hand, tilted of 22.5 degrees. This configuration provides an extended uniform 
muscle mapping at an extremely affordable cost. During the acquisition, the subjects were asked to repeat the 
movements with the right hand. Each movement repetition lasted 5 seconds and was followed by 3 seconds of 
rest. The protocol includes 6 repetitions of 52 different movements performed by 10 intact subjects. The sampling 
rate was 200 Hz. The movements were selected from the hand taxonomy as well as from hand robotics literature 
(see Fig. 1b). For DB7, there are 12 sEMG input channels of Delsys Trigno electrodes. Like in DB5, there were 6 
repetitions. The movemebts are a subset of those described in DB5, and the sampling rate is 2 kHz.

ROCKET based classification of sEMG hand and wrist movements
Each repetition of each movement was divided from the full signals according to the re-stimulus indices, which 
is the corrected stimulus, processed with movement detection algorithms4. Due to the subject’s response time, 
there is a variability in the movement’s time interval. The purpose of this process is to extract signals representing 
movement only. For each subject, the longest repetition between all movements was found. According to this 
maximum length, zero padding was applied to the rest of the signals.

Our first classification step was separating between movements and rest periods. The separation between 
movement and rest periods resulted in high accuracy rate (roughly 99%, see Table 1). Thus, it was decided to 

Figure 1.   Dataset movement types. (a) Six hand movements, UCI dataset20. Licensed under a Creative 
Commons Attribution 4.0 International License. (b) Hand gestures of the NinaPro database. Licensed under a 
Creative Commons Attribution 4.0 International License.
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eliminate the rest data from the final movement classification. This results in a more reliable accuracy rate of 
movement classification. For the next processing steps, the MiniROCKET transform is applied to entire detected 
movement, bypassing the need to separate the signal into overlapping windows, and, considering the long-term 
dynamics of the movement.

Given a training dataset of N sEMG signals, denoted by {Xn}Nn=1 each containing data from 8 or 16 channels, 
MiniROCKET with 10, 000 convolution kernels is applied on {Xn}Nn=1 to yield a new representation for each of 
them. If a single movement is recorded by 16 channels, denoted by {Xn

i }
16
i=1 then 16 MiniROCKET feature vec-

tors, denoted by {f̃ ni }
16
i=1 are generated. The outputs of the different channels are then concatenated to a features 

vector (8 or 16 channels, depending on the experimental configuration), denoted by f̃ n = {f̃ n1 , f̃
n
2 , . . . , f̃

n
1 6.} . 

Then, each feature vector f̃ n is standardized to have mean 0 and variance 1, to remove any bias towards specific 
features due to scaling or shifting. In this work, we suggest to add additional features that capture the pair-wise 
similarity between the channels (electrodes). To do so, the MiniROCKET outputs are used to calculate the cosine 
similarity between each pair of channels. Given a single signal Xn , with, for example 16 channels, the cosine 
cosine similarity is computed and reshaped to be a row vector of size 1× (16× 16) , denoted by f̂ n , The chan-
nels’ similarity outputs and the features vectors are then combined using a weighted concatenation. Thus, the 
final feature vector that represents a single multi-channel movement Xn , is given by f n = ω1 f̃

n + ω2 f̂
n , where 

ω1,ω2 ≥ 0 , and ω1 + ω2 = 1. The weights ω1,ω2 were chosen empirically, optimizing results on the validation 
data. For classification, cross-validation ridge classifier was applied. Figure 2 displays the general flow of the 
proposed algorithm.

Algorithms 1 and 2 describes the suggested algorithm for data transformation and classification. For train-
ing purposes, Algorithm 1 was applied to each sample of the training and validation data sets, resulting with 
X train and X val . X train and X train labels were used for the ridge classifier fitting, creating a map between X train 
and X train labels (Alg. 2, Step 1). Then, the fitted classifier was used to predict X val labels (Alg. 2, Step 2). The final 
model was tested on the test data set. Algorithm 1 was applied on the test data set, resulting with X test . Then, the 
fitted classifier was used to predict X test labels (Alg. 2, Step 2).

Table 1.   MiniROCKET classification - rest vs. movement.

# Channels, rand. split Weights Validation accuracy Test accuracy

1 16, Y (1, 0) 98.58± 0.72% 98.49± 0.88%

2 16, N (1, 0) 98.54± 0.64% 98.77± 0.74%

3 16, Y (0.3, 0.7) 98.74± 0.74% 98.6± 0.89%

4 16, N (0.3, 0.7) 98.67± 0.65% 98.96± 0.67%

Figure 2.   Algorithm flow. MiniROCKET extracts features from the input channels of the dataset. Cosine 
similarities are computed for each movement based on the features of the input channels. Both representations 
are fed as input to the ridge regression classifier.
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Algorithm 1.   DataTransform.

Algorithm 2.   Classification.

Experimental results
This section presents the results of the suggested ROCKET based classification method.

Results for the NinaPro datasets
Recall that the NinaPro DB5 dataset includes 6 repetitions per movement (for each subject). Each movement’s 
repetitions were split randomly to train, validation and test sets, using a 4-1-1 pattern (4 train samples, 1 valida-
tion sample, 1 test sample). Additionally, in order to compare with the results of previous studies4,22 using the 

Figure 3.   Cosine similarity matrices. (a) Cosine Similarity Matrices from the 8 channels data, 4 repetitions of 
movement 1 (index flexion). (b) Cosine Similarity Matrices from the 8 channels data, single repetitions of each 
of the following movements: 8 (little finger extension), 15 (flexion of ring and little finger), 38 (writing tripod 
grasp) and 50 (open a bottle).
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same data set (DB 5 database), an additional non random split was evaluated. Repetitions 1, 3, 4, and 6 were used 
as training data, while repetitions 2 and 5 were used for validation and test.

Figure 3a and b show the cosine similarity matrices for several different movements, using the 8 channels data. 
Figure 3a shows 4 repetitions of the same movement (movement 1 - index flexion). Figure 3b shows 4 repetition 
of different movements (movements 8 - little finger extension, 15 - flexion of ring and little finger, 38 - writing 
tripod grasp, 50 - open a bottle). While the matrices of movement 1 are similar, the other movements differ one 
from the other. This visual presentation of the cosine similarity data can give motivation for the addition of the 
cosine similarity to the feature vectors.

As stated in Sect. "ROCKET based classification of sEMG hand and wrist movements", separation between 
movements and rest periods results with very high accuracy, this result is displayed in Table 1. The first column 
indicates the number of channels, whether the train-test split was random or not (Y/N). The weight combina-
tions for (ω1,ω2) are given in the second column. The weights (ω1,ω2) = (1, 0) imply that the cosine distance 
was not included. It can be seen that in all of the tested configurations rest is easily identified, thus, in the fol-
lowing reported results, rest data was omitted, and the classification results are solely between the movements.

For the classification of 52 movements, the proposed model achieved accuracy (balanced) of 87.69± 5.97% 
for the 8 channels and 94.42± 3.59% for 16 channels, using a random 4-1-1 split. When using the non random 
split mentioned above, the model achieved accuracy of 93.65± 2.99% for the 8 channels and 98.27± 1.35% for 
16 channels. For comparison, previous study22 reached accuracy of 93.87± 1.49% with a balanced accuracy of 
84.00± 3.40% , while using the non random data split scheme (as mentioned above). Table 2 displays the results 
of the suggested algorithm while applying MiniROCKET with 10000 convolution kernels. For the experiments 
that included the cosine similarity matrix, the weights were set to ω1 = 0.3 for the MiniROCKET features weight, 
and ω2 = 0.7 for the cosine distances. These values were chosen empirically, using the validation set, after also 
considering (ω1,ω2) = (0.5, 0.5) and (ω1,ω2) = (0.7, 0.3) . The cases for which the cosine similarity isn’t used is 
equivalent to (ω1,ω2) = (1, 0).

Additional experiment with a small number of kernels (84 kernels) has been evaluated, results are in Table 3. 
The number 84 was selected since this is the number of fixed kernels used in the MiniROCKET (see Ref.19). In 
these experiments the cosine similarity matrices were either concatenated with the ROCKET features with the 
weight combination (ω1,ω2) = (0.5, 0.5) or not used at all, denoted by (ω1,ω2) = (1, 0) .

It can be seen that adding the cosine similarity of the different channels is beneficial to the classification 
accuracy when less data is available. The 8 channels data set has higher classification accuracy and lower standard 
deviation relative to the use of MiniROCKET features alone Additionally, when using a smaller amount of kernels 
(Table 3), the cosine similarity addition has a significant effect on the accuracy, for both 8 and 16 channels (see 
Fig. 4a,b). Thus, a combination of small amount of kernels and the cosine similarity can keep the accuracy rates 
high while lowering the overall run time for the feature extraction processing.

It is feasible to pinpoint certain movement groups that the algorithm tends to conflate when making classi-
fications. Figure 5 displays the confusion matrix from the 84 kernels experiment. Movement 9 with movements 

Table 2.   MiniROCKET classification results (10,000 features).

# Channels, rand. split Weights Validation accuracy Test accuracy

1 8, Y (1, 0) 87.12± 5.23% 86.73± 6.53%

2 8, N (1, 0) 85.58± 6.04% 92.88± 3.22%

3 16, Y (1, 0) 92.88± 2.99% 94.23± 3.54%

4 16, N (1, 0) 93.65± 2.99% 98.46± 1.68%

5 8, Y (0.3, 0.7) 87.5± 4.96% 87.69± 5.97%

6 8, N (0.3, 0.7) 86.92± 5.56% 93.65± 2.99%

7 16, Y (0.3, 0.7) 92.69± 3.53% 94.42± 3.59%

8 16, N (0.3, 0.7) 94.81± 2.73% 98.27± 1.35%

Table 3.   MiniROCKET DB5 classification (84 features).

# Channels, rand. split Weights Validation accuracy Test accuracy

1 8, Y (1, 0) 82.12± 5.37% 82.5± 5.19%

2 8, Y (0.5, 0.5) 86.54± 4.3% 85.38± 5.72%

3 8, N (1, 0) 82.88± 6.05% 89.42± 4.06%

4 8, N (0.5, 0.5) 87.5± 3.67% 91.35± 4.32%

5 16, Y (1, 0) 91.35± 3.57% 90.96± 4.04%

6 16, Y (0.5, 0.5) 94.62± 2.83% 94.81± 2.59%

7 16, N (1, 0) 92.69± 4.37% 95.96± 2.91%

8 16, N (0.5, 0.5) 94.81± 4.22% 98.27± 2.5%
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10, 11 and 12. All those movement belong to the first category: basic movements of the fingers (Exercise A, see 
Fig. 1b) all of them are thumb movements. Movement 42 with movements 22, 39, 41, 45 and 47. Almost all those 
movement belong to the third category: grasping and functional movements (Exercise C, see Fig. 1b). In four of 
those movement (39, 41, 42 and 45) the grasp movement is similar.

To test the efficiency of MiniROCKET feature extraction, we compared our methods with other known feature 
extraction methods, described in Ref.24. Results are given in Table 4. We used fixed-convolution-based time-
domain feature extraction (fcTDFE) and time-domain-based power spectrum descriptors (TDPSD) (see Ref.23). 

Figure 4.   Cosine similarity influence. (a) Cosine Similarity Influence, 8 channels data, 84 convolution kernels. 
(b) Cosine Similarity Influence, 16 channels data, 84 convolution kernels.

Figure 5.   Confusion matrix (log of matrix values), 16 channels data, 84 convolution kernels, Random split, 
without cosine distance (all missing values were zeros before applying the log function).

Table 4.   Feature extraction comparison.

Method Weights Classification accuracy

MiniROCKET (84 features) (1, 0) 94.81± 3.65%

MiniROCKET (84 features) (0.3, 0.7) 98.08± 1.72%

fcTDFE (1, 0) 86.54± 5.16%

fcTDFE (0.3, 0.7) 90.77± 7.03%

TDPSD (1, 0) 87.12± 5.51%

TDPSD (0.3, 0.7) 93.85± 3.31%
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Each of the feature extraction methods was applied similarly, and the result were classified using Ridge regres-
sion as described in Fig. 2. All algorithms were applied to the DB5 dataset, with 16 channels and a random split.

For statistical analysis we have applied 5-fold cross-validation with 66% of the data for training at each fold, 
for each of the methods mentioned in Table 4. Results shown in Fig. 6 confirm that MiniROCKET feature 
extraction provided improved results. Note that TDPSD results do not appear in Fig. 6 since they are very simi-
lar to fcTDFE. To confirm statistical significance of the results, t-tests were applied to each subject. All showed 
statistical significance ( p-vale < 0.01 ). As for computational time, a train fold for the ROCKET algorithm takes 
∼30 seconds, while fcTDFE computation is ∼21 seconds. The experiments were conducted on a Macbook pro 
M1 2020 computer.

Figure 6.   Average accuracy results for MiniROCKET feature extractions vs. fcTDFE feature extraction for DB5.

Table 5.   MiniROCKET DB7 classification (84 features).

# Channels, rand. split Weights Validation accuracy Test accuracy

1 16, Y (1, 0) 97.13± 3.45% 97.85± 5.05%

2 16, Y (0.3, 0.7) 95.7± 4.8% 97.25± 5.05%

3 16, Y (0.5, 0.5) 96.3± 4.53% 97.97± 3.88%

Figure 7.   t-SNE and UMAP visualization for STFT features. (a) STFT followed by t-SNE, visualization of the 
separation between the different movements for all five subjects (each movement repetitions appear in different 
color). (b) STFT followed by UMAP, visualization of the separation between the different movements for all five 
subjects (each movement repetitions appear in different color).
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In order to test our algorithm on amputees, we used the DB7 dataset, containing 22 subjects, 12 channels 
and 6 repetitions for each movement. Two of the subjects were amputees. The general results are displayed in 
Table 5, however it is important to note that the accuracy for amputees only, was at 87% . For comparison, in 
Ref.22, reported an overall accuracy of 91.69± 4.68% and a balanced accuracy of 84.66± 4.78% . For the two 
amputees, the results is22 were also lower, with overall accuracy of 82.42 and 94.07% and balanced accuracies of 
65.10 and 76.55% , for the first and second amputee respectively.

Results for the UCI dataset
Five different classification methods were tested for the UCI data set. Evaluation was done in a 10-fold cross-
validation mode, using 90% of the data for train at each fold. For the first two methods, Short-time Fourier 
transform (STFT) was applied for features extraction. Next, the STFT train and test images were reduced into a 
low-dimensional space applying t-SNE51 or UMAP52. Figure 7a and b show the embeddings for all five subjects. 
It can be seen that the movements are separated well in the low-dimensional space of both t-SNE and UMAP 
results. Test points were classified in the low-dimensional space using 3D embedding coordinates and k-NN. For 
t-SNE, fitting on a training set can’t be used to apply a transform on a test set due to the nature of the method. 
Hence, embedding was performed on the whole data, kNN was fitted using the training set only and the test 
set was used for evaluation using the fitted kNN. We also applied t-SNE and UMAP 2D classification of the 84 
features produced by MiniROCKET (see Fig. 8a,b). Like before, this setting has the limitation that test points 
were embedded together with the train points, but without their label. Thus, these t-SNE and UMAP models 
are less applicative for real-time classification. Finally, we test a MiniROCKET configuration with 84 features 
(standalone and with cosine similarity concatenated), with the ridge regression was used as a classifier. Table 6 
summarizes the classification results. It can be seen ROCKET based methods produce the best results, and the 
proposed method (sketched in Fig. 2) enjoys high accuracy with the benefit of being suited for a real-time set-
ting. The results from the miniROCKET based methods were found to be statistically significant (p-vale < 0.01 ) 
over the STFT based methods.

Figure 8.   t-SNE and UMAP ROCKET for MiniROCKET features. (a) MiniROCKET transform followed by 
t-SNE, visualization of the separation between the different movements for all five subjects (each movement 
repetitions appear in different color). (b) MiniROCKET transform followed by UMAP, visualization of the 
separation between the different movements for all five subjects (each movement repetitions appear in different 
color).

Table 6.   Classification results - UCI dataset.

Method Weights Classification accuracy

STFT & t-SNE (1, 0) 95.56± 5.89%

STFT & UMAP (1, 0) 89.67± 7.37%

MiniROCKET and t-SNE (1, 0) 99± 1.83%

MiniROCKET and UMAP (1, 0) 98.44± 2.54%

MiniROCKET and Ridge regression (1, 0) 98.44± 2.54%

MiniROCKET and Ridge regression (0.5, 0.5) 98.33± 2.54%
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Conclusion
This study presents an application of a MiniROCKET based model hand movements based on sEMG. With 
reported success of the MiniROCKET transform to other time series clasiification tasks49, we tested and adapted 
this robust method and demonstrated the results on public datasets. The public dataset Ninapro DB5 was used 
as low sampling rate data set recorded using a low cost electrode setup. We tested several configurations of the 
MiniROCKET features, some combined with a cosine similarity matrix between the channels. As shown in 
Table 2, when the number of channels is lower (8 instead of 16), the additional channel similarity feature improve 
the results. Since MiniROCKET computes a large number of feature, we also evaluated the performance degrade 
when a small number (84 out of 10,000) features are kept. As seen in Table 3, the results are slightly degraded, and 
the cosine similarity information is needed to maintain high accuracy in this setting. The influence of the cosine 
similarity matrix for the 8-channel and 16-channel setting was further plotted in Fig. 4a and b. Misclassification 
was analyzed by using a confusion matrix, displayed in Fig. 5. It indicated that most of the errors occur between 
movements that belong to the same category of movements, depicted errors happen in the “basic movements of 
the fingers” and in the “grasping and functional movements” that are presented in see Fig. 1b.

In order to evaluate the strength of the MiniROCKET features, we compared our pipeline, which used the 
ridge regression as a classifier, with other known feature sets. In particular, we show a comparison with fixed-
convolution-based time-domain feature extraction (fcTDFE), proposed in24 and time-domain-based power 
spectrum descriptors (TDPSD) from23 in Table 4 and in Fig. 6. The MiniROCKET features show to achieve more 
accurate classification results.

The same algorithm was tested on the Ninapro DB7 dataset, which includes two amputee subjects. High 
classification rates are reported in Table 5, and outperform the results reported in22, Analyzing the performance 
of the two amputees alone shows that the results degrade from approximtly 97% to 87% , however, these are still 
much higher than the results that were reported in22.

Finaly, for the UCI dataset, the proposed method was compared with a different set of tools that consist of 
STFT based features combined by dimension reduction. This framework was tested on this dataset in36 and 
achieved a classification accuracy of 94.8%± 3%. Here, similar combinations of STFT with t-SNE and UMAP 
resulted with slightly higher performance for t-SNE and lower performance for UMAP (as seen in the first two 
rows of Table 6). Replacing STFT with the MiniROCKET features improved these results (rows 3-4 in Table 6). 
Nevertheless, the use of non-linear dimension reduction methods isn’t very convenient for out-of-sample exten-
sion, thus limiting the use for a real time setting. Therefor, we also tested the two variants of proposed Mini-
ROCKET and ridge regression algorithm, resulting with a classification accuracy that is slightly higher than 98% 
(last two rows of Table 6), and fits a real-time setting.

For future work, it would be beneficial to test our methods on a larger data set, both subjects and repetitions 
wise, and on additional datasets that contain recordings from amputees.

Data availability
Data supporting the results reported in the article are available from the corresponding author on reasonable 
request.
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