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Machine learning‑based 
investigation of regulated cell 
death for predicting prognosis 
and immunotherapy response 
in glioma patients
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Glioblastoma is a highly aggressive and malignant type of brain cancer that originates from glial 
cells in the brain, with a median survival time of 15 months and a 5‑year survival rate of less than 
5%. Regulated cell death (RCD) is the autonomous and orderly cell death under genetic control, 
controlled by precise signaling pathways and molecularly defined effector mechanisms, modulated 
by pharmacological or genetic interventions, and plays a key role in maintaining homeostasis of the 
internal environment. The comprehensive and systemic landscape of the RCD in glioma is not fully 
investigated and explored. After collecting 18 RCD‑related signatures from the opening literature, 
we comprehensively explored the RCD landscape, integrating the multi‑omics data, including large‑
scale bulk data, single‑cell level data, glioma cell lines, and proteome level data. We also provided 
a machine learning framework for screening the potentially therapeutic candidates. Here, based 
on bulk and single‑cell sequencing samples, we explored RCD‑related phenotypes, investigated 
the profile of the RCD, and developed an RCD gene pair scoring system, named RCD.GP signature, 
showing a reliable and robust performance in predicting the prognosis of glioblastoma. Using the 
machine learning framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, we 
identified seven RCD genes as potential therapeutic targets in glioma and verified that the SLC43A3 
highly expressed in glioma grades and glioma cell lines through qRT‑PCR. Our study provided 
comprehensive insights into the RCD roles in glioma, developed a robust RCD gene pair signature for 
predicting the prognosis of glioma patients, constructed a machine learning framework for screening 
the core candidates and identified the SLC43A3 as an oncogenic role and a prediction biomarker in 
glioblastoma.
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CGGA   Chinese Glioma Genome Atlas
CNS  Central nervous system
CTLA4  Cytotoxic T lymphocyte-associated protein 4
DAMPs  Damage-associated molecular patterns
DEGs  Differential expression genes
EMT  Epithelial–mesenchymal transition
Enet  Elastic net
GBM  Glioblastoma
GEO  The Gene Expression Omnibus
GEP  Gene-expression profile
GETx  The Genotype-Tissue Expression
GLASS  Glioma Longitudinal AnalySiS
GO  Gene ontology
GP  Gene pair
GSVA  Gene Set Variation Analysis
Gx  Gene x
Gy  Gene y
HGG  High-grade gliomas
HPA  The Human Protein Atlas
ICIs  Immune checkpoint inhibitors
IDH  Isocitrate dehydrogenase
IFNG  Active Interferon Gamma
IGFBP2  Insulin-like growth factor-binding protein-2
JAK-STAT   Janus Kinase-signal transducer and activator of transcription
KEGG  Kyoto Encyclopedia of Genes and Genomes
LASSO  Least absolute shrinkage and selection operator
LCD  Lysosome-dependent cell death
LGG  Low-grade glioma
MDSC  Myeloid-derived suppressor cell
MDSCs  Myeloid-derived suppressor cells
MGMT  O6-methylguanine-methyltransferase
MPT  Mitochondrial permeability transition
MYH10  Myosin, heavy polypeptide 10
NCCD  Nomenclature Committee on Cell Death
NSCLC  Non-small cell carcinoma
OS  Overall survival
P2RY6  Pyrimidinergic receptor P2Y, G-protein coupled, 6
PCA  Principal component analysis
PD-1  Programmed cell death protein 1
PDCD1  Programmed cell death 1
PDCD1LG2  Programmed cell death 1 ligand 2
PD-L1  Programmed cell death 1 ligand 1
PTX3  Pentraxin3
RCD  Regulated cell death
RSF  Random survival forest
SCL43A3  Solute carrier family 43, member 3
SKCM  Skin cutaneous melanoma
SPP1  Secreted phosphoprotein 1
ssGSEA  The Single Sample Gene Set Enrichment Analysis
STEAP1  Six-transmembrane epithelial antigen of prostate 1
TCGA   The Cancer Genome Atlas
TLR9  Toll-like receptor 9
TLS  Tertiary lymphoid structures
TMB  Tumor mutational burden
TNF  Tumor necrosis factor receptor
TNFRSF4  Tumor necrosis factor receptor superfamily 4
TNFRSF9  Tumor necrosis factor receptor superfamily 9
TPM  Transcripts per million
UC  Urothelial carcinoma
UMAP  Uniform Manifold Approximation and Projection
XgBoost  EXtreme Gradient Boosting

Gliomas are the most common primary malignant tumors of the central nervous system, with approximately 
10,000 new cases diagnosed each year in the United  States1. According to the 2016 World Health Organiza-
tion (WHO) classification of CNS tumors, gliomas are categorized into four grades (I–IV). Grades I and II are 
considered as low-grade gliomas (LGG), while grades III and IV fall under high-grade gliomas (HGG). Among 
these, grade IV gliomas, also known as glioblastoma multiforme (GBM), exhibit the highest degree of growth 
 aggressiveness2. Unfortunately, despite advances in diagnosis and drug therapy, glioblastoma remains incurable, 
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with a median survival time of 15 months and a 5-year survival rate of less than 5%, leading to an unfavorable 
prognosis. Mutations in isocitrate dehydrogenase (IDH) and O6-methylguanine-methyltransferase (MGMT) 
promoter methylation have a significant prognostic impact.

The only identified causative factor for GBM is ionizing  radiation2, and GBM accounts for only a small 
fraction of brain tumors induced by radiation. Other exposures such as cell phone  use3,  cytomegalovirus4 and 
germline  susceptibility5 have not been established as causative factors. The current standard treatment for GBM 
involves maximal surgical resection followed by radiotherapy and/or chemotherapy with temozolomide or car-
mustine  tablet6. However, despite these standard therapies, glioma recurrence remains common, and patient 
prognosis remains poor.

The diagnosis and treatment of gliomas pose significant challenges, and RCD presents a promising area of 
treatment. The exploration of RCD research started with Karl Vogt’s observation of dead cells in toads in 1842, 
followed by the coining of the term “apoptosis” by John Kerr et al. in  19727. The subsequent discovery of CED9 
in mealybug  development8, and BCL2 in mammalian  cells9 triggered rapid advancements in RCD research, 
leading to the exploration of molecular mechanisms regulating apoptosis.

In 2018, the Nomenclature Committee on Cell Death (NCCD) established guidelines for defining and inter-
preting cell death from morphological, biochemical, and functional perspectives. Scientists categorized cell 
death types into regulated cell death (RCD) and accidental cell death (ACD)10. ACD is an uncontrolled cell death 
process triggered by unexpected injury stimuli that exceed the cell’s regulatory capacity, leading to cell death. In 
contrast, RCD involves autonomous and orderly cell death under genetic control, governed by precise signaling 
pathways and molecularly defined effector mechanisms, modulated by pharmacological or genetic interventions, 
and plays a key role in maintaining internal environment  homeostasis10. Major known types of RCD include 
autophagy-dependent cell death, apoptosis, necroptosis, iron apoptosis, parthanatos, entosis, NETosis, lysosome-
dependent cell death (LCD), alkaliptosis, and oxeiptosis. The aberrant regulation of RCD has been closely linked 
to  cancer11, and by promoting apoptosis in tumor cells, we can potentially inhibit tumor growth and spread. 
Exploring the role of RCD in cancer therapy helps us understand the pathogenesis of cancer, identify key targets 
for controlling cell death, and develop appropriate therapeutic  strategies12.

Numerous scholars advocate creating genetic profiles for precise prognosis, categorizing patients into risk 
 groups13. However, different detection platforms and pre-processing methods can have a huge impact on the 
results of subsequent  analyses14. Despite challenges in developing quantitative models due to biological artifacts 
and  biases15,16, leveraging gene pair (GP) profiles based on relative gene expression eliminates the need for data 
normalization. This approach has a competitive advantage in constructing stable models that identify gene 
pairs using relative expression values based on comparisons with within samples, independent of normalization 
 methods17.

The instability of the cancer genome allows it to accumulate a large number of point mutations during tumor 
development, resulting in structural alterations. The immune system plays a crucial immune-surveillance func-
tion in tumor suppression by directly killing tumor cells or triggering an adaptive immune  response18. However, 
tumor cells evade immune surveillance through various mechanisms, such as defective antigen-presentation 
mechanisms, upregulation of negative regulatory pathways, and recruitment of immunosuppressive cell popula-
tions, which impede the effector function of immune cells and diminish the anti-tumor immune  response19. The 
emergence of immunotherapy offers new hope for cancer treatment by retraining the host’s immune system and 
stimulating anti-tumor immune responses, including immune checkpoint inhibitors (ICIs), chimeric antigen 
receptor T cells (CAR-T cells), dendritic cell vaccines, and cytokine  therapies20. These therapies improve the 
anti-tumor immune response with fewer off-target effects than chemotherapy and other drugs that directly kill 
cancer  cells21. Immunotherapy is considered a promising strategy for treating or even curing certain cancer types; 
however, current clinical trials have shown that only 8% of glioma patients benefit from immune checkpoint 
blockade  therapy22. Immune escape mechanisms and drug resistance in gliomas often limit the effectiveness of 
immunotherapy. Therefore, elucidating the mechanisms of resistance to immunotherapy could offer new pos-
sibilities to overcome the problem of low response to immunotherapy in glioma.

In this study, we conduct a comprehensive investigation of the RCD landscape of glioblastoma, analyzing 
both bulk and single-cell aspect. We develop a robust, accurate and RCD-related gene pair signature which has 
the potential to be transferable across different datasets and experimental conditions. We additionally provided 
a framework for screening out relatively core genes and identified SCL43A3 as a potential therapeutic oncology 
target.

Methods
Collection and pre‑processing of data
The bulk-level RNA-seq data of glioma tumors (n = 2886) and corresponding clinical information were acquired 
from various data banks, including The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/), Chinese 
Glioma Genome Atlas (CGGA, http:// www. cgga. org. cn/ index. jsp)23, and the Gene Expression Omnibus (GEO, 
https:// www. ncbi. nlm. nih. gov/ geo/). The 55,284 single-cell transcriptomes of 6 patients with IDH-mutant GBM 
and 5 patients with IDH-wild GBM were downloaded from the Glioma Longitudinal AnalySiS (GLASS, http:// 
synap se. org/ glass)24. Additionally, the 12,972 single-cell data of the HF3016 cell lines with irradiation and hypoxia 
treatment were obtained from GLASS. Further details of the bulk-level transcriptomic data can be found in sup-
plementary table 1. The transcriptomic data of the normal brain cortex and related information were collected 
from The Genotype-Tissue Expression (GTEx, https:// www. gtexp ortal. org/ home/ datas ets). The bulk-level RNA-
seq data of the glioma cell lines was gathered from the Cancer Cell Line Encyclopedia project (CCLE, https:// 
sites. broad insti tute. org/ ccle/, supplementary table 2).

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
http://synapse.org/glass
http://synapse.org/glass
https://www.gtexportal.org/home/datasets
https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
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To identify the core gene for each regulated cell death (RCD) type, we assessed immunohistochemistry 
figures of normal brain tissues and glioma tissues from The Human Protein Atlas (HPA, https:// www. prote inatl 
as. org/, supplementary table 3)25–27. We compiled the gene list of the 18 regulated cell death types, including 
apoptosis, autosis, ferroptosis, pyroptosis, necroptosis, parthanatos, cuproptosis, autophagy, immunogenic cell 
death, entotic cell death, netotic cell death, mitotic cell death, lysosome-dependent cell death, alkaliptosis, oxeip-
tosis, mitochondrial permeability transition (MPT)-driven necrosis, anoikis, and disulfidptosis, from previously 
published literature. The number of genes for each RCD ranged from 5 (oxeiptosis) to 3449 (immunogenic cell 
death). Further information is available in supplementary table 4.

All bulk transcriptomic data were standardised and converted into transcripts per million (TPM) formats 
for subsequent analysis, except for the differential expression analysis.

Single cell RNA‑seq process
The processing flow of single-cell data was referenced to the source literature of the data (https:// github. com/ 
TheJa ckson Labor atory/ singl ecell glioma- verha aklab,24). The parameters of quality control, normalization and 
batch effect correction were totally same as these in the study. Out of the 55,284 single cells, a total of 12 cell 
clusters were obtained through cell clustering and dimension reduction. Each cluster was well-annotated using 
the R package “Seurat”, following the guidelines from the reference literature.

To gain a deeper understanding of the underlying biological processes and cellular heterogeneity within the 
complex biological system, RCD pathway enrichment analysis at the single-cell level was conducted using the 
R package “AUCell”.

Furthermore, we utilized the “UMAP” function, which downscaled the data, to efficiently visualize the high-
dimensional profiles of gene expression or pathway activity.

Identification of RCD subtypes in glioma
The Single Sample Gene Set Enrichment Analysis (ssGSEA) was conducted using the R package “GSVA” to 
investigate the activated level of the 18 RCD in glioma cohorts.

Additionally, compared to k-means, pam’s clustering method is insensitive to outlier data, receives fewer 
images of biased data, and yields classes with higher confidence. So, we performed consensus clustering analysis 
with the “pam” clustering method, Euclidean correlation distance, and 1000 repetitions using the R packages 
“ConsensusClusterPlus” and “limma”, just like the previous  studies28,29. Subsequently, we conducted Principal 
Component Analysis (PCA) to assess the distribution of the transcriptomic data for the identified RCD subtypes.

Functional pathway enrichment analysis
In this section, several methods were employed to investigate potential activated or suppressed signals in glioma. 
Based on a study of selecting an optimal method for differential expression gene analysis, for population-level 
RNA-seq studies with large sample sizes, the Wilcoxon rank-sum test was  recommended30. Moreover, it also 
recommended the significance threshold for this analysis. So, here, to identify Differential Expression Genes 
(DEGs) we applied the Wilcoxon rank-sum test with a significance threshold of p < 0.05.

Gene Ontology (GO) and KEGG pathway enrichment analyses of the DEGs were conducted using the R 
package “ClusterProfile”31. The KEGG pathways were obtained from the website (www. kegg. jp/ kegg/ kegg1. html).

Additionally, we performed Gene Set Variation Analysis (GSVA) to assess the enrichment or activity of gene 
sets in biological  samples32. We used the R package “GSVA” along with downloaded gene lists that included 
cancer hallmark gene sets, KEGG gene sets, GO biological process gene sets, and REACTOME gene sets. A p 
value < 0.05 was considered statistically significant for this analysis.

Multidimensional analysis of immune
The absolute percentage of immune cells was computed using the CIBORTSORT  algorithm33. The infiltration 
of immune cells and stromal cells were represented by the immune score and stromal score, which were calcu-
lated by the ESTIMATE  algorithm34. Furthermore, we compiled a set of immune checkpoint genes, including 
CD274, PDCD1, CD247, PDCD1LG2, CTLA4, TNFRSF9, TNFRSF4 and TLR9, based on previous  literature35. 
In addition, we gathered several other signatures that describe specific features of immunity. These signatures 
included the anti-tumor immune cycle, tumor micro-environment and various immune  traits36–38. More detailed 
information about these signatures is provided in supplementary table 5 and 6.

Construction of the RCD‑related gene pair signature in glioma
Gene pair signatures have the potential to enhance the predictive power of computational models when compared 
to single gene-based signatures. The consideration of interactions between pairs of genes allows for the capture of 
additional information about biological processes, regulatory networks, and molecular interactions, ultimately 
leading to more accurate predictions. Here, we have established an applicable framework for the development 
of a robust RCD-related gene pair signature in glioma. The framework consists of three steps.

Screening out the RCD related genes in glioma. To achieve this goal, a three-step strategy was employed. 
Firstly, the consensus clustering analysis was used to identify different RCD clusters. Genes with a Wilcoxon 
rank sum test p value < 0.05 and an absolute log2 fold change |log2FC|> 1 between distinct RCD patterns in 
TCGA glioma were considered as RCD-related DEGs. Secondly, the pathway activity of the 18 RCD signals 
was calculated. For each RCD, differently expressed gene analysis and Spearman’s correlation analysis were 
conducted. For instance, genes related to alkaliptosis (Spearman’s correlation p value < 0.05) were identified as 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://github.com/TheJacksonLaboratory/singlecellglioma-verhaaklab
https://github.com/TheJacksonLaboratory/singlecellglioma-verhaaklab
http://www.kegg.jp/kegg/kegg1.html


5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4173  | https://doi.org/10.1038/s41598-024-54643-3

www.nature.com/scientificreports/

Ga. DEGs between the high and low alkaliptosis subgroups, determined based on the median of the ssGSEA 
score of alkaliptosis were identified as Gb (Wilcoxon rank sum test p value < 0.05). Genes shared between Ga 
and Gb of alkaliptosis in the TCGA-GBM Hiseq dataset were considered as G1. The same process was followed 
for the rest of the RCDs, resulting in G1-G18. The geometric mean of Spearman’s R was then computed for 
each gene across G1-G18 using the formula:

where x1, x2, x3, …, xn represent the Spearman’s correlations. Genes with a geometric mean of Spearman’s R 
> 0.3 were considered as C.genes. Finally, the final RCD-related genes were obtained by taking the intersec-
tion of RCD-related DEGs from the first step and C.genes from the second step.
Identifying the prognostic RCD-related gene pairs. After obtaining the final RCD related genes, the gene pair 
matrix was constructed using the previously identified RCD-related genes. In this matrix, Gene x (Gx) and 
Gene y (Gy) represented the RCD-related genes in glioma. The expressions of Gx and Gy were denoted as Ex 
and Ey, respectively. The score of the gene pair (Gx, Gy) was calculated as follows:

In both the TCGA GBM cohort and the TCGA glioma cohort, univariate Cox regression analysis was con-
ducted for the gene pairs that were constructed. Gene pairs with p-values less than 0.05 in both cohorts, as 
determined by the univariate Cox regression analysis, were retained to form the final scoring system.
Developing the RCD related gene pair scoring system. For each optimal RCD gene pair, RCD.GP (i) was 
assigned a value of either 1 or 0. The risk score of the sample was then determined based on all the optimal 
gene pairs. Specifically, the scoring system involved calculating the sum of the scores of the gene pairs. The 
RCD gene pair risk score for each patient or cell was computed as follows:

Survival analysis
After scoring all patients in the cohorts with the RCD.GPscore system, we divided the patients into high and low 
RCD.GP score subgroups based on the maximally selected rank statistics through the function “surv_cutpoint” in 
the R package “survminer”. The log-rank sum test was conducted to compare the statistical difference between the 
distinct subgroups. For the univariate and multivariate Cox regression analysis, we used the R package “survival”.

Immunotherapy related analysis
Several methods were used to estimate the value of the RCD.GP score for immunotherapy. We collected a num-
ber of signatures related to immunotherapy response from previous literatures, including T cell-inflamed GEP, 
IFNG, CD274, CD8, TLS-melanoma, TLS, T cell dysfunction, MDSC, TAM M2, T cell exclusion and  CAF39–41. 
Some researchers have shown that these signatures are closely related to the response to immunotherapy and 
that they can predict the response to  immunotherapy42,43. So, the relationship between the RCD.GP score and 
the immunotherapy response could be evaluated by computing the link between the RCD.GP score and these 
signatures, just like the previous studies  did44,45. We calculated the Spearman’s correlation between the GSVA 
score of these signatures and the RCD.GP score. Additionally, we compared the difference between the high and 
low RCD.GP score subgroups for each of these signatures.

To estimate the potential clinical value of the RCD.GP score, we also computed the tumor mutation bur-
den. Furthermore, we gathered clinical cohorts with immune checkpoint inhibitor (ICI) therapy to assess the 
value of the RCD.GP score for the immunotherapy response. These cohorts included patients with glioblastoma 
(GBM)46, skin cutaneous melanoma (SKCM)47–54, urothelial carcinoma (UC)55,56 and non-small cell carcinoma 
(NSCLC)50,57,58. More details about the cohorts with immunotherapy were provided in supplementary table 7.

Screening out the potential therapeutic targets in glioma
Machine learning is well-known and has been used in previous bioinformatics  studies59,60. Although different 
machine learning algorithms have different optimal usage scenarios and different usage  characteristics60. XgBoost 
is a gradient boosting algorithm used to solve regression and classification problems in machine  learning60. It 
also performs feature selection by assigning a score to each feature based on its importance in the model. Various 
machine learning algorithms have been used for feature selection to screen for more central  genes61,62. Here, with 
some machine learning algorithms, we present a computational framework for identifying potential therapeutic 
targets for glioma treatment. The framework involves four main steps.

– Identification of prognostic genes in glioma. We performed univariate Cox regression analysis in three 
cohorts: TCGA LGG, TCGA GBM and TCGA LGG-GBM cohort. Genes with a p value less than 0.05 in all 
three cohorts were considered as prognostic genes in glioma.
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– Confirmation of valuable DEGs in glioma. The genes with the Wilcoxon rank sum test p value less than 0.05 
were considered as DEGs. The intersection of DEGs between GBM and normal brain cortex, LGG and normal 
brain cortex, GBM and LGG was denoted as the critical DEGs in glioma.

– Selection of RCD-related genes. RCD-related genes were filtered out by identifying the intersection of RCD-
related DEGs between the distinct RCD patterns and the previously extracted C.genes.

– Screening important genes in glioma using six machine learning methods. Six machine learning methods 
including CoxBoost, Boruta, random survival forest (RSF), least absolute shrinkage and selection operator 
(Lasso), eXtreme Gradient Boosting (XgBoost), and Elastic net (Enet) were employed. For the elastic net 
method, we used different mixing parameters (α) values ranging from 0.1 to 0.9. Genes identified by at least 
ten methods with different parameters in both TCGA GBM and TCGA GBMLGG cohorts were considered 
potential therapeutic genes in glioma.

Cell culture
The human astrocytes (HA1800) and three GBM cell lines, including A172, LN229 and U87, were obtained 
from the Cancer Research Institute of Central South University. The GBM cell lines were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM)(Gibco) supplemented with 10% fetal bovine serum (FBS). The HA1800 was 
cultured with the astrocyte medium which was purchased from ScienCell Research Laboratories (Carlsbad, CA, 
USA). The FBS was from the Thermo Fisher Scientific. All cells were maintained at 37 °C with 5% CO2.

Collection of glioma tissue sample
Clinical glioma samples and normal brain tissues used in this study were obtained from patients surgically 
treated at the Neurosurgery Department of Xiangya Hospital of Central South University from September 2019 
to August 2023, of which WHO Grade II (n = 12), Grade III (n = 12), Grade IV (n = 12), and normal brain tissues 
(n = 12). Normal brain tissues were normal tissues that had to be removed during glioma surgery due to the 
need for surgical access as well as book exposure of the lesion. Detailed information about the tissue samples 
was summarized in supplementary table 8. Informed agreement was obtained from all patients. This study was 
performed with ethical approval of the ethics committee of Xiangya Hospital in accordance with the Declaration 
of Helsinki and written informed consents were obtained from all of the enrolled subjects.

qRT‑PCR
Based on the TRIzol (Accurate Biology, China, AG21101) and RNA extraction kit (Thermo Scientific, K0731), we 
extracted RNA from clinical glioma samples, which was then stored at – 80 °C. The extracted RNA was utilized 
to generate cDNA through amplification, which was subsequently used for qRT-PCR. To perform qRT-PCR, 
we queried the gene sequence in GenBank and designed the primer sequences for the target genes. The relative 
levels of indicated genes were analyzed through the 2 − ΔΔCt method. The primer sequences of BMP2, IGFBP2, 
SPP1, SLC43A3, P2RY6, PTX3, and STEAP1, GAPDH, were exhibited in supplementary table  8.  Two-tailed 
Student’s t test was performed for comparison between two groups of samples.

Statistical analysis
All analysis was performed in R (version 4.1.3, http:// www. rproj ect. org/). For the continuous variables and the 
categorical variables, the Wilcoxon rank sum test and the chi-squared test were adopted, respectively. Correlation 
analysis between the different variables was performed using Spearman’s coefficients. The Benjamini and Hoch-
berg method was used to adjust the P value. P value less than 0.05 was considered to be statistically significant 
in this study. The graphic abstract was provided in Fig. 1.

Ethics approval and consent to participate
The study was approved by the ethics committee of Xiangya Hospital, and the written informed consent was 
obtained from all patients.

Results
Dysfunction of regulated cell death in glioma
Dysfunction of regulated cell death in tumors, specifically the failure of programmed cell death mechanisms, 
plays a significant role in tumor development and  progression11. In normal physiological conditions, cells 
undergo programmed cell death, including apoptosis, autophagy, and necroptosis, to maintain tissue homeo-
stasis and eliminate damaged or abnormal cells. Here, we comprehensively investigated the RCD level between 
glioma and normal brain cortex with collected 18 RCD signatures. It might seem counterintuitive that the level 
of RCD was dysregulated and higher in gliomas compared to normal tissue (Fig. 2A). With the Spearman’s cor-
relation analysis, we also estimated the inner regulated network among these RCD in glioma and the normal 
tissue (Fig. 2B). The alteration of the correlation also provided solid evidence of the dysregulated RCD in glioma. 
This abnormal increase and dysregulation of RCD are often detrimental to the survival of patients with many 
types of tumors, as reported in various  publications63–65.

To confirm whether this also applied to gliomas, we performed univariate Cox regression in several cohorts 
of LGG, GBM and glioma. The results revealed that the high level of the RCD was a risky factor for glioma 
patients (Fig. 2C). The transcriptomic profiles from the CCLE project indicated that the level of most RCDs was 
higher in most high grade glioma (HGG) cells than in LGG cells (H4) (Fig. 2D). From previous publications, we 
selected some core genes in individual RCDs, and immunohistochemically stained tissue sections from the HPA 
of these genes showed that the level of RCD was higher in glioma than in normal brain tissue (Fig. 2E)10,12,66–68.

http://www.rproject.org/
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Collectively, at both the mRNA and protein levels, we found a significant increase in these 18 already reported 
regulated modes of cell death and functional abnormalities. It is important to note that while the level of regu-
lated cell death might be higher in gliomas, the effectiveness of these cell death mechanisms could be impaired 
or evaded by tumor cells, contributing to the survival and progression of gliomas.

RCD‑based patterns show distinct micro‑environments
According to the consensus clustering analysis based on the profile of the RCD, the patients in the TCGA glioma 
dataset could be divided into two distinct RCD patterns, named RCD cluster A (n = 220) and RCD cluster B 
(n = 469) (Fig. 3A, supplementary table 9). The PCA results indicated different characteristics of the RCD profiles 
between the two RCD clusters (Fig. 3B). Next, we described the differences and connections between these two 
RCD clusters at multiple levels, including clinical features, immune microenvironment, signaling pathways and 
so on.

The patients in RCD cluster A had significantly better overall survival than patients in RCD cluster B (Fig. 3C, 
log-rank test p < 0.001, HR: 3.195, 95%CL: 2.46–4.13). Compared with RCD cluster A, RCD cluster B had more 
patients with un-methylated MGMT promoter, chr 19/20 co-gain, wild type IDH, higher-level pathological tis-
sue types and older ages (Fig. 3D). The levels of most RCDs were higher in RCD cluster A than in RCD cluster 

Figure 1.  The graphic abstract of this study.
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Figure 2.  Dysfunction of regulated cell death in glioma. (A) The comparison of the ssGSEA score of the 18 
RCD signatures between gliomas and normal brain cortex, with the large-scale bulk transcriptomic data from 
the TCGA and GTEx project. The Wilcoxon rank sum test was performed. The two sided p value < 0.001 was 
represented by “***”. (B) The spearman’s correlation of the 18 RCD ssGSEA scores in TCGA-GBM dataset and 
GTEx normal brain cortex dataset. (C) The univariate Cox regression result of the 18 RCD signatures in datasets 
with LGG, datasets with GBM and datasets with glioma. The p value < 0.05 was considered as significance. (D) 
The ssGSEA score of the RCD signatures in glioma cell lines. The red represented that the score in this GBM cell 
line was higher than in LGG cell line (H4), while the white represented the opposite. The right panel showing 
the number of the GBM cell lines in which the score was higher than in the H4. (E) The immunohistochemically 
stained tissue sections images from the HPA of the core RCD genes indicated that the level of the RCD was 
different between in glioma and in normal brain tissues. The detailed clinical information of the images was 
provided in supplementary table 3.
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Figure 3.  RCD-based patterns show distinct micro-environments. (A) The glioma patients in TCGA were 
classified into two RCD clusters, named RCD cluster A and RCD cluster B, based on the consensus clustering 
analysis. (B) The PCA analysis showing the different distribution of the RCD profile. (C) The K–M curves 
showing that the patients in RCD cluster A had worse OS than patients in RCD cluster B. (D) A heat map 
showing the clinical index, RCD profile, expression of immune checkpoint genes, immune score, stromal score 
and tumor microenvironment in the TCGA glioma cohort. The Wilcoxon rank sum test or the chi-square test 
was performed the assess the difference between the RCD cluster A and RCD cluster B. “*”, “**”, “***”, and “****” 
represented that the p value < 0.05, 0.01, 0.001, and 0.0001. (E) The enrichment analysis of the DEGs between 
the two RCD clusters. KEGG, GO BP and REACTOME databases were included for the functional pathway 
analysis.
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B (Fig. 3D), which was consistent with previous results showing that higher RCD levels were detrimental to 
patients’ prognosis.

The expression of some classical immune checkpoint genes, including CD274, PDCD1, CD247, PDCD1LG2, 
CTLA4, TNFRSF9, TNFRSF4 and TLR9, was investigated in the RCD clusters, and the results indicated that 
these genes, except for TLR9, had higher expression in RCD cluster A. Both innate and adaptive immune cells 
infiltrated at significantly higher levels in RCD cluster A than in RCD cluster B (Fig. 3D). The TMB increased in 
RCD cluster A (Supplementary Fig. 1A). The pathway enrichment analysis based on the DEGs between the two 
RCD clusters revealed that the dysfunction and abnormality of the RCD were significantly related to neutrophil 
chemotaxis, monocyte chemotaxis, cytokine-cytokine receptor interaction, and collagen degradation (Fig. 3E).

We also performed the same analysis method in the TCGA GBM cohort and obtained similar results to 
those in the TCGA glioma cohort (Supplementary Fig. 1B, C, supplementary table 10). Generally speaking, in 
the context of tumor development, dysregulation of regulated cell death pathways could impact both tumor cells 
and immune cells, leading to alterations in the immune  microenvironment69. Some forms of regulated cell death, 
such as necroptosis and pyroptosis, could induce inflammation and release danger signals (damage-associated 
molecular patterns—DAMPs)70,71. DAMPs can activate innate immune cells and promote an inflammatory 
 response72. This inflammation can influence the recruitment and activation of various immune cells within the 
tumor microenvironment, ultimately affecting the prognosis of glioma patients.

Integrated single‑cell level analysis of the RCD in glioblastoma
Based on the previous results indicating dysfunction and an abnormal increase in RCD in glioblastoma with 
bulk-level data, we subsequently investigated RCD using single-cell data to enable a finer scale assessment of the 
RCD landscape in gliomas. After clustering, dimensionality reduction, and annotation, we present the 12 types 
of cells and their corresponding numbers (Fig. 4A). For each single cell, we estimated the signal pathway activity 
of RCD using the AUCell method (Supplementary Fig. 2). The pathway activity of a cell type was represented 
by the average of all cells of the same type. Disulfidptosis and immunogenic cell death had higher AUCell scores 
compared to other RCD types (Fig. 4B–D). Notably, disulfidptosis exhibited higher signal levels in endothelial 
and pericyte cells than in other cell types. The dominant RCD type of each single cell was defined as the type of 
RCD with the highest level, and we observed a significant proportion of cells with disulfidptosis and immuno-
genic cell death as the dominant RCD (Fig. 4E).

Given the previous results showing an absolute predominance of disulfidptosis in glioblastoma, we investi-
gated the core disulfidptosis genes in different cell types. SLC7A11 was highly expressed in fibroblast cells, while 
MYH10 showed high expression levels in malignant cells, especially in Prolif.stem-like cells (Fig. 4F). We found 
that mitotic cell death was the dominant RCD type in almost all the Prolif.stem-like cells. The UMAP view of 
cells with the dominant RCD (top) and cell density (bottom) displayed the RCD profile distribution across the 
different cell types (Fig. 4G). Furthermore, we investigated the substantial changes in the different RCD cell 
landscape when exposed to external intervening factors including hypoxia and irradiation (Fig. 4H–K, sup-
plementary Figs. 3, 4).

As the duration of hypoxia increased, the proportion of cells in which disulfidptosis predominated gradually 
increased, reaching levels similar to controls, while immunogenic cell death gradually decreased to baseline levels 
(Fig. 4J). Overall, we explored the unique landscape of RCD in glioblastomas from a single-cell perspective and 
found that disulfidptosis and immunogenic cell death appeared to play more important roles in glioblastomas 
than other RCD types. Additionally, it is worth noting that in the presence of external environmental stimuli, 
the transformation of these two modes of cell death may be a potentially possible mechanism used by cells to 
adapt to external stresses.

Development and validation of a novel RCD‑related gene pair signature
The prognosis of glioblastoma is poor, with an overall survival rate remaining relatively low. Even with aggressive 
treatment, the median survival is typically around 12–16  months73. The results presented above suggested that 
RCD had a significant impact on patients with glioblastoma. Therefore, the purpose of this study is to establish 
a reliable RCD-related model that can be used in the clinic to accurately predict a patient’s prognosis, quality 
of life, and response to treatment. This model aims to assist doctors in achieving accurate treatment for their 
patients. The framework for constructing the scoring system is displayed in Fig. 5A.

With calculated geometric spearman’s correlation, we identified 6162 C.Genes related RCD. Detailed descrip-
tions of this process are provided in the methods section (Fig. 5B). Additionally, 8084 genes with a p-value less 
than 0.05 and |log2FC| greater than 1 were identified as DEGs between distinct RCD patterns (Fig. 5C). The 
intersection of C.Genes and DEGs resulted in the final set of RCD-related genes (n = 725). After removing missing 
genes in most validation datasets, we constructed 639 RCD-related gene pairs. Among the 203,841 gene pairs 
based on these 639 genes, 377 gene pairs in TCGA-GBM and 40,788 gene pairs were identified as prognostic 
RCD-related gene pairs using univariate Cox regression (Fig. 5D, supplementary Fig. 5A, p < 0.05). Finally, 118 
gene pairs, including 102 genes, were selected as the optimal gene pairs for constructing the scoring system, 
named RCD.GP score (Supplementary table 11).

In the TCGA-GBM HiSeq dataset, GBM patients with high RCD.GP risk scores exhibited significantly worse 
prognosis than those with low RCD.GP risk scores (Fig. 5E, HR: 3.78, 95%CL: 2.39–5.98, Log-rank p < 0.0001). 
This conclusion was also validated in other independent datasets, including GBM_CGGA325, GBM_CGGA693, 
GBM_CGGA, GBM-GSE108474, Glioma-TCGA, Glioma-GSE108471, Glioma-CGGA, Glioma-CGGA325, 
CGGA693-Glioma, LGG-CGGA, LGG-CGGA325, LGG-CGGA693, LGG-GSE10611, LGG-GSE108474 and 
LGG-TCGA (Fig. 5F, supplementary Fig. 5A, supplementary table 12). The RCD.GP score demonstrated favorable 
performance in terms of C-index, 1-year AUC, 3-year AUC and 5-year AUC across all 16 datasets (Supplementary 
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Figure 4.  Integrated single-cell level analysis of the RCD in glioblastoma. (A) UMAP plot showing that the 12 types of cells 
and their corresponding numbers were obtained after clustering, dimensionality reduction, and annotation. (B) The AUCell of 
the 18 RCD signatures in the 12 cell types. The pathway activity of a cell type was represented by the average of all cells of the 
same type. (C) The ridge plot showing the distribution of the RCD profile in the single-cell level. (D) Percentage of the AUCell 
scores of the different RCDs in 12 cell types. (E) For a single cell, we defined the dominant RCD type of this cell as the type 
of RCD that has the highest level of its RCD. This plot showing the percentage of the dominant RCD types in 12 cell types. 
(F) Core gene expression of disulfidptosis across defined cell clusters. Bubble size is proportional to the percentage of cells 
expressing a gene and color intensity is proportional to average scaled gene expression. (G) UMAP view of dominant RCD 
(top) and cell density (bottom) displaying the RCD profile distribution across the different cell types. High relative cell density 
is shown as bright magma. (H) UMAP view of cell types with different stress interventions. (I) The percentage of the RCD in 
different cell types and in different stress interventions. (J) The percentage of the dominant RCD in different cell types and in 
different stress interventions. (K) The profile of the 18 RCD in different conditions and cell types.
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Figure 5.  Development and validation of a novel RCD-related gene pair signature. (A) The workflow of the 
construction the RCD.GP scoring system. (B) Identification of the C.Genes in TCGA GBM cohort. (C) Volcano 
plot showing the DEGs between the RCD cluster A and RCD cluster B. (D) The process of the obtaining the 
118 optimal gene pairs from the DEGs and the C.Genes. (E) K–M curves significant difference of the prognosis 
between the high RCD.GP score subgroup and low RCD.GP score subgroup. The log-rank sum test p < 0.0001. 
(F) The K-M curves in different glioma cohorts shown the same trend, indicating that the patients with high 
RCD.GP score had worse OS than those with low RCD.GP score.
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Fig. 5B). Multivariate Cox regression analysis in TCGA-GBM, GBM-CGGA325, GBM-CGGA693 and GBM-
CGGA cohort revealed that the RCD.GP risk score was an independent prognostic factor for glioblastoma 
patients (Supplementary Fig. 5C). The meta-analysis further confirmed the comprehensive and integrated HRs 
for RCD.GP scores (Supplementary Fig. 5D, E). Overall, the RCD.GP score represents a robust and powerful 
model capable of accurate prognostic predictions for glioma patients. It can aid in early detection, personalized 
treatment, treatment planning, decision-making, protective management and patient empowerment.

Glioma with high RCD.GP score possesses strongly malevolent biology and activated immune 
characteristics
The tumour microenvironment plays a crucial role in tumor growth, immune surveillance, immune escape, and 
response to  therapy74. Immune checkpoints are molecules on immune cells that regulate the immune response, 
preventing excessive activation and tissue  damage30. However, tumors can hijack these checkpoints to suppress 
immune responses and avoid immune destruction. Inhibitory immune checkpoint molecules, such as PD-1, 
PD-L1, and CTLA-4, are frequently expressed within the tumor microenvironment and can dampen immune 
responses against cancer cells. Our investigation revealed that glioblastomas with high RCD.GP scores highly 
expressed immune checkpoint genes, including CD274, CD247 and so on (Fig. 6A). As the immune microenvi-
ronment consists of various immune cells, including lymphocytes, macrophages, dendritic cells, and myeloid-
derived suppressor cells (MDSCs) which can infiltrate the tumor site and interact with cancer cells, influencing 
tumor progression, we assessed the infiltration of the immune cells, and found that higher RCD.GP risk scores 
correlated with increased infiltration of cells such as M0 macrophages, neutrophils, and Tregs (Fig. 6A). Similar 
results were observed in the CGGA dataset (Supplementary Fig. 6A).

To further confirm the association of RCD.GP scores with malignant biology and tumor-associated immunity 
modulation in glioblastoma, we performed GSVA with the cancer hallmark signature database, KEGG database, 
REACTOME database and GO BP database in TCGA-Glioma. The high RCD.GP scores were associated with 
activated malignant pathways and immune-related signals, such as epithelial mesenchymal transition, comple-
ment and coagulation cascades, cytokine-cytokine receptor interaction, and complement cascade (Fig. 6B, C, 
supplementary Fig. B–D). The enrichment analysis with GO, KEGG and REACTOME pathways further validated 
the activation of immune-related signals and malignant pathways in the high RCD.GP score subgroup (Fig. 6D, 
supplementary Fig. 6E, F). The anti-tumor immune cycle, representing the steps and interactions involved in 
mounting an effective immune response against  tumors75, exhibited higher signals in the high risk score sub-
group, indicating an activated anti-tumor immune response (Fig. 6E).

We also estimated the correlation between a number of immune-related  scores76 (n = 92) and RCD.GP scores, 
and the results indicated a positive relationship between most immune-related scores and the RCD.GP score 
(Supplementary Fig. 6G). Although patients with higher risk scores had worse prognoses, we investigated the 
features of the tumor microenvironment using signatures from the cancer single-cell states  atlas36 (n = 14) and the 
previous literatures (n = 29)77. The GSVA results revealed that factors promoting intense malignant progression 
of tumors, such as EMT, inflammation, metastasis, immune suppression by myeloid cells, pro-tumor cytokines, 
and tumor proliferation, were significantly higher in the high-risk group than in the low-risk group (Fig. 6F–G, 
supplementary Fig. 6H). One possible explanation for the apparent contradiction is that the tumor microenviron-
ment, characterized by factors such as inflammation, immune cell infiltration, hypoxia, and nutrient deprivation, 
can influence the levels of cell death in tumors. Certain aspects of the tumor microenvironment could promote 
cell death, while others could protect tumor cells from undergoing programmed cell death. In glioblastoma, both 
might be at a high level, leading to an imbalance that favors increased cell death but does not necessarily result 
in tumour shrinkage. This imbalance could be due to the rapid and uncontrolled proliferation of tumor cells, 
leading to an increased number of cells requiring elimination.

Assessment of the capability of the RCD.GP score for the immunotherapy response
Considering the impressive association of the RCD.GP score with immune-related characteristics, we hypoth-
esized that the RCD.GP score could be strongly linked to the response to immunotherapy. To investigate this, 
we collected some signatures related to immunotherapy response and found that the RCD.GP score positively 
correlated with the GSVA scores of these signatures (Fig. 7A).

Previous studies have demonstrated that tumors with high TMB are more likely to respond to immunotherapy 
due to enhanced recognition and targeting by the immune  system42,78. We observed a positive correlation between 
the RCD.GP score and the TMB (Fig. 7B, R = 0.39, p < 0.001). Furthermore, the TMB was higher in the high-risk 
score group compared to the low-risk score group (Fig. 7C, Wilcoxon rank sum test p < 0.001). Other immuno-
therapy response-related scores, such as TCR richness, TGF-beta response, and lymphocyte infiltration signature 
score, also showed positive associations with the RCD.GP score (Fig. 7D, supplementary table 13). In the high-
risk score group, most of these scores were higher than those in the low-risk score group (Supplementary Fig. 7).

To further verify the predictive efficacy of the RCD.GP score in immunotherapy response, we analyzed 
multiple cohorts with immunotherapy treatment. Strikingly, the higher RCD.GP score group exhibited better 
prognosis and immunotherapy response in patients with UC, NSCLC and SKCM, while intriguingly, the K-M 
curves exhibited the opposite trend in patients with glioblastoma (Fig. 7E–J, supplementary table 14). Overall, 
our study suggests that patients with a high RCD.GP score may have a higher potential to benefit from immu-
notherapy treatment.

Identification of SLC43A3 as novel and potential RCD‑related oncology target
In this study, we present a novel framework for screening important features (Fig. 8A). Differentially expressed 
gene analysis was performed among GBM, LGG and normal brain cortex (Supplementary Fig. 8A–C), leading 
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Figure 6.  Glioma with high RCD.GP score possesses strongly malevolent biology and activated immune 
characteristics. (A) The heat map of the relationship of the RCD.GP score and clinical indexes, immune 
checkpoint genes, infiltration of the immune cells and immune microenvironment function in TCGA glioma 
cohort. (B, C) The spearman’s correlation between the RCD.GP score and the GSVA score of the tumor hallmark 
signatures (B) and functional pathway signatures in KEGG database (C). (D) The pathway enrichment of the 
GO biological process. (E, F) The plot showing the relationship between the RCD.GP score and the anti-
tumor cycle (E), and single cell state from the cancerSEA (F). The spearman’s correlation and the Wilcoxon 
rank sum test were performed. “*”, “**”, “***”, and “****” represented that the p value < 0.05, 0.01, 0.001, and 
0.0001. (G) The spearman’s correlation between the RCD.GP score and the 29 signatures related with the tumor 
microenvironment.
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Figure 7.  Assessment of the capability of the RCD.GP score for the immunotherapy response. (A) The 
relationship of the RCD.GP score and the GSVA score of the signatures related with the immunotherapy 
response. The spearman’s correlation analysis and the Wilcoxon rank sum test were performed. “*”, “**”, “***”, 
and “****” represented that the p value < 0.05, 0.01, 0.001, and 0.0001. (B) The spearman’s correlation between 
the RCD.GP score and the tumor mutation burden. (C) The difference of the TMB between the high RCD.GP 
score subgroup and low RCD.GP score subgroup. The Wilcoxon rank sum test was used. (D) The spearman’s 
correlation of the RCD.GP score and the immune scores related with the immunotherapy response. (E–I) The 
K–M curves showing the difference of the prognosis between the high RCD.GP score subgroup and the low 
RCD.GP score subgroup in UC, SKCM, NSCLC and GBM. (J) The difference of the RCD.GP score between 
the NR patients and R patients. NR: not response to immunotherapy response. R: response to immunotherapy 
response.
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to the identification of 3260 genes as DEGs across all groups (Fig. 8B). Among these, 725 genes were identi-
fied as RCD-related genes in glioma, and 1660 genes were associated with the prognosis of the glioma patients 
(Fig. 8A, B). From this analysis, 60 genes were identified as RCD-related prognostic DEGs (Fig. 8B, supple-
mentary Fig. 8D). Using a machine learning framework on TCGA-Glioma cohort and TCGA-GBM cohort, we 
generated some candidate genes (Fig. 8C, D).

The genes that were repeatedly screened out more than 10 times in both TCGA-GBM and TCGA-Glioma 
cohorts were identified as the most important genes for glioma patients (Fig. 8E, supplementary table 15). These 
genes included BMP2, IGFBP2, SPP1, SLC43A3, P2RY6, PTX3, and STEAP1. Among these, the role of SLC43A3 
in tumors, especially gliomas, had hardly been reported, while the functions of the other genes in tumors were 
widely  documented79–84. Interestingly, the expression of SLC43A3 increased with the pathological grade and was 
most highly expressed in the ME transcriptional subgroup, which has been associated with a malignant process 
and shorter median survival time in glioblastoma patients (Fig. 8F–I). We also comprehensively investigated 
the distribution of SLC43A3 in different clinical subgroups, revealing a potential relationship between SLC43A3 
expression and poor clinical prognosis (Supplementary Fig. 9A–M).

To validate the findings, we assessed SLC43A3 expression in high-grade gliomas compared to normal brain 
cortex using qRT-PCR (Fig. 8J). Transcriptomic data from the CCLE project showed higher mRNA levels of 
SLC43A3 in most glioblastoma cells compared to LGG cells (H4) (Supplementary Fig. 9N). The qRT-PCR experi-
ment with glioblastoma cell lines further confirmed higher expression of SLC43A3 in glioblastoma cell lines 
compared to astrocyte cell lines (Fig. 8K). Prognostic analysis using multiple glioma datasets revealed that high 
expression of SLC43A3 was associated with worse overall survival (Supplementary Fig. 10A–C). Meta-analysis 
and multiple variate Cox regression analysis provided strong evidence that SLC43A3 was a risky and independ-
ent prognostic factor for predicting glioma patients’ outcomes (Fig. 8L, M).

In conclusion, we have provided a novel framework for screening important features, identified seven poten-
tial important therapeutic targets, and presented solid evidence supporting an oncogenic role of RCD-related 
SLC43A3 in glioblastoma.

Discussion
Glioblastoma is the most common and deadliest type of brain tumor in adults, accounting for approximately 
15% of all primary brain tumors. It originates from glial cells in the brain, and is characterized by uncontrolled 
cell growth, invasion into surrounding tissues, and resistance to cell death. Despite advancements in treatment, 
the prognosis for glioblastoma remains poor, with a median survival time of about 12–16 months. Its highly 
invasive nature and resistance to therapies make it challenging to treat, emphasizing the urgent need for more 
accurate predictive tools to improve overall survival rates, symptom management, and patients’ quality of life.

Previous predictive signatures for glioblastoma patient prognosis mainly relied on individual gene expres-
sion, disregarding the interactions or synergistic relationships between genes. In contrast, predictive models 
based on gene pairs offer several advantages including increased predictive power, enhanced interpretability 
and transferability to different datasets or experimental  conditions85. Here, we comprehensively investigated the 
RCD landscape of glioblastoma from both bulk and single-cell perspectives. We developed a robust and accurate 
RCD-related gene pair signature that holds potential for transferability across different datasets. Additionally, we 
provided a framework for screening out relatively core genes and identified SCL43A3 as a potential therapeutic 
oncology target.

Our results revealed a complex and multifaceted relationship between RCD and glioblastoma. The elevated 
levels of almost all RCD in glioblastoma were associated with worse prognosis, strongly correlated with malignant 
biology processes and immune microenvironment dysfunction. Cancer cells often exploit immune checkpoint 
pathways to evade immune surveillance and promote tumor  growth86. They upregulate immune checkpoint 
molecules on their surface or within the tumor microenvironment, leading to the suppression of anti-tumor 
immune responses. Glioma with higher levels of RCD exhibited increased expression of immune checkpoint 
genes, indicating potential suppression of anti-tumour immunity. Combining therapies that induce regulated cell 
death with immune checkpoint inhibitors have shown promising results in preclinical and clinical  studies87–91. 
Inducing immunogenic forms of cell death can enhance the immunogenicity of tumors and improve the efficacy 

Figure 8.  Identification of SLC43A3 as novel and potential RCD-related oncology target. (A) The framework of 
screening the important features with machine learning methods. (B) The numbers of the DEGs, RCD related 
genes, and prognostic candidates. (C, D) The number of the important genes screened by different machine 
learning methods with different parameters in TCGA-Glioma cohort (C) and TCGA-GBM cohort (D). (E) The 
number of times each genes was screened out by the machine learning framework in TCGA-Glioma cohort 
and TCGA-GBM cohort. (F) The profile of the SLC43A3 in different grade glioma and normal brain cortex 
tissues in TCGA and GTEx datasets. Wilcoxon rank sum test was used for assessing the difference between the 
two subgroups. “*”, “**”, “***”, and “****” represented that the p value < 0.05, 0.01, 0.001, and 0.0001. (G) The 
difference of the SLC43A3 expression among the different transcriptomic subtypes in TCGA-GBM cohort. 
(H, I) The expression of the SLC43A3 in different glioma grades and different transcriptomic subtypes in 
CGGA cohort. J. The qRT-PCR result showing the SLC43A3 highly expressed in GBM compared with LGG 
and normal brain cortex tissues. NT: normal brain cortex tissue. The t test was utilized. (K) The qRT-PCR of 
the SLC43A3 relative expression in different glioma cell lines. The human astrocytes (HA1800) and three GBM 
cell lines including A172, LN229 and U87 were used for evaluating the expression of the score genes. The t test 
was utilized for confirming the difference. (L) The meta analysis provided a comprehensive HR of the RCD.GP 
score. M. Multivariate Cox regression analysis of the SLC43A3 was performed in TCGA-Glioma, CGGA-325 
and CGGA-693 cohort.
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of immune checkpoint blockade by promoting the activation of anti-tumor immune  responses92. Signaling path-
ways promoting malignant biological processes such as JAK-STAT signaling pathway, TNF signaling pathway 
and NF-kappa B signaling pathway, were demonstrated to be extraordinarily related with the high level of RCD. 
However, we also observed enhanced anti-tumor immune responses, such as the increased infiltration of anti-
tumor immune cells and the activated anti-tumor immune signals like IL-17 signaling pathway, cytokine-cytokine 
receptor interaction and neutrophil chemotaxis which might be a result of the dysregulated tumor microen-
vironment promoting both cell death and tumor protection mechanisms. Further investigation is required to 
understand the complexity of molecular mechanisms underlying this association and its therapeutic implications.

Single-cell analysis suggested a significant role for disulfidptosis in glioblastoma. Disulfidoptosis, also known 
as disulfide bond deficiency, is a condition characterized by an impaired formation or maintenance of disulfide 
 bonds68. Disulfide bonds are important for the stability and proper folding of proteins within cells. Disulfide 
bond deficiency can potentially impact various cellular processes that are relevant to tumorigenesis. One possible 
link is the role of disulfide bonds in protein folding and cell signaling. Proteins involved in cell growth regula-
tion, regulated cell death, and DNA repair often require proper disulfide bond formation to function correctly. 
Disruptions in these processes can contribute to the development and progression of tumors. The expression 
of SLC7A11, a core gene of disulfidoptosis, was highly expressed in fibroblast cells, while MYH10, another core 
gene, showed high expression in malignant cells, particularly Prolif.stem-like cells. This suggests MYH10 as a 
potential therapeutic target for glioma. Nonetheless, the relationship between disulfidoptosis and glioblastoma 
is complex, requiring further investigation.

The RCD.GP score proved to be a robust and promising biomarker for predicting clinical outcomes and 
immunotherapy response in glioma patients. Traditional prediction models based on absolute gene expression 
values may be influenced by noise and biological variability, leading to less reliable predictions. In contrast, our 
model, incorporating gene pairs, demonstrates improved dtability and robustness by accounting for variability 
in gene expression data. In 16 cohorts of glioma patients, the RCD.GP score consistently exhibited superior 
reliability and generalizability after validation and optimization. The validation metrics including, K-M curves, 
C-index, 1-year AUC, 3-year AUC, 5-year AUC, meta-analysis results, and multivariate Cox regression analysis, 
unequivocally support the enhanced predictive power of the RCD.GP score system.

Patients with glioma and high RCD.GP scores experienced shorter overall survival times, which were strongly 
associated with malignant biological processes, including coagulation, epithelial-mesenchymal transition, and 
inflammatory response. Additionally, the subgroups with high RCD.GP risk scores displayed an increased profile 
of immune checkpoint genes, enhanced infiltration of the immune cells, and elevated levels of pro-tumor signal-
ing pathways. Immunotherapy has demonstrated promising results in various cancers, such as melanoma, lung 
cancer, bladder cancer, and some types of lymphomas and  leukemia93–97. Our study also revealed a significantly 
positive correlation between the RCD.GP score and immunotherapy response indexes, including CD8, MDSC, 
TLS, TMB and TGF-beta response.

Interestingly, while patients with high RCD.GP scores showed improved OS and enhanced immunotherapy 
response in various cancer types like UC, NSCLC and SKCM, a different trend was observed in GBM patients 
treated with anti-PD-1 therapy. The group with higher RCD.GP scores exhibited a worse prognosis and impaired 
immunotherapy response. Despite the promising results of immunotherapy in treating other cancers, immune 
checkpoint inhibitors have shown limited efficacy in glioblastoma compared to traditional treatment modali-
ties such as radiotherapy, chemotherapy and  surgery98. This may be attributed to the intricate interplay between 
multiple immune-related mechanisms affecting glioblastoma progression and the influence of RCD in promoting 
malignant progression. As such, exploring combination approaches, such as using different immunotherapies 
in conjunction with RCD inhibition, chemotherapy, radiation therapy, or targeted therapies, holds potential for 
further improving treatment outcomes in glioblastoma patients.

Seven genes including BMP2, IGFBP2, SPP1, SLC43A3, P2RY6, PTX3 and STEAP1 were identified as poten-
tial therapeutic targets through a machine learning framework designed to identify the most important features. 
Each of these genes plays a unique role in tumorigenesis and tumor progression. BMP2 is a multifaceted gene that 
can exhibit both tumor-promoting and tumor-suppressive effects in different types of cancers. It can stimulate 
cell proliferation, angiogenesis, and metastasis in certain contexts, while also inducing cell cycle arrest, apoptosis 
(programmed cell death), and differentiation of cancer cells, leading to tumor growth  inhibition79. IGFBP2 has 
been implicated in promoting tumor growth and progression in several types of  cancer80. High expression of 
IGFBP2 can help tumor macrophages to form an immunosuppressive microenvironment and exert a substantial 
inhibitory effect on T cell proliferation and activation, and this may be related to immunogenic  death99. SPP1, a 
glycoprotein with diverse functions, is involved in various biological processes such as cell adhesion, migration, 
immune regulation, and tissue remodeling. Its ability to stimulate cell proliferation, survival, and angiogenesis, 
facilitating tumor  formation81,100. Previous studies have shown that SPP1 controls UPR and ER stress-induced 
autophagy by regulating intracellular sphingosine-1-phosphate  homeostasis101. P2RY6 and STEAP1 are consid-
ered tumor suppressor genes in certain cancer  types84,102. Previous findings suggest that physiological P2RY6 
ligands and specific P2RY6 agonists can restore normal monocyte differentiation by restoring autophagy in some 
primary myeloid cells of patients with chronic granulocytic leukemia, demonstrating a potential link between 
P2RY6 and programmed cell  death103. There are some evidence suggesting that silencing the STEAP1 can induce 
the apoptosis of the LNCaP, which indicates the potential relationship between the STEAP1 and the regulated cell 
 death104. PTX3 is known to enhance tumor cell proliferation, survival, invasiveness, and angiogenesis by modulat-
ing various signaling pathways in different tumor types, including breast cancer, lung cancer, ovarian cancer, and 
 glioblastoma105. The key role of the PTX3 in regulating the ferritinophagy in glioma has been recently reported, 
and PTX3-deficient IDH1 mutant gliomas shown enhanced autophagic  signature106. SLC43A3, a protein-coding 
gene that encodes a transporter involved in amino acid transport, has been associated with fatty acid flux, nucleo-
tide metabolism and DNA  repair107–109. DNA repair is one of the most important factors for the cell survival and 
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cell death, including apoptosis, necrosis and  autophagy110. This suggests in part that SLC43A3 may be essential 
for the cell death. Moreover, its role in cancer development and progression is not yet fully understood. Our 
focused investigation on SLC43A3 revealed a RCD-related oncogenic potential in glioma through systematic 
analysis of its expression profile and prognostic value in multiple datasets and qRT-PCR experiments. As for the 
other six genes, with qRT-PCR, we also validated the expression in GBM cell (Supplementary Fig. 11). Overall, 
the identification of these seven genes as potential therapeutic targets opens up new avenues for future research 
and the development of targeted therapies for glioma treatment. Further studies are warranted to elucidate the 
precise molecular mechanisms and potential.

We acknowledge that this study has some limitations. Firstly, the cohorts with immunotherapy included only 
four cancer types, and to draw a more accurate and broadly generalized conclusion, data from a wider variety 
of cancer cohorts with immunotherapy should be included in the analysis. Secondly, the single-cell analysis 
revealed the core role of disulfidoptosis in glioblastoma, but only a rudimentary analysis was conducted. To com-
prehensively elaborate its role, further investigations involving more systematic, comprehensive, and advanced 
analysis and experiments are necessary. Thirdly, although we identified seven candidate genes for therapy, we 
only validated the expression profile of SLC43A3 in tissues and cancer cell lines using qRT-PCR. To gain a 
deeper understanding of the potential and insightful mechanisms of SLC43A3, additional experiments need to 
be conducted. Fourthly, the specific mechanism and links between the identified genes and the regulated cell 
death patterns in gliomas should be validated and elaborated with more advanced and complex net-experiments. 
Finally, this study utilized retrospective data without prospective clinical trials data for validating the superior 
reliability and generalizability of the RCD.GP score. To further validate the performance of the RCD.GP score, 
prospective clinical trials data should be incorporated in future studies. Moreover, the study utilized data from 
multiple sources, including TCGA, CGGA, and GEO. The potential variations, biases, and quality issues among 
these datasets might exist. Differences in data collection methods, experimental conditions, and patient demo-
graphics could introduce confounding factors.

Conclusions
In conclusion, we have conducted a comprehensive investigation of the RCD landscape in glioblastoma, explor-
ing both bulk and single-cell aspects. Our study resulted in the development of a robust and accurate RCD-
related gene pair signature, which holds promise for potential clinical applications in predicting the prognosis 
of glioblastoma. The glioma patients with low RCD.GP score had better prognosis. Moreover, we established a 
framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, for identifying relatively core genes 
and successfully identified SCL43A3 as a potential therapeutic target in oncology based on the bioinformatics 
and the qRT-PCR. Furthermore, our findings highlight the significance of the RCD.GP score as a predictor for 
adverse clinical outcomes and impaired immunotherapy response in glioblastoma patients. These insights have 
the potential to improve patient management and treatment decisions.

Data availability
No new data except from the qRT-PCR results was generated as part of this study. All data used in this study 
were sourced from the public domain online. Additionally, all key codes utilized in this study were available on 
Github (https:// github. com/ zwxia ngya/ RCD. GPsco re).
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