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Transductive meta‑learning 
with enhanced feature 
ensemble for few‑shot semantic 
segmentation
Amin Karimi  & Charalambos Poullis *

This paper addresses few‑shot semantic segmentation and proposes a novel transductive end‑to‑end 
method that overcomes three key problems affecting performance. First, we present a novel ensemble 
of visual features learned from pretrained classification and semantic segmentation networks with 
the same architecture. Our approach leverages the varying discriminative power of these networks, 
resulting in rich and diverse visual features that are more informative than a pretrained classification 
backbone that is not optimized for dense pixel‑wise classification tasks used in most state‑of‑
the‑art methods. Secondly, the pretrained semantic segmentation network serves as a base class 
extractor, which effectively mitigates false positives that occur during inference time and are caused 
by base objects other than the object of interest. Thirdly, a two‑step segmentation approach using 
transductive meta‑learning is presented to address the episodes with poor similarity between the 
support and query images. The proposed transductive meta‑learning method addresses the prediction 
by first learning the relationship between labeled and unlabeled data points with matching support 
foreground to query features (intra‑class similarity) and then applying this knowledge to predict on 
the unlabeled query image (intra‑object similarity), which simultaneously learns propagation and false 
positive suppression. To evaluate our method, we performed experiments on benchmark datasets, 
and the results demonstrate significant improvement with minimal trainable parameters of 2.98M. 
Specifically, using Resnet‑101, we achieve state‑of‑the‑art performance for both 1‑shot and 5‑shot 
Pascal‑5i , as well as for 1‑shot and 5‑shot COCO‑20i.

Deep neural networks can learn rich information about visual features of classes that appear in images when 
trained on vast amounts of labeled data. These attributes significantly contributed to various critical applications, 
including medical  applications1,2.However, their ability to generalize to new classes diminishes when presented 
with only a limited number of labeled  examples3, which is a prevalent issue in domains such as geospatial and 
medical, where collecting and labeling large datasets is a complex and expensive process. To overcome this issue, 
researchers have proposed the few-shot learning paradigm, which attempts to mimic the capacity of the human 
visual system to rapidly learn new classes from a small number of labeled examples.

This paper focuses on few-shot semantic segmentation, a special case of semantic segmentation in which 
the model must generalize to novel(unseen) classes and classify the pixels in an image. The most challenging 
aspect of few-shot segmentation is fully utilizing the information in the small support set of training examples 
K on N unseen classes (N-way, K-shot for K < 5 ). Two primary strategies for fewshot image understanding are 
proposed. The first strategy centers on the learning-to-learn (or meta-learning) paradigm. In order to simulate 
the tasks that will be presented during inference, meta-learning strategies popularized the necessity of organ-
izing training data into  episodes4–16. Similar to standard training, the second line of research addresses few-shot 
image understanding by training a network using base classes and fine-tuning with novel  classes17–24. A frozen 
pretrained classification backbone is utilized by the both line of researches because it has been demonstrated to 
generalize more effectively to unseen classes (Fig. 1).

The first observation is that a pre-trained classification backbone on a large-scale dataset such as Image-Net 
contains rich semantic clues; however, it is suboptimal to adopt directly for a segmentation  task9. Nevertheless, 
the majority of recent techniques have shown that fine-tuning a pre-trained classification backbone during the 
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episodic training phase is susceptible to overfitting. Experiments presented  in9 to fine-tune the entire backbone 
or a subset of layers in FSS demonstrate a negative effect on the final result. Consequently, during the episodic 
phase, updating millions of backbone parameters necessitates careful training considerations and increases the 
demand for training resources and time. The recent work to address this  issue9, which achieves state-of-the-art 
with a Resnet-50, significantly increases the memory requirements compared to other few-shot techniques. The 
objective of updating the backbone is to provide enhanced pixel-level features, which is an open problem in FSS. 
To achieve enhanced pixel-level features without fine-tuning the backbone, we investigated the distinctions 
between a classification and segmentation backbone. Classification networks are trained with image-level labels 
and learn visual features that incorporate the spatial distribution and shape of the objects at a higher level of 
abstraction. In contrast, semantic segmentation networks trained on pixel-level labels discover visual features 
at the pixel-level that incorporate contextual information based on the spatial relationships between different 
objects in the  image25–28. In other words, the discriminative power of a semantic segmentation network is higher 
at intermediate layers, while a classification network has a higher discriminative power at the final layers. We 
present the experiments and analysis on the impact that a pretrained backbone can have on the pixel-wise feature 
correlations, when it is pretrained on a classification versus a semantic segmentation task. For the comparison, 
we used a frozen classification backbone pretrained on ImageNet-1K and a frozen semantic segmentation back-
bone pretrained on base classes as described  in10. We analyzed the pixel-correlations between the query features 
and support foreground features by calculating the discriminative power of the features at each backbone layer. 

The discriminative power ρk at layer k is measured as the ratio ρk =
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prototype calculated by averaging all the foreground support features FGS . The numerator is the average cosine 
distance of the N foreground query features FGi

Q , 0 ≤ i ≤ N to the foreground support prototype FGS , and the 
denominator is the average cosine distance of the M background query features BGj

Q , 0 ≤ j ≤ M to FGS . Intui-
tively, the higher the ratio ρk the higher the discriminative power to differentiate between the query foreground 
and background features w.r.t. the support foreground features at layer k. Figure 2a and b show the discriminative 
power calculated using more than 4 000 episodes from Pascal-5i , ρk of each backbone at layers k, 1 ≤ k ≤ |Bcls| 
of the frozen pretrained backbones Bcls and Bsem . Figure 2c top-left, shows the query image, with an inset of the 
corresponding support image. The remaining panels depict pixel-correlations between the query features and 

Figure 1.  We propose two-pass end-to-end method for few-shot semantic segmentation. The approach 
leverages an ensemble of visual features learned from pretrained classification Bcls and semantic segmentation 
Bsem networks with the same architecture. Bsem is also used as a base class extractor. The first pass (red 
background) matches support foreground features to query features to address intra-class variation, and the 
second pass (green background) suppresses false positives and propagates query foreground features to leverage 
intra-object variation. Heatmaps show pixel-correlations between the query features and support foreground 
features in different layers of the network.
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support foreground features in different layers (from left to right, intermediate layers to final layers) of a pre-
trained classification network (top row) and a semantic segmentation network (bottom row) which shows the 
higher discriminative power of the semantic segmentation network in the intermediate layers and similarly, for 
the classification network in the final layers. Utilizing the advantages of each, we present a multi-scale feature 
ensemble comprised of visual features learned by pretrained classification and semantic segmentation networks 
to specifically satisfy the need for both rich semantic cues and pixel-level information.

The second observation is that the object in the support image is frequently not visually similar to that 
in the query image. Several factors contribute to this, including viewpoint variation, illumination changes, 
scale, deformation, occlusion, intra-class variation, clutter, and motion. Consequently, query segmentation may 
contain some errors. Numerous techniques for self-refinement based on initial query prediction have been 
 proposed7,11,16,29.  Recently7, proposed a two-step segmentation method by utilizing the high confidence area of 
initial query prediction via non-differentiable thresholding, which has a number of limitations. In contrast, we 
present a two-pass end-to-end dense correlation learning method that enables the network to learn the visual dis-
imilarities between the query foreground features and the false positives without introducing non-differentiable 
operations or additional components. In the first pass, intra-class similarity is addressed by matching support 
foreground features to query features, and in the second step, intra-object similarity is addressed by suppress-
ing false positives from the initial prediction and propagating query foreground features throughout the query 
image. The proposed method does not introduce any additional trainable parameters to the network, whereas 
 the7 fine-tunes the last two blocks of a backbone. Moreover, our self-refinement module can operate on top of 
any backbone, which is another significant advantage  over7 which reshapes embedding space for self-refinement.

The third observation is that false positives account for a substantial proportion of incorrect classifications 
and significantly hinder performance. As noted  by10, the presence of base classes in the background of the query 

Figure 2.  Discriminative power of classification vs semantic segmentation networks. (a) : classification 
network (Resnet-50), : semantic segmentation network (Resnet-50). The discriminative power ρk at layer k 
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) (b) Same as (a) but for Resnet-101. Graphs for all folds are in 

the appendix. (c) The top left shows the query image, with an inset of the corresponding support image. The 
remaining panels depict pixel-correlations between the query features and support foreground features in 
different layers (from left to right, intermediate layers to final layers) of a pretrained classification (top row) and 
semantic segmentation networks (bottom row). The discriminative power of a semantic segmentation network 
is higher at intermediate layers, and the discriminative power of a classification network is higher at the final 
layers as also demonstrated in (a).
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image can lead to false positive predictions, as the network may incorrectly classify pixels that are not part of the 
object of interest. To address this issue, they proposed auxiliary layers on top of a base learner that is trained on 
base classes to predict whether or not each pixel in the output of the meta learner corresponds to a base class. 
By using this information to selectively mask out base class predictions, they were able to reduce the number of 
false positives and improve segmentation accuracy. Inspired by this work and based on observations from our 
extensive experimentation -as described in the appendix- we propose a method that reduces false positives caused 
by base classes that is both simpler and faster than the method proposed  by10, resulting in a shorter training time 
with the same functionality and performance.

In this paper, we present a two-pass end to end method for few-shot semantic segmentation that addresses 
each of the aforementioned issues. The proposed method (Fig. 1) leverages an ensemble of visual features learned 
by segmentation and classification backbones to segment a query image in two steps. Dense convolutional lay-
ers trained to match support objects to query images using ensemble features in first step and propagate initial 
query predictions in the second step.

We evaluate our method on the benchmark datasets Pascal-5i and COCO-20i , and report our results. On 
Pascal-5i 1-shot and 5-shot, with a Resnet-101 backbone, we achieve state-of-the-art by a margin of 2.51% and 
1.12% , respectively. Similarly, on COCO-20i 1-shot and 5-shot, with a Resnet-101 backbone, we achieve state-of-
the-art by a margin of 3.98% and 1.6% , respectively. Our model has a minimal number of trainable parameters 
i.e. 2, 980, 711 compared to the  baseline29 i.e. 2, 587, 394.

The paper is organized as follows: Section “Related work” outlines the most recent and pertinent work in 
few-shot semantic segmentation. In Section “Methodology”, the methodology is described in depth, followed by 
the experiments and ablations on the two benchmark datasets Pascal-5i and COCO-20i in Section “Experiments”. 
We conclude and provide suggestions for future work in Section “Conclusion”.

Related work
Few-shot learning techniques enable learners to generalize to new classes using a small number of labeled 
samples. These techniques follow a similar pipeline: a pre-trained backbone network is used to generate feature 
embeddings from input images, and a model head is used to generate segmentation maps using these embed-
dings as input. Numerous techniques have been proposed that fall into one of four broad categories: (i) metric 
learning techniques where the objective is to learn a mapping from image space to feature space that ensures the 
distance between feature vectors of similar categories is small, while it is large for dissimilar  categories11,30–33, (ii) 
initialization-based techniques where the objective is to learn a good model initialization so that fine-tuning is 
possible with a few training examples and a small number of gradient update  steps34–41, (iii) Hallucination-based 
techniques where the objective is to learn a generator from the available data that “hallucinates” novel class data 
for data  augmentation42,43, (iv) semantic-based learning techniques where the objective is to learn a generator 
conditioned on additional attributes, typically semantic word embeddings. Then, a layer for fine-tuning clas-
sification is applied to features from both types of  classes44–46.

Our work falls into the metric-based techniques and is trained with episodic training as proposed by initiali-
zation-based approaches. Early work with metric-based approaches used a two branch network to find the most 
similar area in the query image using extracted support prototypes based on distance measures, such as Euclidean 
distance and cosine  distance11. Other work proposed additional modules to compare query pixels and support 
 prototypes12, while others focused on the limited representation capability of a single prototype and proposed 
methods to develop multiple prototypes to perform  comparisons13–16.

Recently17–21, reevaluated the use of cross-entropy for training the network on base classes and demon-
strated that competitive performance could be attained through fine-tuning on unseen classes. Following this 
pattern, works  including18,22,23 demonstrated that transductive few-shot learning could enhance performance. 
 Specifically24, attained competitive performance by incorporating transductive loss terms into the training and 
then fine-tuning a single classifier layer trained on base classes. Shannon  entropy18,24 on each query sample and 
KL divergence on background/foreground distribution of  samples24 are the two most common transductive 
losses. This research demonstrated that transductive learning could not generalize to a new class, however, it 
can learn the characteristics of a specific sample of a new category, substantially improving the final results.

Currently, few-shot semantic segmentation techniques tend to use all available information and learn the 
visual similarities between the pixels in the query and support image. Particularly, all-pairs field transforms 
introduced  by47 for visual similarities contributed to further considerable gains in few-shot semantic segmenta-
tion. The authors  of29 recast few-shot semantic segmentation as a visual similarity task and perform N4 all-pairs 
visual comparisons between the pixel-level features in the query and support images. Instead of learning simi-
larities between class prototypes, their network is trained on the visual similarities between all pixel pairings at 
various network layers.

Several methods have recently shown a considerable performance improvement using pre-trained transformer 
backbone. Shi et al.8 suggested a method for computing similarities between query pixels and all support pixels 
using a multi-level pixel-wise attention module. The authors reported a substantial improvement when employ-
ing a pre-trained transformer backbone as opposed to a convolutional backbone such as ResNet. Zhang et al.48 
revives the framework of using a backbone for feature extraction followed by a linear classification head. The 
authors propose a transformer as the backbone and a classification head that combines pixel-level and class-level 
features, which has been shown to capture global context better than a convolutional network, significantly boost-
ing performance. Recent works such  as8, have demonstrated significant gains in performance, however, this can 
easily be attributed to the vision transformer backbone rather than the effectiveness of their proposed technique.
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Despite these advancements, there are still challenges to overcome, most notably the bias towards the base 
classes and insufficient visual similarity between the support and query image, which can result in subpar per-
formance. Our method alleviates these issues. Specifically, our technical contributions are as follows:

• An end-to-end transductive learning method for few-shot semantic segmentation. Uniquely, the matching 
operates on dense, multi-level visual similarities between support-query pixels and query-query pixels in 
the first and second passes, respectively.

• A feature ensemble comprised of visual features learned by pretrained classification and semantic segmenta-
tion networks. Furthermore, the semantic segmentation network, through the use of a simple and efficient 
pipeline, serves as a base class and background extractor, drastically reducing false positives, as shown in 
Table 1.

• Our method, using Resnet-101 backbone, achieves state-of-the art performance on 1-shot and 5-shot Pas-
cal-5i as well as COCO-20i while requiring only 2.98M in trainable parameters.

Methodology
The input is a pair of images of the same class S and Q which form the support and query respectively.

Learning intra‑class similarity S → Q

The first pass takes the support S1 = S and query Q as inputs. The objective of this pass is to learn intra-class 
similarity by learning features from the support S1 and segment visually similar features in the query Q.

A backbone Bcls is a frozen pretrained classification network that learns features f clsS1
 and f clsQ  for image S1 

and Q, respectively. These features encode the spatial distribution and shape of the objects at a more abstract 
level. This information is supplemented by features f semS1

 and f semQ  learned by a backbone Bsem , a frozen semantic 
segmentation network trained on both background and base classes. The training of Bsem with pixel-level labels 
results in features f semS1

 and f semQ  capturing contextual information and spatial similarities.
Support features from the two backbones, f clsS1

 and f semS1
 , are multiplied by the foreground mask FGS1 in order 

to remove background-related features.

(1)f clsS1
= FGS1 ⊗ Bcls(S1), f

cls
Q = Bcls(Q)

(2)f semS1
= FGS1 ⊗ Bsem(S1), f

sem
Q = Bsem(Q)

Table 1.  Results from our two-pass method. 1st pass: intra-class similarity ( S −→ Q ). 2nd pass: intra-object 
similarity ( Q −→ Q).

Support Query 1st pass 2nd pass
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Next, we compare the support and query features by computing the cosine similarity between all pairs of pixels 
in f iS1 and f iQ , where i ∈ {cls, sem} . This is performed at different depths of each backbone leading to a set of 
multi-scale 4D volumes, each given by,

where i ∈ {cls, sem} . For features with dimensions in RC×H×W the dimensions of the volume are RC×H×W×H×W 
, where C is the number of channels, and H, W are the height and width, respectively. This module does not have 
any trainable parameters.

4D convolutions are applied on the set of multi-scale hypercorrelation volumes. This module, adapted  from29, 
applies the 4D convolutions on center-pivot pixels to reduce the memory and time requirements. Incrementally, 
lower scale features are upsampled and concatenated with higher scale features, followed by average pooling 
on the last two dimensions in order to reduce the dimensions of the concatenated correlations Ccls and Csem to 
R
C×H×W.

The first pass concludes with two decoders Dec1 and Dec2 . Dec1 operates on Ccls and Csem and for each generates 
a semantic segmentation mask of the foreground FGi and background BGi , where i ∈ {cls, sem} , supervised with 
the losses Lcls =

1
N

∑N
n=1 CE

(

BGcls ⊕ FGcls ,Q
gt
n

)

 and Lsem = 1
N

∑N
n=1 CE

(

BGsem ⊕ FGsem,Q
gt
n

)

 , respectively, 
where Qgt

n  is the n-th ground-truth query foreground mask, n ∈ N . Dec2 transforms the concatenated correlations 
into FG1

Q and BG1
Q , supervised by loss Lcombined.

where the superscript (.)1 indicates an outcome of the first pass. The loss is given by 
Lcombined = 1

N

∑N
n=1

[

CE
(

BG1
Q ⊕ FG1

Q ,Q
gt
n

)

− κLSh

]

 , where κ = 0.1 . The second term of Lcombined is the trans-
ductive loss term given by Shannon entropy LSh,

where p ∈ H ×W is pixel. The Shannon entropy encourages the network to have a polarised initial prediction 
with a high or low confidence  area49, which reduces the number of false positives. The impact of transductive 
terms is explained further in the appendix.

Learning intra‑object similarity Q → Q

As input for the second pass, the query image Q serves as both the support S2 = Q and query Q. The objective 
of the second pass is to learn intra-object similarity by propagating in the query image Q those features in Q 
that were visually similar to the features of the support S1 in the first pass. As mentioned previously, the premise 
is twofold: (i) that intra-object similarity, which is the visual similarity between features in the same image, is 
greater than intra-class similarity, which is the visual similarity between features in two different images of the 
same class, and (ii) that learning features of the background and base classes reduces false positives. It has been 
demonstrated that the affinity between unlabeled samples has a significant effect on transductive  learning22. We 
observed that a pretrained semantic segmentation backbone has greater pixel affinity than a pretrained classifica-
tion network. In the second pass, we therefore employ a semantic segmentation backbone.

Features f 2S2 and f 2Q are extracted by the semantic segmentation backbone Bsem . Support features f 2S2 are mul-
tiplied by the foreground mask of Q resulting from the first pass. Similar to the first pass, multi-scale hypercor-
relation volumes are calculated followed by multi-scale 4D convolutions and average pooling on the last two 
dimensions. A decoder Dec1 maps the correlations C 2 into FG2 and BG2 segmentation maps which are supervised 
with the loss Lselfsim = 1

N

∑N
n=1 CE

(

FG2 ⊕ BG2,Q
gt
n

)

 . Each segmentation is then passed through 1D-convo-
lutions sharing weights (shown as  in Fig. 3).

(3)HV
(

f iS , f
i
Q

)

= ReLU

(

f iS · f
i
Q

∣

∣f iS
∣

∣ ·
∣

∣f iQ
∣

∣

)

,

(4)Ccls = AvgPool
(

Conv4D
(

HV
(

f clsS1
, f clsQ

)))

(5)Csem = AvgPool
(

Conv4D
(

HV
(

f semS1
, f semQ

)))

(6)FGcls ,BGcls = Dec1
(

Ccls

)

(7)FGsem,BGsem = Dec1
(

Csem

)

(8)FG1
Q ,BG

1
Q = Dec2

(

Ccls ⊕ Csem

)

(9)LSh =
1

H ×W

H×W
∑

p=1

(

BG1
Q(p)⊕ FG1

Q(p)
)

log
(

BG1
Q(p)⊕ FG1

Q(p)
)

(10)f 2S2 = FG1
Q ⊗ Bsem(S2), f

2
Q = Bsem(Q)

(11)C
2 = AvgPool

(

Conv4D
(

HV
(

f 2S2 , f
2
Q

)))



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4028  | https://doi.org/10.1038/s41598-024-54640-6

www.nature.com/scientificreports/

where the superscript (.)2 indicates an outcome of the second pass.
The semantic segmentation backbone Bsem , which has been pretrained on background and base classes, serves 

to eliminate false positives from the query foreground segmentation mask. A pretrained classification layer Hcls 
acting on the backbone’s Bsem query features 

(

f semQ

)1 from the first pass, generates foreground FG1
Cls and back-

ground BG1
Cls maps. The foreground map FG1

Cls of the classifier contains base classes. In the penultimate step, the 
background map of Bsem , BG2 , is combined with the foreground map of the classifier FB1Cls , passed through a 1D 
convolution and finally combined with the foreground probabilities of Bsem , FG2 . The final map is supervised 
with loss Lfinal =

1
N

∑N
n=1 CE

(

FG2
F ⊕ BG2

F ,Q
gt
n

)

.

(12)FG2
,BG2 = Dec1

(

C
2
)

(13)FG1
Cls ,BG

1
Cls = Hcls

(

(

f semQ

)1
)

(14)FG2
F = Conv1Da

(

Conv1Db
(

BG2
)

⊕ FG1
Cls

)

Figure 3.  Technical overview of proposed meta-learner. Bcls , Bsem : pretrained classification and 
semantic segmentation networks, respectively (frozen), HCls : pretrained classification layer (frozen), HV: 
Hypercorrelation volumes (multi-scale cosine similarity between features with no trainable parameters), 4D 
Convs: 4D convolutions resulting in correlation tensors in RC×H×W×H×W for feature tensors with dimensions 
C ×H ×W , followed by concatenation across scale and an average pooling on the last two dimensions 
to reduce the dimensions to RC×H×W , , : 1D Convolution; the first two Conv1Da  share weights, BG/FG: 
Background/Foreground, Dec: a decoder; Decoders shown in yellow are the same. Red indicates a frozen 
module, Orange indicates shared trainable parameters, and Green indicates a module with individually trainable 
parameters. Total number of trainable parameters: 2.98M.
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The proposed meta-learner (Fig. 3) is trained using episodic training supervised by the loss L given by,

with equal weights for each term.

Extension to K‑shot setting
For K-shot setting, we employ the method  in29. Given K support image-mask pairs and a query image, we perform 
K forward passes to predict K masks. Voting is conducted at each pixel location by summing the K predictions 
and dividing each output score by the maximum votes. A pixel is designated as foreground if its voting score 
exceeds a predetermined threshold.

Experiments
Implementation details
Modules
 The backbones Bcls and Bsem are frozen Resnet-style backbones pretrained using supervized classification lean-
irng on ImageNet-1K and supervized segmentation learning on base classes of each fold respectively. The 4D 
convolutions all share the same architecture and weights, and have 2.5M trainable parameters. There are two 
decoders having the same architecture. We use episodic training to train the meta-learner with the two frozen 
backbones Bcls and Bsem.

Training
 The training consists of two phases: pretraining and meta-training.  Following10, we trained a supervised seg-
mentation model on base classes associated with each fold in the first phase. PSPNet with two different back-
bones, namely ResNet50 and ResNet101, is used as a segmentation model, and it is trained on Pascal-5i for 100 
epochs and COCO-20i for 20 epochs, with batch size set to 12 and a stochastic gradient descent optimizer with 
an initial learning rate 2.5e − 3 . In the second phase, the entire model with frozen backbones is trained with 
episodic learning. In the majority of previous FSS methods, it has been demonstrated that frozen backbone 
facilitate generalisation in episodic learning. For the Pascal-5i and COCO-20i , the batch size is set to 24 and 48, 
respectively, and the model is trained for 200 iterations using the Adam optimizer and an initial learning rate 
of 1e − 3 . No data augmentation is used during training to ensure a fair comparison with other methods. Four 
NVIDIA V100 GPUs are employed for training.

Evaluation
Benchmark datasets
We evaluate the performance of the proposed method on two major few-shot segmentation datasets, Pascal-5i 
and COCO-20i , which were constructed from PASCAL VOC 2012 with 20 classes and MS-COCO datasets with 
80 classes, respectively. COCO-20i is more challenging because it has more classes, samples, and more object 
instances per image. With minor modifications to the class partitioning, these two well-known benchmark 
datasets for semantic segmentation can be utilized to perform few-shot semantic segmentation. Both datasets 
are partitioned into four folds, with three-quarters of the classes serving as training data (base/seen classes) and 
the remaining classes serving as validation data (novel/unseen classes). For validation purposes, 1000 episodes 
of support and query images are sampled from the validation set during the inference phase.

Measures
 Results are reported using mean intersection-over-union (mIoU) on individual folds, as well as the average of 
mIoUs across all folds for both datasets.

Results
 Table 2 shows the quantitative evaluation on the four folds of the Pascal-5i dataset. All measures are reported 
according to their original publications. The highest values are displayed in bold and the second-highest appear 
underlined. We use Min et al.29 as a baseline since it has similar architecture to ours and similar number of train-
able parameters. Following the few-shot semantic segmentation literature, we focus our comparisons on methods 
reporting on the two backbones Resnet-50 and Resnet-101. For the purposes of a fair comparison, values that 
differ less than 0.35% are considered equivalent. Except for Shi et al.8, which is included in the comparisons, 
recent transformer-based methods on few-shot semantic segmentation cannot be integrated with convolutional 
backbones and are thus excluded because the performance boost is attributed to the change in architecture rather 
than the  methodology48,50. A clear example of this  is8 which without the Swin-B tranformer backbone the authors 
report a drop by 5% in the mIoU. Our argument is also supported by the experiments reported by the authors  in8 
where they demonstrate that our  baseline29 when used with a Swin-B backbone gains an average boost of about 
6% on mIoU for COCO-20i 1-shot and 5-shot tasks.

With a Resnet-101 backbone, our method is state-of-the-art for both 1-shot and 5-shot. It exceeds the 
 baseline29 by 4.21% on 1-shot and 2.72% on 5-shot task. Additionally, its margins for the 1-shot and 5-shot are 
2.51% and 1.12% , compared to the second-best performing methods. With a Resnet-50 backbone, we achieve 
results comparable to other methods with similar number of trainable parameters. The most recent work of Sun 
et al.9, which achieves state-of-the-art with a Resnet-50, significantly increases the memory requirements because, 

(15)BG2
F = Conv1Db

(

FG2
)

(16)L = Lcls + Lsem + Lcombined + Lselfsim + Lfinal
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according to the authors, it requires 128G for a batch 8 (16G for one image), which is significantly higher than 
any other few-shot semantic segmentation technique.

The quantitative evaluation of the four folds of the COCO-20i data set is displayed in the Table 3. We achieve 
state-of-the-art for COCO-20i with Resnet-101 backbone for both 1-shot and 5-shot. It exceeds the  baseline29 
by 9.68% on 1-shot and by 5.40% on 5-shot. In addition, it has a margin of 3.98% and 1.6% over the second-best 

Table 2.  Comparison with current state-of-the-art for Pascal-5i 1-shot and 5-shot tasks.  The highest values 
are in bold, and the second-highest are underlined. Average mIoU is bold italic. See appendix for full-sized 
table.

Backbone Method

1-shot  5-shot

f0 f1 f2 f3 mIoU f0 f1 f2 f3 mIoU

Resnet-50

REPRI24 60.2 67.0 61.7 47.5 59.1 64.5 70.8 71.7 60.3 66.8

PFENet4 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

ProtRel5 65.2 72.9 63.3 61.3 65.7 70.2 75.6 68.9 66.2 70.2

VAT6 67.6 72.0 62.3 60.1 65.5 72.4 73.6 68.6 65.7 70.1

SSP7 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3

DCAMA8 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5

BAM +  SVF9 69.38 74.51 68.80 63.09 68.95 72.05 76.17 71.97 68.91 72.28

BAM10 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91

Baseline-HSNet 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5

Ours 68.03 73.69 64.25 64.72 67.67 71.26 75.13 67.75 68.11 70.56

Resnet-101

REPRI24 59.6 68.6 62.2 47.2 59.4 66.2 71.4 67.0 57.7 65.6

PPNet14 52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1

PFENet4 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4

ProtRel5 67.8 74.6 65.7 62.2 67.5 70.0 75.9 71.8 65.8 70.9

VAT6 70.0 72.5 64.8 64.2 67.9 75.0 75.2 68.4 69.5 72.0

SSP7 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3

DCAMA8 65.4 71.4 63.2 58.3 64.6 70.7 73.7 66.8 61.9 68.3

Baseline-HSNet 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4

Ours 71.25 76.19 67.73 66.47 70.41 73.85 77.53 70.72 70.41 73.12

Table 3.  Comparison with current state-of-the-art for COCO-20i 1-shot and 5-shot tasks. The highest values 
are in bold, and the second-highest are underlined. Average mIoU is bold italic. See appendix for full-sized 
table.

Backbone Method

1-shot 5-shot

f0 f1 f2 f3 mIoU f0 f1 f2 f3 mIoU

Resnet-50

REPRI24 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6

PFENet4 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0

ProtRel5 42.2 48.9 45.5 44.6 45.3 48.0 55.7 50.7 50.1 51.1

VAT6 39.0 43.8 42.6 39.7 41.3 44.1 51.1 50.2 46.1 47.9

SSP7 35.5 39.6 37.9 36.7 37.4 40.6 47.0 45.1 43.9 44.1

DCAMA8 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3

BAM +  SVF9  46.87 53.80 48.43  44.78 48.47 52.25 57.83 51.97 53.41 53.87

BAM10 43.41 50.59 47.49 43.42 46.23 49.26 54.20 51.63 49.55 51.16

Baseline-HSNet 36.3 43.1 38.7 39.2 39.2 43.3 51.3 48.2 45.0 46.9

Ours 42.15 53.22 49.05 48.08 48.12 47.50 59.14 53.19 51.16 52.75

Resnet-101

PPNet14 17.0 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7

PFENet4 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 27.4

ProtRel5 42.9 50.6 46.8 47.4 46.9 50.7 58.3 52.8 51.3 53.3

SSP7 39.1 45.1 42.7 41.2 42.0 47.4 54.5 50.4 49.6 50.2

DCAMA8 41.5 46.2 45.2 41.3 43.5 48.0 58.0 54.3 47.1 51.9

Baseline-HSNet 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5

Ours 45.48 56.47 51.74 49.84 50.88 48.87 61.10 55.58 54.03 54.90
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performing strategy. Using a Resnet-50 backbone, we achieve second-best performance by a margin of 0.35% on 
1-shot and 1.12% compared to the significantly more memory-intensive method of Sun et al.

Table 4 displays qualitative comparisons using a Resnet-50 backbone. The first and second columns represent 
the support and query images, while the remaining columns represent the results of  SSP7,  HSNET29,  DCAMA8, 
 BAM10, and ours (last column). As can be seen, our method can successfully handle challenging cases in which 
the object in the support differs visually from the object in the query and the visual similarity between the fore-
ground and background is high, as in the second and fourth rows.

Ablations
Our method results in a substantial performance increase. We demonstrate this by applying it to the classification-
based method of Min et al.29. In the subsequent experiments, we use this as a baseline and conduct 32 experi-
ments consisting of a baseline with a classification backbone (with Bcls ), a baseline with a segmentation backbone 
(with Bsem ), a baseline with dual backbones (with Bcls + Bsem ), and a two-pass dual backbone baseline (two-pass 
with Bcls + Bsem ). For each ablation, we use Resnet-50 and Resnet-101 backbones, and conduct experiments on 
all folds of Pascal-5i for 1-shot and 5-shot. The models are trained for 200 epochs with batch of 12 and Adam 
optimizer with an initial learning rate of 1e − 3.

We begin with an experiment in which the classification backbone used by the  baseline29 is replaced with a 
semantic segmentation network in order to gain a better understanding of the impact that the type of the back-
bone can have on the performance. The first (Baseline) and second (with Bsem ) rows of each table cell display the 
results for the 1-shot and 5-shot Pascal-5i tasks, respectively. Using a classification backbone for Resnet-50 is pref-
erable to using a semantic segmentation backbone. The opposite is true for Resnet-101, and this is supported by 
the outcomes of both 1-shot and 5-shot tasks. As shown in the third row (with Bcls + Bsem ), it is evident that using 
both types of backbone improves performance, which is supported by the results on both tasks. As explained 
in the introduction, this is due to the fact that the Bcls and Bsem backbones capture diverse but distinct visual 
features. The fourth row (two-pass with Bcls + Bsem ) displays the results of applying our method to the baseline 
which increases performance by 3.64% and 3.88% for the 1-shot task with Resnet-50 and Resnet-101 backbones, 

Table 4.  Qualitative results. The first and second columns show the support and query images, respectively, 
overlaid with the ground truth in red. The remaining columns show the predictions overlaid with a red.
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respectively, and a performance increase of 1.6% and 2.16% for 5-shot for Resnet-50 and Resnet-101, respectively 
as shown in Table 5. For additional experiments we refer the reader to the “Supplementary Information”.

Conclusion
In conclusion, we proposed a novel two-pass end-to-end method for few-shot semantic segmentation that 
addresses three key problems affecting performance. The approach leverages an ensemble of visual features 
learned from pretrained classification and semantic segmentation networks with the same architecture to capture 
rich and diverse information at different depths. Additionally, the pretrained semantic segmentation network 
serves as a base class extractor to reduce false positives. The first pass addresses intra-class similarity by matching 
support foreground features to query features, and the second pass leverages intra-object similarity by learning to 
suppress false positives and propagating query foreground features. Experimental results on benchmark datasets 
demonstrate significant improvement in performance with minimal trainable parameters. Specifically, using 
Resnet-101, the proposed method achieves state-of-the-art performance for both 1-shot and 5-shot Pascal-5i , 
as well as on 1-shot and 5-shot COCO-20i.

Data availability
The datasets generated and/or analysed during the current study are available in the PASCAL VOC http:// host. 
robots. ox. ac. uk/ pascal/ VOC/ and COCO https:// cocod ataset. org/ repositories.
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