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Exploring the spatiotemporal 
relationship between influenza 
and air pollution in Fuzhou 
using spatiotemporal weighted 
regression model
Qingquan Chen 1,2,5, Xiaoyan Zheng 1,2,5, Binglin Xu 3,5, Mengcai Sun 1,2, Quan Zhou 1,2, Jin Lin 4, 
Xiang Que 4, Xiaoyang Zhang 1,2* & Youqiong Xu 1,2*

Air pollution has become a significant concern for human health, and its impact on influenza, has been 
increasingly recognized. This study aims to explore the spatiotemporal heterogeneity of the impacts 
of air pollution on influenza and to confirm a better method for infectious disease surveillance. 
Spearman correlation coefficient was used to evaluate the correlation between air pollution and 
the influenza case counts. VIF was used to test for collinearity among selected air pollutants. OLS 
regression, GWR, and STWR models were fitted to explore the potential spatiotemporal relationship 
between air pollution and influenza. The  R2, the RSS and the AICc were used to evaluate and compare 
the models. In addition, the DTW and K-medoids algorithms were applied to cluster the county-level 
time-series coefficients. Compared with the OLS regression and GWR models, STWR model exhibits 
superior fit especially when the influenza outbreak changes rapidly and is able to more accurately 
capture the changes in different regions and time periods. We discovered that identical air pollutant 
factors may yield contrasting impacts on influenza within the same period in different areas of Fuzhou. 
 NO2 and  PM10 showed opposite impacts on influenza in the eastern and western areas of Fuzhou 
during all periods. Additionally, our investigation revealed that the relationship between air pollutant 
factors and influenza may exhibit temporal variations in certain regions. From 2013 to 2019, the 
influence coefficient of  O3 on influenza epidemic intensity changed from negative to positive in the 
western region and from positive to negative in the eastern region. STWR model could be a useful 
method to explore the spatiotemporal heterogeneity of the impacts of air pollution on influenza in 
geospatial processes. The research findings emphasize the importance of considering spatiotemporal 
heterogeneity when studying the relationship between air pollution and influenza.
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GTWR   Geographically and temporally weighted regression
GWR   Geographically weighted regression
IAP  Institute of Atmospheric Physics
ILI  Influenza-like illness
IV  Influenza virus
NO2  Nitrogen dioxide
O3  Ozone
OLS  Ordinary least squares
PM  Particulate matter
R2  R-squared
RSS  Residual sum of squares
SO2  Sulfur dioxide
STWR   Spatiotemporal weighted regression
VIF  Variance inflation factor

Influenza is an acute respiratory disease caused by the influenza virus (IV), which is a class C infectious disease 
in  China1. The clinical manifestations of influenza are mainly high fever, fatigue, headache, cough, systemic 
muscle soreness and other systemic disease symptoms, while respiratory symptoms are mild. Sudden outbreaks 
and rapid spread cause different degrees of epidemics and are the most significant epidemiological features of 
 influenza2. According to WHO estimates, annual seasonal influenza epidemics can cause 3 to 5 million severe 
cases and 290,000 to 650,000 deaths related to respiratory diseases  worldwide3.As a result, it has become an 
important public health  issue4.

The epidemic characteristics of influenza in China are different in the north and south. The peak of influenza 
in northern China mostly occurs in the cold winter and spring, while that in southern China occurs all year, 
and peaks mostly occur in winter and summer. However, this is not absolute. For example, Jinan and Tibet have 
also had small influenza peaks in  summer5. An outbreak of influenza will lead to public panic and social and 
economic depression and seriously affect social stability and healthy  development6. Influenza transmission risk 
factors encompass individual immune  susceptibility7, population mobility, meteorological conditions (e.g., low 
temperatures and reduced ultraviolet radiation)8, and air  pollution9.

Many previous studies have consistently demonstrated a significant correlation between air pollution and 
influenza incidence. Su W et al. used wavelet coherence analysis and a generalized Poisson superimposed regres-
sion model to study the potential relationship between air pollutant and influenza-like illness (ILI) in Jinan, 
China, from 2016 to 2017 and found that air pollutant, especially  PM2.5,  PM10, CO, and  SO2, could increase the 
risk of  ILI10. Pascal M et al. found an interaction between temperature and  PM10 on respiratory diseases and 
 mortality11. However, not all air pollutant will accelerate influenza. McGee Hargrove M et al. found that high con-
centrations of  O3 can kill influenza virus in the air or on the surface of objects to reduce the spread of influenza 
without harm to  humans12. Song et al. utilized Moran’s I and correlation analysis to examine the spatiotemporal 
differentiation characteristics of influenza incidence in prefecture-level cities and explore its relationship with 
air  pollution13. However, in these studies, linear regression models or spatial measurement models were used 
to explore the relationship between influenza and air pollution, but these methods often ignore the temporal 
heterogeneity of air pollution on influenza.

Geographically weighted regression (GWR) model is an effective spatial statistical model that accommodates 
the spatial non-stationarity of relationships between studied factors and their influencing factors by considering 
local heterogeneity in  space14. Ibarra-Zapata E et al. used GWR model to explore the spatial non-stationarity of 
Influenza type A and its influencing factors in  Mexico15. Although GWR provides a more precise and location-
specific analysis of spatial patterns, it does not capture spatio-temporal synergies. Considering that the relation-
ship between influenza and its influencing factors may have significant spatial and temporal variation, targeted 
research on the specific correlation between regional influenza cases and air pollution may provide a reference 
and countermeasures to judge the regional and seasonal changes in influenza, improve the capacity of atmos-
pheric environmental governance and reduce the rapid spread of the influenza virus. Spatiotemporal geographi-
cally weighted regression (STWR) model, a spatiotemporal regression model, incorporates the heterogeneity 
in the relationship between  variables16. In comparison to GWR and geographically and temporally weighted 
regression (GTWR) models, STWR model performs better in analyzing and explaining local spatiotemporal 
nonstationarity. This is achieved through clarifying the concept of "time distance" and introducing novel tem-
poral kernel and spatiotemporal kernel functions based on this concept.Therefore, STWR model was utilized to 
examine the spatial and temporal variation relationship between influenza and air pollution.

This study aims to conduct a descriptive analysis of the epidemiological characteristics of influenza cases in 
Fuzhou and construct OLS regression, GWR, and STWR models to investigate the spatiotemporal heterogene-
ity of influenza at the county level in Fuzhou. Additionally, the impact of air pollution on influenza may vary 
over time. By determining the optimal regression model, we will comprehensively explain the spatiotemporal 
heterogeneity of the impacts of different air pollutants on influenza incidence. The findings of this study will 
provide scientific evidence for the prevention and control strategies of influenza at the county-level in Fuzhou 
and support in response to future influenza outbreaks.
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Methods
Study area
As a coastal city in southeast China, the provincial capital city of Fujian Province, Fuzhou, consists of six districts, 
one county-level city and six  counties12. The population in Fuzhou has increased from 7.12 million to 8.24 mil-
lion in the past decade. The geographical location of Fuzhou is depicted in Fig. 1.

Data source
Influenza case data
The Chinese Nationwide Notifiable Infectious Diseases Reporting Information System (CNIDRIS) was imple-
mented in 2004 and covers all healthcare institutions throughout China. Since its implementation, legally 
reported infectious disease cases have been promptly reported within this system. Currently, the system includes 
a total of 40 infectious diseases. The data regarding influenza cases in Fuzhou from 2013 to 2019 were obtained 
from the CNIDRIS. We utilized solely anonymized aggregated data, which excluded sensitive information of 
cases, including names, valid identification numbers, work units, and contact numbers. In the final dataset, only 
essential information, such as gender, age, occupation, administrative region of residence, diagnosis date, and 
onset date, remained. The above data were classified and analyzed based on the administrative region of residence.

Ethical considerations
The ethical research board committee of Fuzhou Center for Disease Control and Prevention (Approval No. 
IRB2020008) approved the research. The need for individual informed consents is waived by the institution/ 
review board due to the face that exclusively utilized anonymized aggregated data was used and did not involve 
any individual subjects. This study was carried out following the Helsinki Declaration contents.

Air pollution data
The monthly air pollution data for the period from January 2013 to December 2019 used in this study pri-
marily originated from the China Air Quality Reanalysis Data Set (CAQRA). CAQRA was generated through 
a collaboration between the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), the 
Chinese National Center for Environmental Monitoring (CNEMC), and other research institutions (https:// 
doi. org/https:// doi. org/ 10. 11922/ scien cedb. 00053). It provides a surface grid dataset for six air pollutant  (PM2.5, 
 PM10,  SO2,  NO2, CO, and  O3) at a spatial resolution of 15 km.

Statistical analysis
Descriptive statistics were employed to illustrate the characteristics of the population distribution and temporal 
patterns of influenza. The incidence of influenza per 100,000 population in each year was calculated by dividing 
the influenza case counts by the population of that year. The time trend of the incidence of influenza was analyzed 
using the Cochran-Armitage trend test. Histograms and line charts were utilized to show the temporal distribu-
tion of influenza. ArcGIS (version 10.5; ESRI) was used to depict the geographical distribution of influenza cases. 
Spearman’s correlation coefficient was employed to evaluate the correlation between factors of air pollution and 
influenza case counts. The variance inflation factor (VIF) was used to examine collinearity among the selected 
air pollutants. Data management and statistical analysis were conducted using SPSS (version 26; IBM Corp) and 
R (version 4.2.1; The R Foundation).

Regression analysis
We fit OLS regression, GWR, and STWR models to explore the potential spatiotemporal relationship between air 
pollution and influenza. The three models were fit by using the F-STWR 2.1.517. By comparing the performance 

Figure 1.  Location of Fuzhou City, China.
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of these models, we wanted to determine which one can more accurately predict and explain the impact of air 
pollution on influenza. Smoothed maps of Ordinary Kriging were employed in ArcGIS (version 10.5; ESRI) to 
illustrate the spatial pattern and impacts of various air pollutant on the influenza epidemic level. Furthermore, we 
employed the dynamic temporal regularity (DTW) and K-medoids algorithms to assess the county-level impacts 
and characteristics of air pollution on influenza. These algorithms were used to cluster the time series of county-
level coefficients. Classifying the coefficients in different counties provides valuable insights into understanding 
the transmission and influencing factors of influenza in various geographical areas.

Ordinary least squares
Ordinary least squares (OLS) regression model, a traditional linear regression model, is utilized to estimate the 
association between independent and dependent variables by minimizing the sum of squared  residuals18. We 
employed the OLS regression model to investigate the global relationship between air pollutants and influenza 
case counts in Fuzhou. The model can be presented by Eq. (1).

where y is the influenza case counts, β0 is the model’s intercept, xk corresponds to the k th air pollutants variable 
of the model ( k= 1 to p ), and ε is the random error. Being a global model, OLS regression assumes a uniform 
relationship between independent and dependent variables across the entire study area. Consequently, it does 
not consider the analysis of localized regional characteristics.

Geographically weighted regression
Geographically weighted regression (GWR) model builds upon OLS regression model by incorporating the 
spatial location of the data, allowing the regression coefficients to vary based on geographical  location19. In this 
study, we employed the GWR model to investigate the local spatial relationship between air pollutants and influ-
enza case counts in Fuzhou. In Eq. (2), the sample’s position (u, v) is introduced into the regression equation to 
estimate local parameters. The model accounts for the spatial heterogeneity that exists between the independent 
and dependent variables.

where yi is the influenza case counts for location i , ui and vi are the coordinates of location i , β0(ui , vi) is the 
intercept at location i , βk(ui , vi) is the local parameter estimate for air pollutants variable xik at location i , and 
εi is the error term.

For predicting the regression coefficients of GWR model, the distance-decay function ( wij ) is employed as a 
weighted factor that considers the distance between the modeled positions and the observed values. When the 
distribution of sampling points is irregular, an adaptive weight function is used to adjust the bandwidth based 
on the density of the spatial points, as depicted in Eq. (3).

where dij is the distance between observation i and j , b is the adaptive bandwidth. For a case in which the distance 
between observations is greater than the adaptive bandwidth, the distance-decay function becomes zero. GWR 
model utilizes neighboring points surrounding each observation point as weights, thus reflecting the varying 
degrees of influence from different geographical locations. Consequently, GWR model can more accurately 
capture and account the spatial heterogeneity in the influenza case counts across different regions in Fuzhou.

Ethics approval and consent
The ethical research board committee of Fuzhou Center for Disease Control and Prevention (Approval No. 
IRB2020008) approved the research. The need for individual informed consents is waived by the institution/ 
review board due to the face that exclusively utilized anonymized aggregated data was used and did not involve 
any individual subjects.

Spatiotemporal weighted regression
Spatiotemporal weighted regression (STWR) proposes a new numerical time-varying decay weighting strategy 
and adopts a new spatiotemporal kernel for analysing processes that contain both spatial and temporal hetero-
geneity. In STWR, the time distance is the rate of change of the attribute value within a time interval, rather 
than the time interval  itself20. STWR is the comprehensive time-varying numerical difference rate information 
in the time interval on the basis of GWR. Its basic calculation framework is consistent with that of GWR 21. We 
utilized the STWR model to explore the local spatiotemporal relationship between air pollutants and influenza 
case counts in Fuzhou. The model can be expressed as:

(1)y = β0 +

p∑

k=1

βkxk + ε

(2)yi = β0(ui , vi)+

p∑

k=1

βk(ui , vi)xik + εi

(3)wij =

{ [
1−

(
dij/b

)2]2
dij ≤ b

0 dij > b

(4)yti = βt
0(ui , vi)+

∑
k
βt
k(ui , vi)x

t
ik + εti
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In Eq. (4), yti represents the influenza case counts of the t  period, the ith regression point regression point 
(ui , vi) , εti  is the random error term that satisfies air pollutants and identical distribution, and βt

0(ui , vi) and 
βt
k(ui , vi) represent the constant term and coefficient of the t  period and the ith regression point (ui , vi) , 

 respectively15. The calculation formula is:

In Eq. (5), XS�t is the ground matrix of local air pollutants observed in the time interval �t , and W�t(ui , vi) 
are the space–time weight matrices of observed values in different positions and time periods. Its subelement Wij 
represents the influence of the j observation point on the i regression point, which can be calculated according 
to the kernel function according to the distance.

The time interval decay weight assignment strategies of Gaussian, bisquare and GTWR are usually different. 
STWR uses a time assignment function based on the numerical difference rate between the regression point and 
the observation  point22. The weighted average form of the spatiotemporal kernel in STWR is given by Eq. (6).

In Eq. (6), yi(t) − yj(t−q) represents the numerical difference between the regression point in i and j in t − q 
within time interval �t ; bT is the time bandwidth. This assignment function can more effectively capture the 
different time influence weights of the historical observation point on the regression point.

Comparison of OLS regression, GWR and STWR models
The average R-squared  (R2) is an indicator used to measure the degree of fitness of a regression model to observed 
data, representing the proportion of variance in the dependent variable that can be explained by the model. The 
residual sum of squares (RSS) is a metric that measures the fitting error of the model, indicating the degree of 
difference between the predicted values and the actual observed values. The corrected Akaike information crite-
rion (AICc) is an indicator of the relative information loss in the model estimation process, taking into account 
the model’s goodness of fit and the number of parameters. Therefore, a better-performing model has a higher 
 R2 value and lower RSS and AICc values. By comparing  R2, RSS, and AICc, we can evaluate and compare the 
performance of OLS regression, GWR, and STWR models.

Dynamic time warping and K-medoids algorithm
Dynamic time warping (DTW) constructs the correspondence of two sequence elements of different lengths 
according to the principle of proximity and evaluates the similarity of two  sequences23. It is widely applied in the 
assessment of time-series similarity. Meanwhile, it is also considered to be the most accurate method to evaluate 
the similarity of time-series  data24. The calculation method of DTW is given by Eq. (7).

where xi and yj represent the values of each graph and D represents the distance between two points. Through ∣∣xi − yj
∣∣ , the difference between the two sequences is first measured, and then the minimum number in the 

previous values is added.
The DTW algorithm is usually used in conjunction with the K-medoids algorithm, which is a partitioning-

based clustering  algorithm25. The K-medoids algorithm is an unsupervised machine learning technique that is 
able to effectively partition the observations in the dataset into different clusters with a centre for each  cluster26. 
The K-medoids algorithm steps are performed in the following order: (1) randomly select K samples as centres, 
(2) calculate the distance of all samples to randomly selected K centres, (3) assign the samples to the nearest 
centre, (4) mark them as a group, (5) calculate the total distance and so-called total cost, and (6) repeat these 
steps until the lowest total cost is obtained.

Research workflow
Figure 2 shows the research workflow in this study. First, we collected the monthly influenza case counts in 
Fuzhou from 2013 to 2019 and described the epidemiological characteristics. Second, Spearman’s correlation 
analysis and collinearity diagnosis were used to screen the ultimate air pollutants. Both the screened variables 
and the dependent variable were then normalized. Third, OLS regression, GWR and STWR models were con-
structed. Fourth, the spatial coefficient of variation surface generated by STWR model was used to explore and 
analyse the spatiotemporal heterogeneity of various air pollutant on the influenza epidemic level. Spatiotemporal 
heterogeneity refers to the variation or differences in the distribution and occurrence of a phenomenon (in this 
study, influenza case counts) across both space and time. Finally, the DTW and K-medoids algorithms were 
applied to cluster the county-level time-series coefficients.

(5)β̂t(ui , vi) = [(XT
S�t

W�t(ui , vi)XS�t )
−1

XS�tW�t(ui , vi)]y
T
S�t

(6)Wt
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���
�
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�
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���
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Results
Epidemiological characteristics
There were 11,524 influenza cases reported in Fuzhou between 2013 and 2019, with an average annual incidence 
of 20.54 cases per 100,000 people, including 6,518 male cases and 5,006 female cases. The under 14 years old 
group accounted for 68.74% of all the reported cases and had the highest incidence rate of 559.43 cases per 
100,000 people. Among all occupational groups, Scattered children accounted for the largest proportion (37.50%) 

Figure 2.  Research workflow.

Table 1.  Demographic characteristics of influenza cases in Fuzhou, China 2013–2019. Incidence is the average 
annual incidence rate (per 100,000 populations).

2013 2014 2015 2016 2017 2018 2019 Total

Incidence 12.71 16.25 16.08 13.23 12.70 24.42 48.36 20.54

Gender

 Male 542 (56.11) 659 (52.34) 716 (57.1) 602 (57.83) 576 (56.25) 1124 (56.34) 2299 (57.69) 6518 (56.56)

 Female 424 (43.89) 600 (47.66) 538 (42.9) 439 (42.17) 448 (43.75) 871 (43.66) 1686 (42.31) 5006 (43.44)

Sex ratio 1.28 1.1 1.33 1.37 1.29 1.29 1.36 1.30

Age group

 0–14 799 (82.71) 826 (65.61) 915 (72.97) 595 (57.16) 584 (57.03) 1376 (68.97) 2827 (70.94) 7922 (68.74)

 15–59 130 (13.46) 355 (28.2) 276 (22.01) 354 (34.01) 313 (30.57) 433 (21.7) 823 (20.65) 2684 (23.29)

 ≥ 60 37 (3.83) 78 (6.2) 63 (5.02) 92 (8.84) 127 (12.4) 186 (9.32) 335 (8.41) 918 (7.97)

Occupation

 Kindergarten 
children 42 (4.35) 64 (5.08) 56 (4.47) 39 (3.75) 66 (6.45) 324 (16.24) 666 (16.71) 1257 (10.91)

 Scattered children 717 (74.22) 626 (49.72) 643 (51.28) 374 (35.93) 283 (27.64) 637 (31.93) 1041 (26.12) 4321 (37.50)

 Student 62 (6.42) 214 (17) 247 (19.7) 264 (25.36) 255 (24.9) 454 (22.76) 1238 (31.07) 2734 (23.72)

 Others 145 (15.01) 355 (28.2) 308 (24.56) 364 (34.97) 420 (41.02) 580 (29.07) 1040 (26.1) 3212 (27.87)

Total 966 1259 1254 1041 1024 1995 3985 11,524
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of cases, followed by others (27.87%) and students (23.72%). The demographic characteristics of influenza cases 
in Fuzhou from 2013 to 2019 are shown in Table 1.

During the 7-year study period, there was an ascending long-term trend (Z = 45.055, P < 0.001) in the inci-
dence of influenza in Fuzhou, and the highest annual incidence rate was in 2019 (48.36 cases per 100,000 people). 
Meanwhile, there was significant seasonal variation in the monthly distribution of influenza cases in Fuzhou, 
with two significant peaks from April to July and from November to February (Fig. 3). Moreover, the number of 
cases during the second peak (59.97%) was usually greater than that during the first peak (23.3%).

Figure 4 demonstrates the incidence of influenza in each district and county in Fuzhou from 2013 to 2019. In 
the past seven years, influenza cases have been reported in all the 13 areas of Fuzhou. In general, the incidence 
of influenza in central Fuzhou was generally higher than that in the surrounding areas during 2013–2015. Since 
2016, the high incidence of influenza in Fuzhou has extended from the central region to the surrounding areas, 
among which Minqing County and Mawei District became the main areas with a high incidence of influenza 
(Fig. 4).

Spearman’s correlation analysis and collinearity diagnostics
As shown in Table 2, all air pollutants were significantly related to influenza case counts. There is a negative cor-
relation between  O3 and influenza case count (Spearman’s correlation coefficient < 0), while the other air pollutant 
show a positive correlation with influenza case count (Spearman’s correlation coefficient > 0). The correlations 
between  NO2 and influenza were significantly higher compared to other air pollutant, with a maximum value 
of 0.499.

Figure 3.  Monthly incidence and reported cases of influenza in Fuzhou, China 2013–2019.

Figure 4.  Geographic distribution of influenza incidence in Fuzhou, China 2013–2019.
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Since all the absolute values of Spearman’s correlation coefficients were below 0.6, a subsequent multicollin-
earity test was performed for the six air pollutant.  PM2.5 was removed, ensuring that the VIFs of the remaining 
air pollutant remained below 10 (Table 3).

Analysis of spatiotemporal heterogeneity of influenza and air pollutant
Comparison of model performances
We compared the performance of the STWR model with OLS regression and GWR models (Table 4). In compari-
son to the results of OLS regression and GWR models, STWR model showed the highest  R2, indicating a better 
fit. Additionally, STWR model exhibited the lowest RSS value among the three models, suggesting a superior fit. 
Similar conclusions were drawn for the AICc value. Overall, STWR model emerges as a more favorable choice 
for the scope of this study.

Further comparisons were made for the monthly  R2 and RSS values. Compared to OLS regression and GWR 
models, STWR model consistently maintained the highest  R2 and lowest RSS across the entire study period 
(Fig. 5). This further highlights the superior fitting performance of STWR model in this study.

The fit of STWR model is affected by the influenza case counts. The three largest differences in  R2 values 
between STWR and GWR models were observed in September 2014, May 2015, and January 2019 (Fig. 6). 
These time points generally corresponded to influenza peak seasons and periods of increased influenza activity 
throughout the study period. The superior fitting performance of the STWR model becomes more pronounced 
in the presence of rapid changes in the influenza case counts.

Influenza epidemic level variation of spatial coefficient corresponding to different air pollutant
To explore the spatial distribution of the impacts of different air pollutant on the influenza epidemic level varia-
tion in Fuzhou, one year was divided into the influenza high season (e.g., top 6 ranking for influenza case counts) 
and influenza low season (e.g., bottom 6 ranking for influenza case counts) according to the actual influenza 
epidemiological data in Fuzhou. Figure 7 showed that the negative impact of CO on the western regional influ-
enza epidemic gradually became positive over time during the peak influenza season. This means that the higher 
the CO concentration is, the greater the epidemic intensity of influenza. In the influenza low season, the impact 
of CO on the northwest region gradually changed from positive to negative. This means that the higher the CO 
concentration is, the lower the epidemic intensity of influenza (Fig. 7 and Figure S1).

Table 2.  Spearman’s correlation results between influenza case counts and air pollutant in Fuzhou, China 
2013–2019. a The significance level (P value) of correlation coefficient is < 0.05.

Year CO NO2 O3 PM2.5 PM10 SO2

2013 0.426a 0.499a -0.327a 0.245a 0.369a 0.188a

2014 0.130 0.408a -0.347a 0.205a 0.275a 0.281a

2015 0.207a 0.346a -0.147 0.229a 0.323a 0.201a

2016 0.315a 0.484a -0.148 0.313a 0.412a 0.274a

2017 0.162a 0.265a -0.113 0.200a 0.235a 0.405a

2018 0.326a 0.464a -0.369a 0.199a 0.143 0.386a

2019 0.280a 0.378a -0.264a 0.283a 0.230a 0.256a

Table 3.  Colinearity diagnostics of air pollutant in Fuzhou, China 2013–2019.

Year 2013 2014 2015 2016 2017 2018 2019

CO 6.966 1.902 4.211 4.151 3.936 4.806 2.795

NO2 6.407 6.077 5.314 6.248 6.033 5.395 8.548

O3 2.743 1.920 2.249 2.443 1.577 1.880 3.759

PM10 6.195 3.989 8.270 7.368 4.301 3.085 7.990

SO2 2.951 4.506 4.572 2.937 2.691 2.780 2.268

Table 4.  Performance comparison of OLS regression, GWR and STWR models.

Model R2 RSS AICc Sigma

OLS regression 0.513 6.338 53.006 NA

GWR 0.639 4.692 105.299 0.961

STWR 0.816 2.389 −296.125 0.647
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Figure 5.  (a) R-squared values of the models and (b) the residual sum of squares values of the models from 
2013 to 2019.

Figure 6.  Comparison of  R2 difference of GWR and STWR models with the influenza case counts.

Figure 7.  Spatial variation coefficient surface of the impact of CO on influenza in Fuzhou.
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The impact of  NO2 on the influenza epidemic was always the opposite in the eastern and western regions of 
Fuzhou (Fig. 8 and Figure S2). In the influenza high season, the positive impact of  NO2 on the influenza epi-
demic in the western region of Fuzhou gradually changed from 2013 to a negative impact in 2017 and eventually 
returned to a positive impact in 2019. The eastern region experienced the opposite impact. In the low influenza 
season,  NO2 had a positive impact on the influenza epidemic in the western region of Fuzhou but showed a 
negative impact in 2017.

Consistent with CO, the influence coefficient of  O3 on the influenza epidemic changed from negative to posi-
tive in the western region and from positive to negative in the eastern region during the influenza high season 
(Fig. 9 and Figure S3). In the influenza low season of 2015,  O3 showed a strong negative impact near Taijiang 
District, and high concentrations of  O3 could reduce the intensity of influenza.

Compared with  NO2, the influence coefficient of  PM10 on the influenza epidemic was also always opposite in 
the eastern and western regions of Fuzhou (Fig. 10 and Figure S4). The impact coefficient changed from positive 
and negative to positive during the influenza high season in the western region of Fuzhou. In the influenza low 
season, the opposite impact was observed, i.e., from positive to negative to positive again.

As shown in Fig. 11 and Figure S5, the impact coefficient of  SO2 on the influenza epidemic was basically con-
sistent in all areas of Fuzhou in 2017 and the low influenza season in 2013 and 2019. In the influenza high season 
of 2015,  SO2 had a positive impact on the influenza epidemic near Minqing County, and the high concentration 
of  SO2 may have increased the intensity of the influenza epidemic. In contrast, during the influenza low season, 
 SO2 had a negative impact near Yongtai County.

Figure 8.  Spatial variation coefficient surface of the impact of  NO2 on influenza in Fuzhou.

Figure 9.  Spatial variation coefficient surface of the impact of  O3 on influenza in Fuzhou.
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Cluster the county‑level time‑series coefficients
We used the DTW algorithm to assess the similarity of county-level time-series coefficients to further investigate 
the coefficient surfaces of geospatial processes. The K-medoids algorithm was then used to cluster the districts 
and counties according to similarity. The optimal "K" was determined to be 4 by using the elbow method. Finally, 
the time-series coefficients of the four cluster centres can be aggregated monthly to form a heatmap.

The time-series results of the impact of CO on the influenza epidemic were clustered (Fig. 12a), Jin’an District, 
Gulou District and Taijiang District formed a group (Cluster 3), and CO had a positive impact on the influenza 
epidemic from January to September (Fig. 12b). The higher the CO concentration is, the greater the intensity 
of the influenza epidemic. Minqing County, Yongtai County, Fuqing City and Luoyuan County were grouped 
into Cluster 4. The CO in this region had a greater positive impact on influenza epidemics during most of the 
period (Fig. 12c).

The clustering results of  NO2 showed that Cluster 2 was composed of Cangshan District, Mawei District, 
Yongtai County and Lianjiang County (Fig. 12d). The concentration of  NO2 increased in the summer and fall, 
which may increase the intensity of the influenza epidemic. In particular,  NO2 in May and November was also 
higher than that in other months, with average influence coefficients of 0.3988 and 0.4010, respectively. However, 
the  NO2 in Cluster 2 had a significant negative impact on the influenza epidemic in January 2019 (Fig. 12e). In 
addition, the areas around Fuzhou City, such as Minqing County, Luoyuan County and Changle District, formed 
Cluster 4. It had obvious positive impacts in winter (Fig. 12f). The mean coefficients of variation in December 
and January were 0.0918 and 0.0428, respectively.

O3 aggravated the intensity of influenza epidemics in some areas (Fig. 12h), such as in Cangshan District, Min-
hou County and Mawei District (Cluster 1) (Fig. 12g). Simultaneously, it also showed a relatively small positive 

Figure 10.  Spatial variation coefficient surface of the impact of  PM10 on influenza in Fuzhou.

Figure 11.  Spatial variation coefficient surface of the impact of  SO2 on influenza in Fuzhou.
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impact on Cluster 4, i.e., Minqing County, Yongtai County, Fuqing City and Luoyuan County (Fig. 12i). The 
clustering results were identical for  PM10 and  SO2 (Fig. 12j, m). Cluster 3 included Jin’an District, Gulou District 
and Taijiang District, with  PM10 and  SO2 generally having positive impacts on the influenza epidemic (Fig. 12k, 

Figure 12.  Time series clustering results of the coefficients of CO,  NO2,  O3,  PM10, and  SO2 on influenza. (a, 
d, g, j, m) show the spatial distribution of county-level clustering results for CO,  NO2,  O3,  PM10, and  SO2, 
respectively. (b, c) are the time series plots and heat plots of CO coefficients in the centre of Cluster 3 and 
Cluster 4, respectively. (e, f) are the time series plots and heat plots of  NO2 coefficients in the centre of Cluster 3 
and Cluster 4, respectively. (h, i) are the time series plots and heat plots of  O3 coefficients in the centre of Cluster 
1 and Cluster 4, respectively. (k, l) are the time series plots and heat plots of  PM10 coefficients in the centre of 
Cluster 3 and Cluster 4, respectively. (n, o) are the time series plots and heat plots of  SO2 coefficients in the 
centre of Cluster 3 and Cluster 4, respectively.
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n). For Cluster 4, which was composed of the surrounding areas of Fuzhou,  PM10 had a negative impact on the 
influenza epidemic, while  SO2 showed a positive impact on the influenza epidemic (Fig. 12l, o).

Discussion
Epidemiological characteristics of influenza
Since 2013, the epidemic of influenza in Fuzhou has shown an obvious trend of high incidence in winter and 
spring, which is similar to the monitoring situation in Hangzhou and Guangzhou in  China27. The incidence of 
influenza in Fuzhou is increasing yearly, especially in 2019, a seasonal H3N2 influenza  outbreak28, indicating 
that the prevention and control of influenza in Fuzhou is still in a severe situation. Influenza has become one of 
the key infectious diseases for prevention and control in Fuzhou. Every outbreak of influenza has caused great 
economic loss to the Fuzhou area and poses a serious threat to people’s health. The central urban area of Fuzhou 
is a region with a high incidence of influenza, mainly because of the dense population in the central urban area, 
with a large migrant population, poor living conditions and high living density, and poor awareness of disease 
prevention. Scattered children are the main group affected by influenza. This phenomenon may be related to the 
living environment and behavioral habits of scattered children. Scattered children usually reside in different areas 
and have more contact with people, making them more susceptible to potential influenza viruses. In addition, 
scattered children may be more likely to spread the virus in schools or social settings because they have more 
frequent contact with other children.

Comparison of the fitting impacts of OLS regression, GWR, and STWR models
OLS regression model is a global regression model that assumes a fixed relationship between  variables29. 
GWR model is a local regression model that considers the spatial non-stationarity of the relationship between 
 variables30. STWR model is a spatiotemporal regression model that considers the temporal heterogeneity of the 
relationship between variables. STWR model utilizes different regression coefficients at various spatiotempo-
ral points to better explain the changing relationship between variables under different temporal and spatial 
 conditions20. Therefore, STWR model can make more full use of the critical time-varying information of history 
to improve model performance, which provides more accurate prediction model and analytical statistical method 
for spatiotemporal epidemiological studies of infectious diseases such as influenza.

We explored the relationship between the influenza case counts and major air pollution from 2013 to 2019 
through OLS regression, GWR and STWR models. Through comparing  R2, RSS, and AICc, we found that STWR 
model had the best goodness of fit compared with OLS regression and GWR (Table 4, Figs. 5, 6). Meanwhile, 
the STWR model fitting results also had a significant advantage when the influenza case counts changed rapidly.

Spatiotemporal heterogeneity in the impacts of air pollution on influenza
In recent years, air pollution has become an important public health problem worldwide, and extensive epide-
miological and clinical evidence shows that short-term and long-term exposure to air pollutant will increase the 
incidence risk and mortality of many systemic diseases, such as cardiovascular, cerebrovascular and respiratory 
 diseases31,32. Karen et al. examined the impact of air pollution on the total population and infant mortality in the 
United States during the 1918 influenza  pandemic33. The study found that the severity of air pollution is related 
to the urban coal-fired power generation capacity. The study results found that air pollution exacerbated the 
pandemic. Compared with low coal cities, high coal city infant mortality increased by 11%, medium coal city 
increased by 8%, and whole population mortality increased by 10% and 5%. Results from Australia showed that 
increasing  PM10 and  O3 concentrations will increase paediatric influenza cases, with impact RR values of 1.11 
(1.10–1.13) and 1.28 (1.25–1.31),  respectively34. Santus et al. studied the association between atmospheric pollut-
ants and respiratory diseases and found that every 1 mg/m3 increase in CO increased the number of emergency 
cases of upper respiratory tract infection between 0–5  d35.

In our study, we conducted a spatiotemporal regression analysis using STWR model to explore the relation-
ship between air pollution and influenza. By incorporating the geographic location and temporal information 
of county-level region in Fuzhou, our analysis reflected for the spatiotemporal heterogeneity in the impacts of 
air pollution on influenza. The results demonstrate significant variations in the impact of air pollution on the 
influenza epidemic level between county-level areas and different time (Figs. 7, 8, 9, 10, 11).

We also found that the same air pollution in the same influenza pandemic period may have two completely 
opposite impacts in different regions. For example, the impacts of  PM10 and  NO2 on influenza epidemics were 
always opposite in the eastern and western regions of Fuzhou (Figs. 8, 10).  SO2 occasionally exhibited similar 
results as well. The eastern and western regions of Fuzhou may have different sources of pollution, leading to 
variations in the composition and characteristics of  PM10,  NO2 and  SO2. These differences can result in varying 
impacts on the influenza epidemic in each region. The meteorological conditions, such as wind patterns and 
atmospheric stability, can differ between the eastern and western regions of Fuzhou. These conditions can influ-
ence the dispersion and accumulation of  PM10,  NO2 and  SO2, thereby affecting their impact on the influenza 
epidemic. The eastern and western regions of Fuzhou may have different population densities and behavioral 
patterns, which can influence the exposure and susceptibility to  PM10,  NO2 and  SO2. These variations in exposure 
and susceptibility can contribute to the opposite impacts on the influenza epidemic. It is important to note that 
these are potential reasons for the observed opposite impacts, and further research is needed to fully understand 
the underlying mechanisms.

Moreover, the direction of the impact of the same air pollutant on influenza epidemics continuously changed 
over time. For instance, the influence coefficients of  O3 and CO on the influenza epidemic changed from nega-
tive to positive in the western region during the influenza high season (Figs. 7, 9). The concentrations of  O3 and 
CO may vary over different time periods. In the early stages of the influenza high season, the concentrations of 
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 O3 and CO may be relatively low, resulting in a negative impact on the influenza epidemic. However, as time 
progresses, the concentrations of  O3 and CO may gradually increase, thereby changing their impact on the 
influenza epidemic and eventually becoming positive. In addition to changes in  O3 and CO concentrations, 
other environmental factors may also affect their impact on the influenza epidemic. For example, factors such 
as temperature and humidity may vary over time, thereby altering the impacts of  O3 and CO on the influenza 
epidemic. However, further investigation is needed to determine the specific mechanism.

Finally, we also found that in some areas, the relationship between air pollution and influenza epidemics 
may change over time. Cluster 4 (Fig. 12o) was composed of the surrounding areas of Fuzhou, such as Minqing 
County, Fuqing City and Changle District and other districts and counties, and the impact coefficient changed 
from negative to positive in 2018. This suggests that local spatial heterogeneity is not static in time but may be 
dynamic.

By utilizing STWR model, we have identified the complex relationship between air pollution factors and 
influenza in Fuzhou. The impacts of air pollution on influenza may be dynamic and could vary in different regions 
and time periods. The research findings emphasize the importance of considering spatiotemporal heterogeneity 
when studying the relationship between air pollution and influenza. It holds significant value for the development 
of more effective strategies for preventing and controlling influenza.

Limitations and future work
However, our current work still has some limitations: (1) The study utilized retrospective observational data, 
which limits the ability to investigate the direct impact of air pollution on influenza, as well as the ability to obtain 
specific exposure information from the population regarding air pollution, such as exposure duration. (2) In 
order to have a more comprehensive understanding of the mechanisms underlying the influenza outbreak in 
Fuzhou, it is also necessary to consider meteorological factors such as temperature, humidity, and diurnal vari-
ations, as well as the economic development level of the  region36. (3) The current STWR model cannot support 
multiple scales, which will reduce the reliability of the analysis to a certain extent. (4) The data source used in this 
study is an infectious diseases reporting information system, which indicates that we can only count information 
on influenza patients who visit hospitals. 68.74% of the reported cases were pediatric patients under 14 years of 
age, suggesting that adult influenza patients may have been lost because they did not seek medical care. And the 
management level at different hospitals may affect the reporting of infectious diseases. (5) We only used data from 
2013 to 2019 to exclude the possibility that the outbreak of COVID-19 may have introduced new confounding 
factors in the studies of influenza.

In future work, it is important to consider the impacts of other factors such as meteorological conditions, 
economic development levels, and human activities on influenza. Additionally, further investigation can be 
conducted to determine whether the spatiotemporal heterogeneity in the relationship between air pollution and 
influenza has changed following the outbreak of COVID-19.

Conclusions
This study investigated the epidemiological characteristics of influenza in Fuzhou and analyzed the spatiotem-
poral heterogeneity of the impacts of air pollution on influenza. The following conclusions can be drawn: (1) In 
Fuzhou, the epidemic of influenza shows a clear trend of high incidence in winter and spring, and the incidence 
rate has been increasing over the years. The central districts of Fuzhou have a higher incidence rate of influenza. 
(2) There is a correlation between air pollution and influenza in different county-level regions of Fuzhou. (3) 
The STWR model outperforms the OLS regression and GWR models and is the optimal regression model. The 
STWR model, used to study the spatiotemporal heterogeneity of the impacts of air pollution on influenza, helps 
to understand and identify key air pollutants during different periods of influenza outbreaks. By understand-
ing its spatiotemporal heterogeneity, targeted and effective prevention and control strategies can be developed, 
providing a scientific basis for the precise management of influenza outbreaks.

In a word, our study provides valuable insights into the spatiotemporal heterogeneity of the impact of air 
pollution on influenza. STWR model could be a useful method for exploring the spatiotemporal heterogeneity 
of the impacts of air pollution on influenza in geospatial processes.

Data availability
The influenza case data used and/or analysed during the current study available from the corresponding author 
on reasonable request. The air pollution data used in this study are freely available on CAQRA (https:// doi. 
org/https:// doi. org/ 10. 11922/ scien cedb. 00053). The F-STWR 2.1.5 used in this study are freely available on 
 GitHub17.
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