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Identification of responsive genes 
to multiple abiotic stresses in rice 
(Oryza sativa): a meta‑analysis 
of transcriptomics data
Mahnaz Azad 1, Masoud Tohidfar 1*, Rahele Ghanbari Moheb Seraj 2, 
Mohammad Mehralian 3 & Keyvan Esmaeilzadeh‑Salestani 4

Abiotic stresses limit the quantity and quality of rice grain production, which is considered a strategic 
crop in many countries. In this study, a meta‑analysis of different microarray data at seedling stage 
was performed to investigate the effects of multiple abiotic stresses (drought, salinity, cold situation, 
high temperature, alkali condition, iron, aluminum, and heavy metal toxicity, nitrogen, phosphorus, 
and potassium deficiency) on rice. Comparative analysis between multiple abiotic stress groups and 
their control groups indicated 561 differentially expressed genes (DEGs), among which 422 and 139 
genes were up‑regulated and down‑regulated, respectively. Gene Ontology analysis showed that the 
process of responding to stresses and stimuli was significantly enriched. In addition, pathways such 
as metabolic process and biosynthesis of secondary metabolites were identified by KEGG pathway 
analysis. Weighted correlation network analysis (WGCNA) uncovered 17 distinct co‑expression 
modules. Six modules were significantly associated with genes involved in response to abiotic 
stresses. Finally, to validate the results of the meta‑analysis, five genes, including TIFY9 (JAZ5), 
RAB16B, ADF3, Os01g0124650, and Os05g0142900 selected for qRT‑PCR analysis. Expression patterns 
of selected genes confirmed the results of the meta‑analysis. The outcome of this study could help 
introduce candidate genes that may be beneficial for use in genetic engineering programs to produce 
more tolerant crops or as markers for selection.
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Rice (Oryza sativa) is one of the world’s most important cereals and a staple food for half of the world’s 
 population1. Since the global population is rapidly growing and is predicted to reach 9.9 billion by  20502, the 
production of rice must increase at least 1% annually to meet its  demand3. On the other hand, environmental 
stresses have been primarily considered as the factors that reduce the quantity and quality of agricultural prod-
ucts. Abiotic stresses including drought, salinity, low and high temperatures, deficiency of essential nutrients, 
and accumulation of heavy metals can negatively affect the growth, development, and yield of the crops. Abiotic 
stresses annually reduce rice production by 32% (about three million tons) in the  world4. Therefore, to improve 
sustainability, there is a need to increase the yield in breeding programs by introducing stress-tolerant varieties.

During the evolution of plants, different mechanisms including various physiological, cellular, and molecular 
modifications have been developed to cope with different stresses and to survive in adverse  conditions5. Abiotic 
stresses significantly affect physiological processes such as flowering, grain filling, and maturation. It has been 
reported that abiotic stresses affect plant metabolisms including photosynthesis, enzyme activity, mineral nutri-
tion intake, and  respiration6. Plants respond to abiotic stresses by inducing a complex network of genes. They 
activate stress-related genes to adapt to new environmental conditions through the perception and transduction 
of stress  signals7. Sensing, signaling, transcription, transcript processing, translation, and post-translational pro-
tein modifications are plant molecular mechanisms to respond to abiotic  stresses8. The thickness of the cell wall, 
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production of reactive oxygen species (ROS), and secretion of phytohormones including abscisic acid (ABA), 
jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) are other defense responses of plant to abiotic  stresses9.

To better understand the complex system of molecular processes and identify pathways and mechanisms 
involved in cell response to abiotic stresses, it is inevitable to use statistical and computational approaches. High-
throughput technologies such as microarray and RNAseq, which are being used for gene expression analyses, 
have made it feasible to study a large number of genes simultaneously in different conditions. With the develop-
ment of new technologies, a big step has been taken to decipher the gene regulatory networks in plants’ stress-
tolerance mechanisms.

Meta-analysis is a standard statistical procedure for combining datasets from multiple studies to systemati-
cally assess previously published data to derive more comprehensive conclusions about that research  field10. This 
technique provides a broad perspective on specific biological questions and more reliable results than individual 
 studies11,12.

Different studies have identified several responsive genes under abiotic stresses in rice through omics data 
analysis such as genomics and  transcriptomics13–17. In a meta-analysis, de Abreu Neto et al. investigated the genes 
involved in redox homeostasis in rice under abiotic stresses and showed that only 4% of differentially expressed 
genes (DEGs) were in the ROS mechanism pathway  directly13. ROS plays an important signaling role in plants, 
especially in response to biotic and abiotic  stimuli14. Another meta-analysis reported by Cohen et al. investigated 
different abiotic stresses including drought, salinity, high and low temperature as well as biotic stresses such as 
Dwarf, Stripe, ZB13, and Guy11 viruses, and Xoc and Xoo bacteria in  rice15. They showed that the number of 
DEGs varied from 1220 to 11,644 in different experiments, in which 5863 and 2154 genes were common in all 
abiotic and biotic stresses, respectively. Buti et al. investigated different responses of susceptible and tolerant 
genotypes of rice under osmotic, chilling, and salt stresses. They found 35 hub genes through gene network 
analysis, which 24 of them were located in at least one known QTL of rice such as qLRC-1, qGY-2b, qTGW-2a, 
rfw1b, rfw4a, qtl3.1, gpl11.1, gw11.1, yld11.1, rn3 and qSDW2 which are related to cold, drought, and  salinity16. 
Recently, Ramkumar et al. identified 6657 multiple abiotic stress-responsive genes (salinity, drought, and heat 
stresses) in rice at the seedling stage. They found 10 modules containing 10 genes through gene network analysis 
that were common to all three studied  stresses17.

In the present study, a large-scale meta-analysis was performed to integrate different microarray studies 
focused on abiotic stresses including drought, salinity, cold and high temperatures, alkali conditions, nutrients 
(nitrogen, phosphorus, and potassium) deficiency, toxicity of heavy metal, iron, and aluminum to find genes 
involved in different stresses. We hypothesized that there may be some common genes and pathways that are 
activated and expressed to alleviate stress and regulate plant metabolisms under different stress conditions. 
Therefore, it may lead to the introduction of genes and pathways in breeding programs to have resistant cultivars.

Materials and methods
Data collection and meta‑analysis
Microarray data sets of studied abiotic stresses including drought, salinity, cold and high temperatures, alkalin-
ity, deficiency of essential nutrients such as nitrogen, phosphorus and potassium as well as the toxicity of heavy 
metals, aluminum, and iron were extracted from Gene Expression Omnibus (http:// www. ncbi. nlm. nih. gov/ geo) 
(Table 1). Two technical considerations were applied to select microarray datasets: (1) The selected dataset must 
be in one of the two subspecies O. sativa japonica or O. sativa indica; (2) The RNA must have been extracted 
from the vegetative parts of plants including shoots, roots, and or whole seedlings (reproductive tissues such as 
seeds, panicles or flowers were excluded from the study).

The method used for meta-analysis of microarray data is based on Raw Data Integration. It integrates raw 
microarray data from multiple studies through the following steps:

Table 1.  Transcriptomics raw data related to different abiotic stress studies of Oryza sativa used for the current 
meta-analysis.

Stress GEO ID No. sample Sub-family Genotype name Sample tissue Time after stress
Replicates per 
sample

High tempera-
ture GSE14275 6 Japonica Zhonghua 11 

(ZH11) Seedling 3 h 3

Drought GSE93917 12 Japonica Dongjin Leaf 15 d 3

Salinity GSE3053 11 Indica IR29 and FL478 Shoot 7 d 2 or 3

Al stress GSE107531 6 Japonica Zhonghua11(ZH11) Root 6 h 3

Alkali condition GSE45724 12 Japonica Jijing88 Shoot 1 d 3

Cold stress GSE37940 36 Japonica C418 and CT IL 
K354 Shoot 2h, 6h, 12h, 24h, 

and 48h 3

N starvation GSE109649 6 Japonica TNG67 Root 1 h 3

K+ deficiency GSE37161 18 Japonica Nipponbare Root 6 h, 3 d, and 5 d 9

P deficiency GSE60823 12 Japonica spx1 Leaf 7 d 3

Fe toxicity GSE131287 12 Indica EPAGRI 108 and 
BR-IRGA 409 Root 3 d 3

Heavy metals GSE25206 15 Indica IR-64 Root 1 d 3

http://www.ncbi.nlm.nih.gov/geo
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1. Data preprocessing: Extract raw microarray data (e.g., CEL files) from individual studies (raw microarray 
data from individual studies retrieved from NCBI).

2. Quality control: Perform quality control checks for each dataset to identify and remove low-quality samples 
or datasets. The quality of each dataset was controlled by checking the boxplot of datasets.

3. Normalization: The normality of each dataset was checked.
4. Data integration: Merge normalized data into a unified dataset. All data series matrices are merged into 

one dataset. Treated samples (regardless of the type of stress) are categorized into the "stress" group, and all 
untreated samples are grouped into the "control" group.

5. Batch effect correction: Address batch effects using the ComBat technique to ensure comparability between 
stress and control samples. The batch effect, as one of the major technical variations that make differences 
between different datasets, was removed by the SVA R package (v 3.38.0)18 according to the COMBAT 
 method19.

6. Statistical analysis: Conduct statistical analyses (e.g., Differential expression analysis) on the integrated data-
set to identify genes that are differentially expressed across conditions or groups (stress samples vs control 
samples)20.

Meta-analysis of transcriptome data sets was carried out by merging expression data matrix in R software. The 
DEGs between stress and control samples were identified using the Limma R package (v 3.48.1)21. Genes with 
an adjusted P value (p-adj) < 0.05 and |log2 fold change| (|log2FC|) ≥ 0.5 were considered as DEGs. Probe IDs of 
DEGs were used as queries in the DAVID web-based tool (http:// david. abcc. ncifc rf. gov/) to annotate them. A 
schematic workflow summarizing the main stages of the current study is presented in Fig. S1.

Enrichment analysis
The DEGs were subjected to singular enrichment analysis (SEA) in agriGO (http:// bioin fo. cau. edu. cn/ agriGO/) to 
identify enriched gene ontologies (GO). DEGs were classified into three biological process (BP), molecular func-
tion (MF), and cellular component (CC) with a significant threshold of p-value < 0.05. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (https:// www. genome. jp/ kegg/) analysis was performed to identify enriched 
pathways, in which DEGs are significantly involved.

Protein–protein interaction network
To identify key genes responsible for abiotic stresses, hub gene determination analysis was performed for all 
DEGs. Protein–protein interaction (PPI) network was constructed using the STRING database (https:// string- 
db. org/) by submitting DEGs as input. The output file was imported to Cytoscape (version 3.8.2) software for 
visualization and  edition22. The CytoHubba plugin and Maximal Clique Centrality (MCC) algorithm were used 
to identify highly connected genes as  hubs23.

Weighted correlation network analysis (WGCNA)
The WGCNA R package was used to identify the group of genes with similar expression patterns under stress 
 situations24. The WGCNA is performed as a system biology approach for analyzing the correlation pattern 
between genes and spreading them into co-expression  modules25. The co‐expression analysis was performed 
for paired genes using a Pearson correlation matrix. The weighted adjacency matrix was constructed using the 
power function (β), and then, transformed into a topological overlap measure (TOM) matrix to assess its con-
nectivity in the  network26. The clustering dendrogram of the TOM matrix was constructed using the average 
linkage hierarchical clustering. To obtain the correct module number, a restricted minimum gene number of 30 
for each module was set and a threshold of 0.25 to merge similar modules was used. The network was visualized 
for the two most important modules using the Cytoscape software (version 3.8.2). Each module can lead to a 
real biological process, so to examine the significance of grouping, gene ontology analysis for each module was 
performed using the DAVID web-based tool.

Plant materials and experimental design
The rice seeds (Shiroodi variety; japonica subgroup) were obtained from the Iranian Rice Research Institute 
(Amol, Mazandaran, Iran). Plant studies comply with relevant institutional, national, and international guidelines 
and legislation. The surface of the seeds was sterilized using 70% ethanol for 2 min, followed by treatment with 
1.5%  NaClO4 for 1 min. The seeds were washed three times with distilled water to remove the  detergents27. Seeds 
were placed on the moistened filter paper in the Petri dishes and incubated for the first 72 h in the dark to germi-
nate. Then, they were transferred to pots filled with pearlite and kept in a 16 h light and 8 h dark photoperiod at 
25 ± 2 °C and were irrigated every day. The Yoshida solution was  used28 after the emergence of seedlings. Samples 
in the control treatment were kept under mentioned condition (16 h light and 8 h dark photoperiod at 25 ± 2 °C), 
and the Yoshida solution was renewed every 3 days. Seedlings were exposed to different stress treatments accord-
ing to Table 2. The root and/or shoot samples of different stress treatments with their respective control treat-
ments were collected, immediately immersed in the liquid nitrogen, and kept at − 80 °C until further analysis.

RNA extraction and cDNA synthesis
Total RNA was extracted using the DENAzist Column RNA Isolation Kit (DENAzist Inc., Mashhad, Iran). The 
quantity and quality of RNA samples were evaluated by a NanoDrop spectrophotometer and 1% agarose gel 
electrophoresis, respectively. The first-strand cDNA was synthesized using the EasyTM cDNA synthesis kit Pars 
Tous according to the manufacturer’s instructions (Pars Tous Inc., Mashhad, Iran).

http://david.abcc.ncifcrf.gov/
http://bioinfo.cau.edu.cn/agriGO/
https://www.genome.jp/kegg/
https://string-db.org/
https://string-db.org/
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Validation of abiotic responses of candidate genes by real‑time PCR
To validate the reliability of the meta-analysis approach, five genes were randomly selected for real-time PCR. 
Specific primers were designed by OLIGO Primer Analysis Software v.7.0 (National Bioscience Inc., Plymouth, 
USA). The optimize the amplification, 10 μl of Taq DNA Polymerase Master Mix RED (Ampliqon, Denmark), 
1 μl of cDNA (~ 20 ng), 0.01 µM of each forward and reverse primer, and sterile distilled water (up to 20 μl) were 
used and PCR products were evaluated on 1% agarose gel for the presence of the desired band and the absence 
of non-specific amplicons and primers dimer. The optimized PCR program for each gene and oligonucleotide 
primers are presented in Table 3. Real-time PCR with three technical and five biological replicates was done by 
the Rotor-Gene Q (QIAGEN, Germany) and  SYBR® Green Fluorescent DNA Stain-low ROX (Jena Bioscience, 
Germany) according to the optimized program for each candidate gene. The elongation factor 1-alpha (elF1α) 
gene of rice (LOC4331813) was selected as the reference gene. The gene expression was calculated using the 
Delta-Delta CT  method40 in the REST2009 software according to the comparative threshold cycle, and the graphs 
were made using the GraphPad Prism9(GraphPad Software, United States).

Statistical analysis
Statistical analysis for all molecular data was performed using R version 3.5.321 and RStudio version 1.1.463. Data 
were analyzed by ANOVA for a completely randomized design with treatments as fixed effects and replicate as 
random effects. Mean values were compared using the Duncan test function provided in the agricolae package 
at 5% significance level of probability.

Table 2.  Details of different treatments used on rice based on previous studies.

Treatment Age of plant Applying treatment Time of being exposed Tissue sample Reference

High temperature 14-day-old Exposed to 42 °C 3 h Leaf 29

Drought 30-day-old PEG6000 (20%) 48 h Leaf 30

Salinity

At days 11–13 50 mM NaCl 48 h

Shoot 31At days 13–15 100 mM NaCl 48 h

At days 15–23 140 mM NaCl 48h

Al stress 12-day old
450 µM  AlCl3 8 h Root 32

pH = 4.5

Alkali condition 7-day-old
50 mM  (NaHCO3 = 9:Na2CO3 = 1)

24 h Shoot 33

pH = 9.25

Cold stress 3-leaf stage Exposed to 4 °C
6 h

Shoot 34

48 h

N starvation 10-day-old Yoshida without  NH4NO3 1 h Root 35

K+ deficiency 14-day-old Yoshida without  K2SO4
6 h

Root 36

5 d

P deficiency 14-day-old Yoshida without  NaH2PO4 7 d Root 37

Fe toxicity 20-day-old 500 mg/l  FeSO4 3 d Root 38

Heavy Metals 10-day-old 100 µM  K2Cr2O7 24 h Root 39

Table 3.  List of primers sequences designed to amplify selected genes and reference gene in rice (Oryza 
sativa).

Gene name

Primer sequence

Primer Tm [°C] Amplicon length (bp)F/R

TIFY9 (JAZ5)
F: GTG TGT GTG GTT GTT GCT GTG 70/8

195
R: TTT GAT CGT GAG GCT GAC TGC 70/8

Os01g0124650
F: TCC GTC AAT AAA ACT CGC CC 68/3

116
R: TGC AGC AAA ACA CTC TCA AGC 68/9

ADF3
F: AAC GAA GGG TTC AAG AAG GAGC 70/8

200
R: ATC CAA ACA CCA AGC AAG CCG 70/3

RAB16B
F: CCG GCG AGA AGA AGG GAT TC 72/3

175
R: TTC GAG GAC GCT ATA CAC TGC 70/8

Os05g0142900
F: GAC AAG GCG TTA GAT CAT CAG 68/9

203
R: TTG ACT CGA CGT TTA AGG AAC 66/9

elF1α
F: TTT CAC TCT TGG TGT GAA GCA GAT 70/5

103
R: GAC TTC CTT CAC GAT TTC ATC GTA A 70/9
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Results
Meta‑analysis to identify DEGs of rice in response to multiple abiotic stresses
The meta-analysis included 11 studies containing 118 samples. Our result showed 561 DEGs among stressed 
and control samples, in which 421 and 139 were up- and downregulated, respectively (Table S1). The PCA plot 
illustrates that the presence of a batch effect leads to the segregation of each dataset based on their respective 
batches, as indicated by the distinct colors shown in Fig. 1a. However, following the implementation of the 
ComBat method, the impact of the batch effect is reduced, resulting in the mixing of datasets, regardless of their 
original batches, as demonstrated in Fig. 1b.

Gene ontology and KEGG analysis
The GO in the biological process associated with DEGs was grouped in 37 terms (p-value < 0.05) (Table S2). The 
top enriched biological processes were response to stress and stimulus (GO:0006950 GO:0050896), metabolic 
and catabolic processes of cell wall macromolecules (GO:0044036, GO:0016998), lipid transport (GO:0006869), 
and defense response (GO:0006952). GO enrichment analyses for functional annotation revealed that oxidore-
ductase (GO:0016491), hydrolase (GO:0004553, GO:0016798), and enzyme inhibitor (GO:0004857) activities 
were the top enriched molecular function. In this category, DEGs were grouped in 24 GO (p-value < 0.05) 
(Table S2) among them there are also regulation activities such as transcription factors (GO:0003700), transcrip-
tion regulators (GO:0030528), DNA binding (GO:0003677), and enzyme regulator (GO:0030234) activities. 
Among GO terms in the cellular component, vesicles (GO:0031982), cytoplasmic membrane-bounded vesicles 
(GO:0016023), membrane-bounded vesicles (GO:0031988), cytoplasmic vesicles (GO:0031410), and extracel-
lular region (GO:0005576) were significantly enriched (Fig. 2).

The KEGG analysis showed that DEGs were mostly enriched in the metabolic pathway, biosynthesis of 
secondary metabolites, plant hormone signal transduction, phenylpropanoid biosynthesis, amino sugar, and 
nucleotide sugar metabolism, and MAPK signaling pathways (Fig. 3)41.

Identification of DEGs encoding TF and PK in response to abiotic stresses
A total of 25 Transcription factor (TF) genes related to 7 TF families were identified among all DEGs (Table 4). 
The WRKY family with 8 genes and the Ethylene Response Factor (ERF) family with 6 genes represented the 
highest number of TFs. Moreover, HSF, MYB, 6HLH and NF-YB factors had 3, 3, 1 and 1 genes, respectively. 
Protein kinases were encoded by 19 genes that were classified as the receptor-like kinase (RLK) (19 genes) and 
calcium/calmodulin-dependent protein kinase (CAMK) families (1 gene). As shown in Table 4, the RLK family 
included 5 subgroups including leucine-rich repeat (8 genes), DLSV (4 genes), and S Domain 2b (4 genes) with 
the highest number of genes, respectively.

Protein–protein interaction network
The network of hub proteins is shown in Fig. 4. In this network, a total of 31 hub proteins interacted, which 
the stress response proteins such as JAZ, LEA, NAC, RAB, and WORKY families had the highest interaction in 
response to abiotic stresses. The top 12 hub proteins are represented in Table S3. The highest interaction scores 
were related to proteins LEA14, HSFA6B, RAB16B, OsJ_021637, RAB16C, and OS03T0305600-01with scores 
of 164, 142, 133, 133, 130 and 129, respectively (Table S3). The complete images of the gels are available in the 
Fig. S5.

Figure 1.  Principle component analysis (PCA) to correct the batch effect. (a) PCA before batch effect removal. 
(b) PCA after batch effect removal. Different colors indicated different studies, control and treated samples were 
indicated by different shapes.
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WGCN analysis
A total of 17 WGCNA modules were identified based on the dynamic tree-cutting algorithm (Fig. S2). The 
number of genes in each module varied from 57 to 483. The turquoise (483 genes), blue (316 genes), brown (248 
genes), and yellow (244 genes) were four major modules. As shown in Fig. 5, when the soft threshold power is 
defined as 6, the scale-free topological index is 0.9. Therefore, the network is closer to the real biological network 
state as it adheres to the power-law distribution. Results showed that the six modules (turquoise, blue, yellow, 
pink, magenta, and tan) were directly involved in abiotic stress processes. Turquoise and blue were the largest 
modules in the gene networks (Fig. 6). The most important genes in stress response pathways were the JAZ, 
WPKY, NAC, APR1, and GLU families in the networks.

Figure 2.  The top enriched GO terms of DEGs (p-value < 0.05) in the categories of BP: Biological Process, MF: 
Molecular Function, and CC: Cellular Component.
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Figure 3.  KEGG pathway enrichment analysis. The significant pathway for differentially expressed genes in 
response to multiple abiotic stresses.
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Table 4.  List of TF families and protein kinase groups identified among DEGs and the number of genes in 
each family.

TF family No. of TF Protein kinase No. of PK

WRKY 8 RLK (leucine-rich repeat) 8

ERF 6 RLK (DLSV) 4

HSF 3 RLK (S Domain 2b) 4

MYB 3 RLK (WAK) 1

6HLH 1 RLK (RLCK) 1

NF-YB 1 CAMK 1

Figure 4.  Protein–protein interaction network of hub genes in response to multiple abiotic stresses conducted 
by Cytoscape 3.8.2 based on MCC method.

Figure 5.  Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-
free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean 
connectivity degree (y-axis) as a function of the soft-thresholding power (x-axis).
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Validation of DEGs using qRT‑PCR
The specificity of the designed primers (Jasmonate-ZIM domain-containing protein 5 (JAZ5) also known as 
TIFY9, RAB16B, actin depolymerizing factor 3 (ADF3), Os01g0124650, and Os05g0142900) was evaluated by 
agarose gel electrophoresis 1% (Fig. S3), which no non-specific band and primer dimer were observed. To validate 
the result, the expression of these genes was evaluated by qRT-PCR in all of the studied stresses using elF1α as 
the reference gene to normalize CT values.

The ANOVA analysis of different DEGs in Rice that grew under abiotic stresses indicated that the single 
effects of stress treatments were highly significant (p < 0.01) in TIFY9, ADF3, Os01g0124650, RAB16B, and 
Os05g0142900 (Table 5).

The TYFY9 was significantly upregulated in all stresses except potassium deficiency for 6 h (K-6h), in which a 
non-significant decrease was shown. The highest expression of TYFY9 was observed under Iron toxicity, followed 
by Nitrogen starvation, cold (Exposure of plants to a temperature of 4 °C for 48 h), alkali situation, and potas-
sium deficiency for 5 days (K-5d). The TYFY9 was highly upregulated in K-5d (log2FC = 5) but downregulated 
in K-6h (log2FC = − 0.88).

The expression of ADF3 increased in all stresses but was not significant under drought, cold-48h, and N 
starvation conditions. The highest expression of ADF3 was observed under alkali situations (log2FC = 9.8), K-5d 
(log2FC = 7.72), phosphorus deficiency ((log2FC = 6.65), salinity condition (log2FC = 6.47) and aluminum toxic-
ity (log2FC = 5.84). The Os01g0124650 was significantly upregulated in six stresses including drought and alkali 
situation, aluminum and heavy metal toxicity as well as cold conditions for 6 h (C-6h) and potassium deficiency 
for 5 days (K-5d). Although this gene was upregulated in K-6h, high temperature (T), and salinity conditions, 
it was not statistically significant. The RAB16B was significantly upregulated in all the stresses except for N 
starvation, in which gene expression was equal to − 1.25 (significant downregulation). The highest expression of 
RAB16B was shown in the C-48h, alkali situation, salinity stress, phosphorus deficiency, and high temperature 
(T). The Os05g0142900 had expression levels of 9.87, 9.82, 7.17, 6.66, and 6.58 under phosphorus deficiency, 
C-48h, nitrogen starvation, Fe, and aluminum toxicity stresses, respectively. Significant downregulation of this 
gene was observed under K-5d. In general, the qRT-PCR results highly confirmed the outcome of the meta-
analysis (Fig. 7) although some treatments had contradictory results.

Discussion
A meta-analysis was conducted to identify genes responsible for a wide range of abiotic stresses including 
drought, salinity, cold and high temperatures, alkali conditions, iron, aluminum, heavy metal toxicity, and nitro-
gen, phosphorus, and potassium deficiency. Plants change their transcriptome profile to endure unfavorable 

Figure 6.  Gene network of the two largest modules conducted by Cytoscape 3.8.2. (a) Turquoise module. (b) 
Blue module. Genes with high connectivity are shown in green.

Table 5.  ANOVA Analysis of Some DEGs in rice under multiple abiotic stresses. **Significance at P < 0.01.

Sources of variation df TIFY9 ADF3 Os01g0124650 RAB16B Os05g0142900

Stress 12 6.4** 5.7** 2.5** 7.2** 8.1**

Error 24 0.003 0.002 0.004 0.002 0.001
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environmental conditions in response to different  stresses42,43. Despite having a specific response to each stress 
in plants, this study indicates that there are a vast number of genes that are similarly expressed in response to 
different abiotic stresses, indicating that there is a core response system to all environmental stresses in rice. Our 
meta-analysis investigated 11 different abiotic stresses to find the central network of response in rice. Our study 
identified 561 DEGs, in which 422 genes were upregulated and 139 genes were downregulated (Table S1). Our 
mata-analysis approach was validated by real-time PCR, and the expression results mainly confirmed it. The 
TIYF9 protein has previously been identified that regulating defense response and signaling pathway mediated 
by jasmonic acid in response to wounding in  rice44. The Os01g0124650 is a family of serine-type endopeptidase 
inhibitors, which are known as Bowman-Birk inhibitors (BBI). They modulate endogenous proteolytic activi-
ties in different developmental stages and prevent exogenous proteases as an element of defense mechanisms 
in  plants45. The BBI may also be engaged in multiple abiotic stress responses apart from their important role 

Figure 7.  Validation of selected genes using qRT-PCR in different stresses. dr: drought stress/st: salinity stress/
Alkali: alkali condition/Al: aluminum toxicity/C-6h: cold exposed for 6 h/C-48h: cold exposed for 48 h/N: 
nitrogen deficiency/ Fe: Fe toxicity(Iron toxicity)/P: phosphor deficiency/K-5d: Potassium deficiency for 5 
days/K-6h: Potassium deficiency for 6 h/T: high temperature/H.M: excess heavy metal (K2Cr2O7). Expressions 
with not significant changes are represented by n.s, other expressions are significantly up (positive data) or down 
(negative data) regulated.
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in defense against  pathogenesis45. Shan et al. showed that the expression of WRSI5 increased in a salt-tolerant 
wheat cultivar under salt, drought, or oxidative  stresses46.

Actin-depolymerizing factor family (ADF3) has been recognized as a stress-responsive  protein47. It has been 
reported that overexpression of OsADF3 in Arabidopsis increased the tolerance to drought/osmotic stress by 
regulating some downstream responsive genes to abiotic  stress48. A proteomics analysis of rice in 2006 showed 
a high level of ADFs expression in drought-tolerant  cultivars49. The Rab proteins belong to the small G pro-
tein family, which are involved in different activities including intracellular signaling events, vesicle trafficking, 
various physiological processes, and stress  response50. It has been reported that Dehydrin Rab16B is involved 
in response to abscisic acid, water deprivation, and cold  acclimation44. Rab16 has been known as an abscisic 
acid (ABA)-responsive gene, which can sense the ABA and induce downstream stress signaling  responses51. 
The Os05g0142900 is an unknown gene, and its expression was determined significantly high under different 
stresses when it was compared with the control treatment, suggesting a novel gene in response to abiotic stresses. 
Therefore, a functional analysis is needed to elucidate the potential function of this gene in response to stress.

In our study, the most enriched GO terms in biological processes were "response to stress" and "response to 
stimulus". Enriched terms in molecular function were "catalytic activity", "oxidoreductase activity", "DNA bind-
ing", and "transcription regulator activity". Among the stress-responsive genes, transcription factors are very 
important because the expression of other stress-responsive genes is regulated by their products by attaching 
to regulatory  elements52. Ethylene response factor (ERF) and WRKY family (WRKY23, WRKY30, WRKY50, 
WRKY56, WRKY70, and WRKY71) had the highest number of genes among the enriched transcription factors 
in our study. The ERFs are a large subfamily of APETALA2 (Ap2) and are known for their Ap2  domain53. Ethylene 
is essential for many developmental processes and responds to biotic and abiotic  stresses53. Recent reports have 
shown that different ERFs attach to dehydration-responsive factors (DREs) and act as key regulatory factors in 
plant responses to abiotic  stresses54. It has been reported that the expression of ERF increased under drought, 
salinity, light, cold, and high-temperature  stresses53. Jasmonic acid and abscisic acid are also involved in regulat-
ing the expression of ERFs under abiotic  stresses55. The ethylene signaling pathway is also interconnected with 
other phytohormone pathways, which are regulated by salicylic acids, gibberellins, and brassinosteroids when 
plants are adapted to abiotic  stresses55. Previously it was reported that the application of exogenous phytohor-
mones also increased the expression of ERF  genes55.

The WRKY proteins have an important function in cellular metabolism including the biosynthesis of phy-
tohormones, phytoalexins, and other chemicals engaged in cellular  defense56. The WRKY transcription factors 
regulate plant  growth57 and play an important role in plants’ responses to biotic and abiotic  stresses58–60. The 
WRKY may correlate biotic stress-responsive proteins and abiotic stress-responsive  proteins58. In our study, 
vesicle groups and cytoplasmic and vesicular membranes had the highest number of DEGs among cellular 
components. In plants, endomembrane trafficking is an essential mechanism that responds to environmental 
 stresses61,62. Plants as immobile organisms continuously monitor environmental changes to be capable of altering 
their metabolism and gene expression profile in response to shifted  conditions63. It has been widely indicated that 
plants have an effective response system to deal with stresses including the primary and secondary perception of 
stress and signal transmission in  cells64. Early perception of stress occurs with changes in membrane leucine-rich 
 receptors65. In addition, secretory pathways regulated by vesicular walls act in the stress tolerance mechanism. 
The first stage of the secretory pathway is regulated by coat protein II from the vesicular and induces the transfer 
of cargo, which usually are stress-damaged proteins, from the endoplasmic reticulum to the Golgi  apparatus66.

The KEGG result showed that DEGs were mostly involved in "metabolic pathways", "biosynthesis of secondary 
metabolites", "transport of plant hormones", "biosynthesis of phenylpropanoids, nucleotide, and amino acids glu-
cose metabolites" and "MAPK signaling pathway." It has been previously reported that plant metabolites protect 
plants against high salinity and drought  stresses67. Metabolites such as glutathione, ascorbic acid, anthocyanins, 
tocopherols, and carotenoids protect plants from oxidative damage associated with different stresses by inhibit-
ing reactive oxygen species (ROS) production during oxidative stress. Jasmonic acid, methyl jasmonate, salicylic 
acid, methyl salicylate, and other small molecules produced during stress conditions can also be activated as 
signaling molecules to induce defense responses and lead to a systemic  adaptation67. Mitogen-Activated Protein 
Kinase (MAPK) are highly conserved signal transmission modules and are involved in in many signal transmis-
sion processes through the MAPK  cascade68. The messages were transmitted from the extracellular into the cell 
by activating downstream kinases, enzymes, and transcription  factors69. Recently it was reported that elevated 
expression of genes associated with the MAPK pathway increased the resistance to stress in  crops70.

Our findings have identified candidate genes associated with various abiotic stresses, which can be further 
investigated to understand the core mechanisms underlying the response of rice to multiple stress conditions. 
Many individual studies have been done to investigate the response of rice to stresses but our meta-analysis covers 
a wide range of abiotic stresses. The meta-analysis approach can be used to study different plants’ mechanisms 
in different situations, particularly for plants with less information. The current study includes abiotic stresses, 
suggesting that further research should concentrate on environmental and biological stresses for a better under-
standing of the relationship between abiotic and biotic response systems in plants.

Data availability
The datasets analyzed during the current study are available in the [NCBI] repository, [GEO Datasets] with acces-
sion numbers of GSE14275, GSE93917, GSE3053, GSE107531, GSE45724, GSE37940, GSE109649, GSE37161, 
GSE60823, GSE131287, and GSE25206.
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