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Network topology mapping 
of chemical compounds space
Georgios Tsekenis 1,2*, Giulio Cimini 3, Marinos Kalafatis 4, Achille Giacometti 2,5, 
Tommaso Gili 6 & Guido Caldarelli 1,2,5,7

We define bipartite and monopartite relational networks of chemical elements and compounds using 
two different datasets of inorganic chemical and material compounds, as well as study their topology. 
We discover that the connectivity between elements and compounds is distributed exponentially for 
materials, and with a fat tail for chemicals. Compounds networks show similar distribution of degrees, 
and feature a highly-connected club due to oxygen . Chemical compounds networks appear more 
modular than material ones, while the communities detected reveal different dominant elements 
specific to the topology. We successfully reproduce the connectivity of the empirical chemicals and 
materials networks by using a family of fitness models, where the fitness values are derived from the 
abundances of the elements in the aggregate compound data. Our results pave the way towards a 
relational network-based understanding of the inherent complexity of the vast chemical knowledge 
atlas, and our methodology can be applied to other systems with the ingredient-composite structure.

The space of chemical compounds comprises hundreds of thousands of different combinations of the over one 
hundred chemical elements. Such an ample volume was produced by employing several experimental and com-
putational techniques developed for the study of Chemistry over the past centuries. Navigating the vast chemical 
space is a formidable task and has been the topic of previous research (e.g.1,2). Motivated by the need to harness 
the burgeoning complexity of the ever-growing chemicals and materials fields, in this manuscript, we present 
a constitutive relational network study of inorganic chemistry and materials science, relying on the toolbox of 
complex networks theory3,4.

In the past, chemical reaction networks have been presented for small numbers of reactants5, without address-
ing the overall complexity of the problem. Furthermore, in materials science, recent efforts have concentrated 
on faster and cheaper targeted engineering of materials, the so-called Materials Genome project6,7. Such an 
approach customarily relies on aggregate statistics. However, incorporating meaningful relational networks can 
significantly improve the inferential power of statistical approaches, such as materials cartography8. One net-
work approach has been based on the representation of materials phase diagrams9,10. A different approach was 
to analyze a set of materials as a network, according to the cross-correlation of the electronic density of states11. 
Unfortunately, these methods produce fully, or almost fully, connected graphs where all substances are related, 
which is not very different from an aggregate approach.

Here, we construct and study element-compound networks of extensive catalogues/libraries of chemicals 
and materials. Furthermore, we successfully model these networks with versatile fitness models derived from 
maximum entropy methodology. That way, we set large bodies of knowledge onto a new frame of reference, 
providing novel points of view and enabling further future utility.

Networks from data
We construct relational networks from two different datasets that we sample from two separate databases. The 
first, CRC, is based on inorganic chemical compounds12, and the second, AFLOW, is based on inorganic mate-
rial compounds13 (see “Methods”). Each of the datasets contains nC compounds and nE elements; the specific 
values are shown in Table 1.

We build a bipartite network for each dataset by linking every compound c to the elements e it contains 
(Fig. 1a). For each dataset, the resulting bipartite network is composed of two layers: one consisting of the 
compounds c and the other of the elements e, and is characterized by a nC × nE binary bi-adjacency matrix B 
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linking the two layers14–18, where the matrix element Bce = 1 if c contains e and zero otherwise . For each bipartite 
network, the total number of links, L, is given by the sum of all B matrix elements: L =

∑
c,e Bce . The degree of 

a node is the sum of its incident links: dc =
∑

e Bce and de =
∑

c Bce for compounds and elements, respectively.
The degree distributions for both layers and both datasets are shown in the four left panels of Fig. 2(a,b,e,f). 

The degrees ( dc ) of the compounds layer are discrete since each compound is linked to as many distinct elements 
it contains. Their overall distribution appears modulated by a Gaussian-like curve. The degree ( de ) distributions 
of the elements appear dominated for larger values by a fat-tail for the CRC network, and by an exponential 
decay for the AFLOW network, indicating a different inherent complexity of inorganic chemicals vs materials. 
Oxygen is the most connected element corresponding to the maximum degree, a feature confirmed also by other 
analyses as we shall see below.

We further consider the relationships between compounds or between elements, by projecting the bipartite 
network on either layer to get the corresponding monopartite network. In the compounds network (Fig. 1b), the 
nodes are the compounds, and a pair of compounds are linked if they share a common element. In the elements 
network (Fig. 1c), the nodes are the elements, with links between elements that co-participate in a compound. 
The adjacency matrices of the binary monopartite networks, AC and AE , are obtained by the binary bi-adjacency 
matrix B: (AC)cc′ = 1 if 

∑
e BceBc′e > 0 , (AE)ee′ = 1 if 

∑
c BceBce′ > 0 , and zero otherwise. Summing all non-zero 

entries in the adjacency matrices gives the number of links in the monopartite networks: 2LC =
∑

c,c′(AC)cc′ 
and 2LE =

∑
e,e′(AE)ee′ . The degree of compounds and elements of the monopartite networks are respectively 

given by kc =
∑

c′(AC)cc′ and ke =
∑

e′(AE)ee′.
The degree distributions of the monopartite compounds ( kc ) and elements ( ke ) networks are shown in the 

four right panels of Fig. 2(c,d,g,h) for both CRC and AFLOW. A striking feature of the degree distributions 
for compounds is that they appear to be composed of two main modes. Further investigation reveals that all 
the compounds in the high-degree bump contain the oxygen element. We denote with a vertical black dotted 
line (upper panels) the smallest degree of a compound that contains oxygen. Correspondingly, in the elements 
networks oxygen has the maximum, or nearly maximum, degree, which we denote with a vertical black dotted 
line (lower panels). In both datasets we discover that compounds containing oxygen form an oxygen club. This 
is a maximally interconnected community composed of compounds with a large degree. The oxygen club is a 
result of oxygen’s prominence in the inorganic chemistry and materials science datasets, as well as the rules of 
the network. This particular feature is almost impossible to be captured by a specific model and needs to be 
addressed by further analysis of the structure of the datasets. The shape of the degree distributions of the elements 
networks appears to have an exponential body for the CRC network and a linear decay for the AFLOW network.

Fitness models
We model these networks by assuming that there is a hidden underlying process where all the elements compete 
for prominence based on an unknown intrinsic fitness. We discover that the abundance, ae , of each element e, 
which is simply the element occurrence in all compounds of a dataset shown in Fig. 1d, is an excellent quantity 
to consider as element fitness. Similarly, we find that the fitness of a compound c can be represented well by the 
number of element species, ℓc , it contains. We model the bipartite networks by using normalized fitness values

as effective parameters of a maximum-entropy fitness model15,19–24. Specifically, in our model, each pair of nodes 
from the two different layers (i.e., an element e and a compound c) is connected according to a linking prob-
ability with a Fermionic form

where δ is a single tuning parameter for each network. The best fitting value δ∗ is extracted by matching the 
number of links, L, of the real network with that of the model:

Using δ∗ from Eq.  (3) and the normalized fitness {xbe } , {ybc } , we calculate the expected model degrees, 
d̃c =

∑
e f (δ

∗, xbe , y
b
c ) and d̃e =

∑
c f (δ

∗, xbe , y
b
c ).

(1)xbe =
ae∑
e′ ae′

, ybc =
ℓc∑
c′ ℓc′

(2)f (δ, xbe , y
b
c ) =

δxbe y
b
c

1+ δxbe y
b
c

(3)L =
∑

e,c

f (δ∗, xbe , y
b
c )

Table 1.   Information about the datasets used to build all the networks. nC and nE are the number of 
compounds and elements. L is the number of bipartite links, while LC and LE are the number of monopartite 
links for compounds and elements, respectively.

Dataset

Compounds Elements biLnks cLinks eLinks

nC nE L LC LE

CRC​ 3149 89 9118 2117169 1118

AFLOW 32243 85 97489 106344446 2956
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We remark that Eq. (2) derives from an entropy maximisation procedure with degree constraints, where the 
fitness values replace the unspecified Lagrange multipliers23,25,26. Hence our modelling is an effective maximum-
entropy procedure informed by a heuristic fitness ansatz, where the fitness of the nodes generate the model 
degrees. The alternative route, which we do not follow here, would be to find the values of the multipliers such 
that the expected degrees match the empirical values, through e.g. likelihood maximization.

For the monopartite networks, we follow a similar approach. We use abundance for the fitnesses of the ele-
ments, while for the compounds we sum up the abundances of the elements they contain, ac =

∑
e∈c ae . Hence
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Figure 1.   Explanatory visualizations of the chemical relational networks, with an illustration of the linking 
processes on a tiny dataset of six compounds (shown). (a) The bipartite network of compounds and elements 
comprises two layers, layer C for the compounds and layer E for the elements. (b) The monopartite projection 
C of the chemical compounds, which are linked through their common elements. (c) Analogously, the 
monopartite projection E of the elements, which are linked through their co-participation in compounds. (d) 
The relative abundance, ae , vs atomic number, Z, of the element species in the CRC (green squares) and AFLOW 
(purple circles) datasets shows that the most prominent elements are O, H, C for chemicals (green dotted 
vertical lines), and O, S for materials (purple dotted vertical lines). (e,f) The cumulative distribution of element 
abundances P>(ae) appears with a fat tail in CRC and an exponential tail in AFLOW. Oxygen is the most 
abundant element in both datasets.

Figure 2.   Degree distributions. Cumulative degree distribution, P>(d) , for the compounds (a,b) and elements 
(e,f) layers of the CRC and AFLOW bipartite networks. Cumulative degree distribution, P>(k) , for the 
compounds (c,d) and elements (g,h) monopartite networks of CRC and AFLOW. In (c,d) the vertical dotted 
lines indicate the smallest degree of a compound with oxygen. In (e,f,g,h) the vertical dotted lines indicate the 
degree of the oxygen element. The continuous green lines in (a,b) are cumulative normal distributions, in (e) a 
power law ∼ x

−1.0 , and in (f) an exponential curve ∼ exp(−const ∗ x) . All green lines are visual guides. Black 
points represent empirical data while red points are obtained from fitness model estimates.
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Links between nodes in the two monopartite networks are computed with a linking function similar to the 
previous one. We have, for elements and compounds networks respectively

δE and δC are still free parameters for each network, whose values δ∗E and δ∗C are determined using the number 
of links in the empirical networks:

Again, we calculate the expected degrees, k̃e , k̃c , using δ∗E , δ∗C from Eq. (6), and the normalized fitness {xme } , {ymc } , 
respectively, using k̃e =

∑
e′ f (δ

∗
E , x

m
e , x

m
e′ ) and k̃c =

∑
c′ f (δ

∗
C , y

m
c , y

m
c′ ).

We find very good or exceptional agreement between the real networks and the fitness models regarding the 
degrees in all cases, as shown in Fig. 2. The higher-order network measure of the degree assortativity exhibits 
stronger fluctuations but is still captured on average as we report in the SI and Figs. S3 and S4.

Community analysis
We further analyze the community structure emerging from this way of exploring the chemical space. We 
use the Louvain greedy algorithm27, a method based on the maximization of the modularity Q (a quantity 
related to how many links tend to connect nodes within communities rather than nodes belonging to different 
communities28–32). We identify between 3 and 5 communities in AFLOW, with Q ≈ 0.25 , and between 5 and 7 
communities in CRC, with a smaller Q ≈ 0.11 , as shown in Fig. 3. The small variability of the results depends 
on the initialization of the algorithm; below we discuss only the findings that are robust across multiple runs of 
the algorithm.

As expected, there is a community of compounds of large degree, which has the highest abundance of oxygen 
( Z = 8 ), (Fig. 3a,d). The oxygen community has a high overlap with the oxygen club, but they are not identical, 
(Fig. 3b,e). The rest of the communities are centered around other, not necessarily prominent elements, (Fig. 3c,f). 
More specifically, in the CRC network, the second largest community is dominated by hydrogen ( Z = 1 ), and 
the third by fluorine ( Z = 9 ). We notice that the three most prominent elements in the CRC dataset overall, O, 
H, C ( Z = 6 ) (Fig. 1d), and the most prominent elements of the three largest communities, are all light elements 
(first row of their groups in the periodic table) and are highly reactive. In the AFLOW network there are com-
munities that contain most of the oxygen ( Z = 8 ), sulfur ( Z = 16 ) and silicon ( Z = 14 ). We notice that two 
most prominent elements in the AFLOW dataset, O and S (Fig. 1d), have their own communities, and are the 
first two elements of the original group VII or the newer group 16 of the periodic table, which are collectively 
called chalcogens.

Discussion
In summary, we developed a simple but fundamentally effective way to delve into the hidden complexity of large, 
aggregate, chemical datasets, and reveal their higher-order correlations. We discovered that the connectivity 
of elements to compounds follows a heterogeneous distribution with different kinds of tails: a fat one for the 
CRC network and an exponential one for the AFLOW network. We traced this significant difference to the cor-
responding distributions of elemental abundance in the CRC and AFLOW datasets, as shown in Fig. 1e,f. The 
connectivity analysis also revealed the special role of oxygen in the networks as we found that it dominates all 
orders of correlation amongst inorganic AFLOW and CRC, Fig. 1. Therefore, we revealed that oxygen holds a 
prominent position in the complexity of inorganic chemistry, beyond simply being the most common element33 
(Oxygen has also been found to play a central role in biochemical networks and the complexity of life34). A 
further community analysis we performed revealed chemical knowledge of purely topological origin. The larg-
est communities in CRC compounds network are dominated by light, highly reactive elements. The picture is 
starkly different for AFLOW, where the most prevalent elements are somewhat heavier and less reactive. The 
AFLOW compounds network is less modular, comprising more communities, as compared to the CRC. All of 
the results presented in this Report are obtained thanks to the network methodology we developed, and cannot 
be derived from aggregate analyses.

In addition, we were able to formalize our findings through a maximum entropy network approach. Our 
fitness models were tailored for the bipartite network and its monopartite projections, employing a single-fitted 
parameter and novel fitness values that are external to the network. Our analysis is able to quantify self-consist-
ently both networks of CRC and AFLOW, and reproduces successfully their statistically different connectivity. 
The parsimonious modelling methodology we developed can be applied to any bipartite network, or to a pair of 
complementary networks, such as article-author networks35, recommendation networks36, disease phenome-
genome37, countries-products15,38,39, food ingredients-flavors40, social networks14,16, ecological networks17, bio-
logical and medical networks18,41,42, and so on.

Network science can benefit chemistry and materials science by reorganizing its extensive body of knowl-
edge through complex networks. Analyzing and modeling chemistry networks allows us to systematize intrin-
sic behaviors and emergent or occluded patterns into quantitative relations. Such informed chemical/material 
graph atlases can accelerate decisions on “synthesizability”, and minimize costs for intelligent design of novel 

(4)xme =
ae∑
e′ ae′

, ymc =
ac∑
c′ ac′

.

(5)f (δE , x
m
e , x

m
e′ ) =

δEx
m
e x

m
e′

1+ δExme x
m
e′
, f (δC , y

m
c , y

m
c′ ) =

δCy
m
c y

m
c′

1+ δCymc y
m
c′
.

(6)2LE =
∑

e,e′

f (δ∗E , x
m
e , x

m
e′ ), 2LC =

∑

c,c′

f (δ∗C , y
m
c , y

m
c′ )



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5266  | https://doi.org/10.1038/s41598-024-54594-9

www.nature.com/scientificreports/

composites with desired properties. This can be done by utilizing graphical algorithms and network methods to 
complete tasks that are computationally overwhelming or demanding to investigate as is the case when starting 
from raw data, first principles, experimentally, or traditional cheminformatics2. Specifically, the network con-
nectivity properties that we study here describe the relation among existing substances, and can inform searches 
for alternative or novel ones.

Our approach involves large networks of substances, different from approaches that perform learning with 
neural networks on individual, modestly-sized, molecular graphs43,44. In its current form, it takes advantage 
solely of the chemical composition of substances, but it can be systematically expanded to include more material 
properties as node variables, such as crystal structure, thermodynamic quantities, or mechanical properties. It 
can utilize more sophisticated measures for weighted linking, e.g. the number of atoms in common, or quantify 
the similarity of nodes with cosine/dot-product, for further gains.

Methods
Datasets creation from databases
From the AFLOW database13 we downloaded all the compounds that also belong to the ICSD catalogue (simi-
larly to11), and have a value entry in the following eleven properties: composition, species, density, volume atom, 
pressure, valence cell iupac, spin atom, scintillation attenuation length, energy atom, enthalpy atom, eentropy 
atom (electronic entropy).

We utilized the entire database of Physical Constants of Inorganic Compounds of the CRC Handbook of 
Chemistry and Physics Online 102nd Edition (2021), which is part of CHEMnetBASE12.

Both databases may reflect the biases of their creators, historical trends in chemistry, and/or the research 
interests, needs, and abilities of the scientific and engineering community. The AFLOW database comprises 
solids, while the CRC database contains compounds in all phases at standard conditions complicating property 
annotation. The only implicit constraint we imposed on the AFLOW database was the materials to be sufficiently 
well analysed/studied. We presume that the CRC database was compiled with a similar criterion of most com-
monly used substances. Our results are proven for our datasets, since the global shapes of the distributions are 
preserved when we randomly sub-sampled our datasets. As the databases expand and research becomes gradually 

Figure 3.   (a,d) Community structure of the compounds monopartite networks, for CRC and AFLOW; each 
community is labeled by its dominant element. Communities are colored according to their size (blue to green 
representing largest to smallest groups respectively), and the links are red. The most connected compounds 
ordered by descending community size are, for CRC: Na3PO3S · 12H2O , (C2H5O)2P(S)SNH4 , NH4SO3F , 
CuCl2 · 2NH4Cl · 2H2O , NH4BrO3 , NH4IO3 , and for AFLOW: C4F12N8O12S8Se8 (5936f8e3995c49e8), 
Co2H48Ni2O40S4 (b730426d3f44aa15), C12Cl12N12O4P4S12Sb4 (155cbacf430e2898), Ca12F1K1O26S2Si4 
(3d134e8d4260e63e). In parenthesis we give the AFLOW unique identifiers for each compound. (b,e) 
Cumulative counts of degree, F>(k) , for each community; the vertical dotted line indicates the smallest degree of 
compounds with oxygen. (c,f) Relative abundance of element species in communities, where the most abundant 
elements are indicated on the top of the plots.
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more systematic, we foresee that the potential benefit from our network analysis would also expand past the 
space limited by current research.

Graph link density
The link density of the networks of elements is an increasing function of the size of the compounds datasets con-
sidered, while the density of the networks of compounds is independent of such size. This is due to the fact that 
for the elements network, the total number of nodes (i.e. elements) is constant, nE ∼ O(100) , while the number 
of links between elements increases as more compounds are analyzed. For the compounds network, the length 
of compounds. i.e. the number of elements species, is nearly constant, 1 ≤ ℓc ≤ 8 , and as more compounds are 
added, both the number of nodes (i.e. compounds) and links increase. This results in a constant link density, 
which is roughly ∼ 0.20 for the AFLOW and ∼ 0.42 for the CRC compounds networks (see SI, Fig. S1).

Data availability
The CRC dataset can be obtained from the table of Physical Constants of Inorganic Compounds of the CRC 
Handbook of Chemistry and Physics Online 102nd Edition (2021), which is part of CHEMnetBASE12, at https://
hbcp.chemnetbase.com . The AFLOW dataset can be obtained from the AFLOW library of crystallographic 
prototypes13, at http://www.aflowlib.org .
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