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A fault diagnosis method 
for wireless sensor network 
nodes based on a belief rule base 
with adaptive attribute weights
Ke‑Xin Shi 1, Shi‑Ming Li 1*, Guo‑Wen Sun 1, Zhi‑Chao Feng 2 & Wei He 1

Due to the harsh operating environment and ultralong operating hours of wireless sensor networks 
(WSNs), node failures are inevitable. Ensuring the reliability of the data collected by the WSN 
necessitates the utmost importance of diagnosing faults in nodes within the WSN. Typically, the initial 
step in the fault diagnosis of WSN nodes involves extracting numerical features from neighboring 
nodes. A solitary data feature is often assigned a high weight, resulting in the failure to effectively 
distinguish between all types of faults. Therefore, this study introduces an enhanced variant of 
the traditional belief rule base (BRB), called the belief rule base with adaptive attribute weights 
(BRB‑AAW). First, the data features are extracted as input attributes for the model. Second, a fault 
diagnosis model for WSN nodes, incorporating BRB‑AAW, is established by integrating parameters 
initialized by expert knowledge with the extracted data features. Third, to optimize the model’s initial 
parameters, the projection covariance matrix adaptive evolution strategy (P‑CMA‑ES) algorithm is 
employed. Finally, a comprehensive case study is designed to verify the accuracy and effectiveness of 
the proposed method. The results of the case study indicate that compared with the traditional BRB 
method, the accuracy of the proposed model in WSN node fault diagnosis is significantly improved.
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Wireless sensor networks (WSNs) are commonly used in industrial practices for environmental detection 
due to their low power consumption and high sensitivity. However, due to the complex and variable working 
environment of sensor nodes, the failure of sensor nodes is inevitable. Hence, it is crucial to diagnose faults in 
WSN nodes to ensure industrial production safety and timely data  collection1.

The commonly used methods for fault diagnosis of WSN nodes are model-based methods, data-driven 
methods, and hybrid information-based  methods2,3. The modelling analysis approach realizes fault diagnosis 
through mathematical mechanisms and  functions4–7, which is the most frequently used method. However, the 
accuracy of this method is limited due to the high complexity of the actual environment system. The data-driven 
method has higher model accuracy and relies on analysing data  samples8. However, in the harsh environment 
where the sensors are located, the existence of interference factors will lead to the unreliable data involved in 
training, which will lead to a reduction in the diagnostic  accuracy9. The hybrid information-based methods 
can realize the combination of different  methods10. This type of approach integrates qualitative knowledge and 
quantitative data through the use of various models. However, there is a common problem with both model-
based and data-driven approaches. It is difficult to ensure the effectiveness and accuracy of the model in different 
 environments11.

To solve the above problems, this paper proposes a WSN node fault diagnosis model based on BRB-AAW, 
where AAW denotes adaptive attribute weights. The main contributions of this paper are listed as follows:

(1) A new belief rule base with adaptive attribute weights (BRB-AAW) model is constructed, and the concept 
of adaptive attribute weights is proposed. The original static attribute weights are improved, and reasonable 
attribute weights are assigned to all rules, thus improving the performance of BRB in the presence of 
unreliable data.
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(2) A WSN fault diagnosis method based on BRB-AAW is proposed to obtain more reasonable attribute weights 
under different conditions, which can effectively improve the accuracy of the diagnosis results.

The article follows the following structure. "Introduction" provides an overview of the current state of research 
on node fault diagnosis in WSNs, highlighting the benefits of the approach proposed in this paper. "Related 
work" describes the popular WSN node fault diagnosis methods and compares them with the BRB-AAW-based 
diagnosis methodology approach. "Problem formulation" addresses the challenges experienced in WSN node 
fault diagnosis and presents the underlying model architecture. "Establishment of the WSN nodes fault diagnosis 
model based on BRB-AAW " elaborates on the extraction process of data features, the model inference process, 
and the approach used for parameter optimization. In "Case study", the proposed fault diagnosis method is 
validated through the examination of the specific case. In "Conclusion", the proposed fault diagnosis methods 
and outlined potential future study directions are summarized.

Related work
Because of the expanding range of WSN applications, an increasing number of scholars have taken the fault 
diagnosis of WSN nodes as a research  topic10,11. Abdalzaher et al. proposed a method for estimating missing 
sensor  data12. Mohamed et al. worked through two attack defense methods based on a Stackelberg game to 
protect sensor nodes from  attacks13. Seddik et al. presented an improved Stackelberg game method that can detect 
damaged sensor transmission data more  efficiently14. Selvakumar et al. provided a trust estimation model based 
on a fuzzy expert system to evaluate nodes and predict possible future changes based on inference  mechanisms15. 
Ullah et al. proposed a novel data aggregation scheme based on node clustering and extreme learning machines 
that effectively reduces redundant and erroneous  data9. Laiou et al. used a machine learning-based decision tree 
algorithm to detect and diagnose faults to detect and classify fault data from  WSNs16.

Most of the above methods are model-based methods and data-driven methods, so these diagnostic methods 
have common disadvantages. First, all of these methods require a large and uniform number of samples for 
training parameters. Second, these methods all set many parameters that have no physical meaning, leading to 
their low interpretability.

Using a hybrid information-based approach, the belief rule base (BRB) has emerged as a potent method 
for effectively modelling intricate systems. In 2006, a belief rule-based reasoning method known as RIMER 
was introduced by Yang et al., employing an evidential reasoning (ER)  approach17. The utilization of an expert 
system composed of BRB and ER rules allows for enhanced flexibility in representing a multitude of uncertain 
information, enveloping vagueness, unpredictability, and ignorance. The determination of parameters within 
the BRB is entrusted to domain experts, drawing upon empirical knowledge and imbuing them with substantial 
physical significance within the model. This distinctive characteristic empowers the BRB to attain precise 
outcomes while relying on minimal training data. Expanding upon these advancements, Zhang et al. presented 
a method based on wavelet packets and  BRB18. Nevertheless, it is important to note that this approach still has 
limitations when dealing with fault data that is not entirely reliable.

In 2020, a fault diagnosis method utilizing a belief rule base with mixed reliability was presented by 
Cheng et al.19. This method specifically considers two disruptive factors that impact the observed data: sensor 
performance and external environmental influence. These factors are quantified as static reliability and dynamic 
reliability attributes within the belief rule base (BRB)20,21. However, it is worth noting that the current approach 
for calculating hybrid reliability may not be suitable for input data characterized by substantial variations. In 
2022, Sun et al. proposed the BRB fault diagnosis model with an adaptive quality factor (BRB-SAQF)21. The 
method adds the attribute quality factor as a new input attribute to reduce the impact of unreliable data features 
on fault diagnosis accuracy. Nevertheless, it is notable that the attribute quality factor approach does not take 
into account the needed changes in attribute weights for different environments.

It is necessary to design a method to mitigate the effect of inaccurate data on the identification process and 
address the limitation in calculating the reliability of static attribute  weights19, and a BRB-AAW-based fault 
diagnosis model for WSN nodes is proposed. First, the concept of adaptive attribute weights is proposed, which 
can distinguish fault types more effectively. Second, the calculation method of adaptive attribute weights is 
redesigned on the basis of the static attribute weight calculation method. In addition, the proposed method 
requires fewer training samples than the neural network method due to the advantage of BRB in utilizing small 
samples for  training22. Finally, because the parameters in BRB are established by experts and possess physical 
significance, this methodology offers a higher level of interpretability compared to neural network approaches. 
To demonstrate that BRB-AAW can effectively improve the accuracy of diagnostic results, it is compared with 
popular algorithms that can be used for binary classification.

Problem formulation
In the following section, the issues in the diagnosis of WSNs are identified, and the structure of the model is 
constructed based on these issues. The notation dictionary is described in  "Dictionary of notations", the basic 
BRB composition is documented in "Basic belief rule base", and the problem is formulated by the formula in 
"Problem formulation".

Dictionary of notations
The notations dictionary, which encompasses the symbols used throughout this article, is provided for clarity 
and comprehension, as shown in Table 1.
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Table 1.  Dictionary of notations.

Notation Meaning

Rk The kth belief rule

W Number of input attributes in the fault diagnosis model

a1, ..., aW Total W input attributes

F1, ..., FW Reference values corresponding to the W input attributes

H1, ...,HN N possible troubleshooting results

D1, ...,DN The belief degree associated with each outcome under the kth belief rule

θk Rule weights for the kth belief rule

δ1,...δw Attribute weights of the W input attributes

a1(t),a2(t)..., aw(t) Data features of W attributes extracted in a time interval

µ() Computational function for extracting features from the raw sensor data obtained from WSN

� Parameters involved in the process of extracting data features

X Raw data collected by the sensor over a period of time interval

t At a certain point in the time interval

δij Adaptive attribute weights (BRB-AAW)

K The total number of belief rules in the model

� Expert knowledge for initializing adaptive attribute weights

g() Calculation function of adaptive attribute weights

S(t) Predictive fault states for troubleshooting systems

τ Other parameters involved in the fault result diagnosis function

f () Calculation function of fault diagnosis results

τbest Optimized parameters after optimization algorithm

β Parameters in the optimization algorithm

h() Parameter optimization algorithm

Q A time point of the node being diagnosed

T Length of time

a The average of the collected data features over the specified time interval

α4 The standard deviation of the collected data features over the specified Time interval

ρ
j
i

The degree of matching of the ith attribute in the jth reference value

Fki the ith attribute’s kth reference value

ρi
k

the match of the ith attribute in the kth belief rule

θi Weight of the belief rule i

℧i The activation weight of the ith belief rule

N The framework for identifying fault diagnosis models includes N levels

Dj,i Belief degree of the jth fault diagnosis result in the ith rule

p(Hi) The utility of the ith fault diagnosis

g The gth generation optimization algorithm iteration

τ
g + 1
i

The optimized parameters of the ith group in the (g + 1)th generation

τ
g
best

Average value of optimized parameters in the gth generation

εg Step size of the gth generation

R Normal distribution

Cg Covariance matrix of the gth generation

� Number of offspring iterated

Ee Parameter vector

ne Restricted variables in τ g + 1
i

j The number of restricted variables in τ g + 1
i

hi Weighting factor

τ
g + 1
i:�

The ith solution in the 
(

g + 1
)

th generation of the total � group of optimization parameters

σ Number of solutions in the offspring
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Basic belief rule base
The BaseBRB effectively harnesses engineering experience and expert knowledge, showcasing its capability to 
integrate limited samples of monitoring data and possessing robust nonlinear modelling capabilities. It operates 
as a modelling approach rooted in IF–THEN rules, comprised of a series of belief rules. The belief rules can be 
described by Eq. (1).

In the expression of belief rules, Rk denotes the Wth belief rule, a1(t), ..., aW (t) represents a sample with W 
prerequisite attributes, F1, ..., FW represents the reference value corresponding to the W prerequisite attributes, 
H1, ...,HN represents the N possible outcomes, D1, ...,DN represents the belief degrees associated with each out-
come under the k - th belief rule, θ1, ..., θk denotes the rule weight of the kth belief rule, and δ1,..., δw represents 
the attribute weight of each prerequisite attribute.

Problem formulation
A typical WSN consists of four main components: the sensor nodes, the wireless transmission channels, the sink 
node, and the information processing center. The wireless sensor nodes are responsible for collecting various 
types of environmental data. The wireless transmission channels facilitate communication between different 
nodes. The sink node detects connections between the region and external networks. Finally, the processing 
center aggregates and processes data sent by different sensors.

Fault diagnosis can be divided into four parts: obtaining characteristics of faulty sensor data, determining 
adaptive attribute weights based on different environments, diagnosing faults by combining various information 
sources, and improving model parameters using optimization algorithms. The four problems are described as 
follows:

Problem 1: The fault diagnosis model necessitates extracting diverse data features as input attributes. In the 
realm of WSNs, data obtained from distinct sensors exhibit resemblances, encompassing temporal and spatial 
correlations. Upon the failure of a WSN node, these correlation features undergo alterations. Hence, it becomes 
imperative to scrutinize the raw data collected by the sensors and extract data features that bear time-based or 
spatial associations. These extracted features are employed as input variables. The extraction of data features 
can be described by Eq. (2).

The function µ() is employed to denote the extraction of features from the raw data acquired by the WSN, 
where � signifies the parameters involved in this process. Specifically, a1(t),a2(t), ..., aw(t) represents the w attrib-
ute data features over a given time interval, while X denotes the raw data gathered by the sensor device within 
that time duration. The variable t refers to a specific moment within the time interval.

Problem 2: The model is designed to improve the reliability of fixed attribute weights and initialize adap-
tive attribute weights on its basis. The reliability of the information collected by WSN nodes is affected by the 
harsh working environment, which leads to deviation in the input attributes and thus affects the accuracy of 
the attribute weights. In addition, when the diagnostic model is too complex, the update time of the model 
parameters is long, and the timeliness of its modelled attribute weights is limited. Therefore, expert knowledge 
is needed to construct an accurate diagnostic model. The process of building adaptive attribute weights can be 
expressed as Eq. (3).

δij is the adaptive attribute weight, and K represents the total number of rules in the BRB model.δj represents 
the previous fixed attribute weight, � represents the expert knowledge used to initialize the adaptive attribute 
weight, and g() indicates the function for calculating the adaptive attribute weight.

Problem 3: The fault diagnosis model needs to combine multiple sources of information to reason about the 
diagnosis results. Restricted by the monitoring environment of WSNs, a large amount of high-value data cannot 
be collected. The accuracy of models constructed solely from expert knowledge is insufficient. Therefore, it is 
necessary to consider how the different information collected can be aggregated into the following fault diagnosis 
model. This BRB inference process with adaptive attribute weights can be expressed as Eq. (4).

where S(t) is the predicted fault state of the diagnostic system. τ represents the other parameters involved in 
this process.

Problem 4: To enhance the accuracy of diagnosis outcomes, optimization algorithms are essential for refining 
the initial parameters of the model. Due to the high complexity of the working environment of WSNs, experts 
cannot provide highly accurate information to construct the fault diagnosis model, so the initial parameters of 
the model provided by them are not optimal. Therefore, it is necessary to use parameter optimization algorithms 
to improve the parameters. This parameter optimization process can be denoted as Eq. (5).

(1)

Rk : if a1(t) is F1 ∩ a2(t) is F2 ∩ ... ∩ aW (t) is FW

Then result is {(H1,D1), (H2,D2), ..., (HN ,DN )}

with rule weight θk

and attribute weight δ1, δ2...δw

(2)a1(t),a2(t), ..., aw(t) = µ(X,�)

(3)δij = g(δj,�), i = 1, ...,K , j = 1, ...,W

(4)S(t) = f (a1(t),a2(t)...aw(t), τ)
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The optimized parameters are represented by τbest , where τ denotes the parameters to be optimized. The 
optimization algorithm’s parameters are indicated by β , and h() represents the parameter optimization algorithm.

Establishment of the WSN nodes fault diagnosis model based on BRB‑AAW 
The BRB-AAW technique is employed to address the main issues encountered during the fault diagnosis of WSN 
nodes in "Establishment of the WSN nodes fault diagnosis model based on BRB-AAW ". This section will put 
forth resolutions to tackle these predicaments. The structure of the BRB-AAW-based WSN fault diagnosis model 
is described in  "Basic structure of the model", the selection process of data features is recorded in "Extraction of 
data features", the modelling process of BRB-AAW is presented in "Formulation of rules and reasoning process 
of the BRB-AAW ", the optimization process of model parameters by the P-CMA-ES algorithm is documented 
in "Optimization process of the model", and the overall modelling process of the BRB-AAW-based WSN fault 
diagnosis model is illustrated in "Model building process".

Basic structure of the model
The faults of the WSN nodes are diagnosed using the BRB-AAW approach, which involves breaking down the 
diagnosis model into four main components. First, data features that are beneficial for fault diagnosis are extracted 
from the original data. Second, the adaptive input attribute weights, initialized based on expert knowledge, are 
incorporated. The third component comprises the generation of rules and reasoning module, where the rules 
in BRB-AAW are initialized and the reasoning process is performed while considering the adaptive attribute 
weights. Finally, a constrained optimization algorithm is employed to refine the initial parameters of the model, 
in order to obtain more precise diagnosis outcomes. Figure 1 provides an illustration of the fundamental structure 
of the model.

Extraction of data features
To distinguish the types of faults occurring in the nodes, various data features should be derived from the data 
collected by the WSN nodes. In the present study, MeanGap and Kurtosis are used as data features extracted to 
distinguish different types of  faults23, with MeanGap helping to assess overall variability and Kurtosis highlight-
ing extreme observations or critical thresholds in the dataset. In addition, both data features are time-varying 
and can be calculated using Eq. (6).

The MeanGap between moments Q and Q + T can be calculated using Eq. (6). T indicates a time interval.

(5)τbest = h(τ ,β)

Expert

knowledge

Data features were extracted from the raw

data

WSN fault diagnosis model based on BRB-

AAW was constructed

Adaptive attribute weights

Model parameters were initialized

Parameter optimization

WSN fault diagnosis mode was optimized

Observation

data

P-CMA-ES

Static attribute

weights

Figure 1.  Elements of the BRB-AAW model.
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Kurtosis is a critical feature of the number distribution curve that characterizes the degree of sharpness or 
flatness of its peak. It can be calculated using Eq. (7).

The average value of the data is represented by ai  . The standard deviation of the data is denoted by α4.

Formulation of rules and reasoning process of the BRB‑AAW 
After extracting the input data features, the next step is to use the data features as input attributes and then build 
the rules for the BRB-AAW model. The structure of the kth rule Rk is outlined in Eq. (8).

The model has w input attributes denoted by ai(t)(i = 1, 2...,w) , and the set of reference values used to evalu-
ate these attributes is represented by Fi(i = 1, 2...,w) . The BRB-AAW model produces N fault state evaluation 
results, denoted by Hi(i = 1, 2...,N) . Each of these results corresponds to a belief degree θi(i = 1, 2..., k) under 
the kth belief rule. The i − th belief rule has a rule weight of θi , and there are k such belief rules. Additionally, 
δk1 , ..., δ

k
W represents the adaptive attribute weights in the i − th belief rule in the set of adaptive attribute weights 

[

δ11,δ
1
2, ..., δ

1
w

]

, ...,
[

δk1,δ
k
2, ..., δ

k
w

]

 , which is obtained based on the simulation judgment results of data features and 
expert knowledge. Adaptive attribute weights can avoid the influence of unreliable data features in different 
environments.

After completing the rule construction process, the next step is to incorporate the adaptive attribute weights 
into the inference process of the BRB model. This study’s BRB model inference process, considering adaptive 
attribute weights, consists of five distinct steps.

Step 1: The initial step in the inference process involves calculating the matching degree of attributes. This 
is accomplished by inputting attribute data and calculating the corresponding matching degree with reference 
points, utilizing input and reference values as a basis. The calculation process is described by Eq. (9).

The equation encompasses the matching degree of the jth reference value of the ith attribute, denoted as ρji , the 
current value of the input attribute denoted by aj , and the kth reference value of the ith attribute denoted by Fki  . 
This formula can be utilized to compute the degree of match of the attribute reference value when the condition 
represented by Fki ≤ ai(t) ≤ Fk + 1

i  is fulfilled.
Step 2: Initialization of adaptive attribute weights is considered. In this step, the fixed attribute weights are 

initialized to different adaptive attribute weights based on the initialization information provided by expert 
 knowledge24. The initialization process is shown in Eq. (3):

Step 3: The matching degree of the kth rule is computed by computing the attribute matching. Subsequently, 
the match of the rule in BRB needs to be determined. If the match of the rule is nonzero, the rule is activated; 
otherwise, it remains deactivated. Equation (10) illustrates the formula for calculating the matching degree of a 
rule.ρi

k represents the matching degree of the ith attribute in the kth rule.

Step 4: Once the matching degree of the rules has been calculated and the activated rules have been identi-
fied, the next step is to calculate the activation weights of the rules. The activation weights can be computed 
using Eq. (11).

(6)MeanGapi =

∣

∣

∣

∣

∣

∣

∣

∣

∣

w
Q+T
∑

t=Q
ai(t)−

Q+T
∑

t=Q

w
∑

j=1
ai(t)

w(T+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, i = 1, ...,w

(7)
Kurtosisi =

Q+T
∑

t=Q
[ai(t)− ai]

4

(T+1)α4
i = 1, ...,w

(8)

Rk : if a1(t) is F1 ∩ a2(t) is F2 ∩ ... ∩ aW (t) is FW

Then result is {(H1,D1), (H2,D2), ..., (HN ,DN )}

with rule weight θk

and attribute weight δk1 , δ
k
2 , ..., δ

k
w

(9)ρ
j
i=































Fk + 1
i − ai(t)

Fk + 1
i − Fki

, j = K

ai(t)− Fki

Fk + 1
i − Fki

, j = K+1

0,j = 1,2,...,K,j �= K,j �= K+ 1

(10)ρk =

W
∏

i=1

(

ρik

)
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In the equation above, the variable θi represents the weight of the kth rule, while the variable ρi represents 
the matching degree of the same rule. The symbol K  represents the total number of rules in the BRB model. 
Only the rules that are activated have a nonzero activation weight, while the activation weight for nonactivated 
rules is zero.

Step 5: After identifying the activated rules, they are integrated using an ER algorithm to obtain a fused belief 
 degree25. The calculation method for this is demonstrated through Eqs. (13) and (14).

The framework for identifying fault diagnosis models consists of N levels, denoted as N , while the number 
of rules that have been triggered is represented by K . The activation weight of a rule is denoted by ℧i , while the 
belief degree of consequent j in rule i is represented by Dj,i . The expert knowledge determines the initial belief 
degree. By using Eqs. (12) and (13) for calculation, Eq. (14) shows the resulting output.

where p(Hi) is the utility of the ith fault diagnosis, determined by the expert based on the actual fault state. S(t) 
represents the final diagnosis result obtained by the fault diagnosis model.

The above analysis presents an introduction to the inference process of BRB-AAW. Figure 2 illustrates the 
entire inference process in graphical format.

Optimization process of the model
The initial values for rule weights, belief degrees of BRB-AAW, and adaptive attribute weights are determined by 
expert knowledge, as explained in  "Extraction of data features". However, in cases where the model comprises 
a large number of parameters and the experts’ experience and knowledge are insufficient, the initial parameter 
settings may not be reasonable. This could have an adverse impact on the model diagnosis accuracy. To address 
this issue, this paper proposes a model optimization process that employs the projection covariance matrix 

(11)
℧i =

1
K
∑

j=1
θjρj

θiρi , i = 1, 2, ...,K

(13)ψ =





N
�

n=1

K
�

i=1



℧iDn,i + 1− ℧i

N
�

j=1

Dj,i



− (N − 1)

N
�

i=1



1− ℧i

N
�

j=1

Dj,i









−1

(14)Dn = ψ

[

K
∏

i=1

(

℧iDn,i + 1− ℧i

N
∑

j=1
Dj,i

)

−
K
∏

i=1

(

1− ℧i

N
∑

j=1
Dj,i

)]

1− ψ
K
∏

i=1

(

1− ℧i

N
∑

j=1
Dj,i

)

(14)S(t) =

N
∑

i=1

p(Hi)Di

Adaptive attribute weights of the

input attributes are determined

Expert knowledge

Observation data

Data features were extracted

Model parameters were initialized and

model rules wereintegrated through ER

Optimized Parameters

Fault DiagnosisModel

P-CMA-ES optimization algorithm

Figure 2.  Reasoning process of the BRB-AAW.
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adaptive evolution strategy (P-CMA-ES) to optimize the model  parameters26,27. The optimized parameters that 
require optimization must satisfy the following conditions.

To optimize the model, the objective function employed is the mean square error (MSE), represented by MSE. 
Equation (15) provides the expression for this objective function.

Once the parameters to be fine-tuned and the constraints have been established, it is necessary to define a 
metric that reflects the efficacy of the optimization. Suppose that the outcome of the optimization procedure is 
S(t)expected , whereas the initial output from the dataset for training purposes is S(t) . Based on the analysis above, 
the optimization process of the model can be interpreted as the quest for the minimum threshold of the mean 
square error (MSE) between the predicted results and the actual results. The MSE is calculated using Eq. (16), 
where NUM signifies the count of data points employed in the optimization of the parameters. The optimization 
of model parameters is carried out using the P-CMA-ES algorithm, which is illustrated in Fig. 3.

Model building process
Upon analysing the contents of this section, the process of creating a WSN node diagnostic fault model using 
BRB-AAW can be broken down into the following steps, as shown in Fig. 4:

Step 1: Extract the WSN node’s data features from the original data and employ them as the initial attributes 
of the BRB-AAW model.

Step 2: Improve the static attribute weights and obtain reasonable attribute weights based on expert knowledge.
Step 3: The parameters are given initial values, and rules are integrated by the ER parsing algorithm.
Step 4: To enhance the diagnostic accuracy of the model, the initial parameters are optimized using the 

P-CMA-ES algorithm.

Case study
Within this section, a comparative analysis is performed between BRB-AAW and other fault diagnosis methods 
using sensor data sourced from Intel Berkeley Research Lab. The findings demonstrate a notable enhancement 
in the accuracy of fault diagnosis results for WSN nodes when utilizing the BRB-AAW method. The sensor 
distribution is shown in Fig. 5. The necessary information for the Intel Labs data is shown in Table 2. The process 
of obtaining the observed data and the fault identification framework setup is formulated in "Dataset setting", the 
initial parameters needed for the BRB-AAW model are calculated in "Construction of the BRB-AAW model", 
the metrics observed in the example are documented in  "Training and testing of the model", the results of 
the comparisons between the parameter optimization algorithms are shown in "Comparison of optimization 
algorithms", the results of the comparative experiments with multiple metrics are shown in  "Results of the 
experiment", and the comparison of the BRB and the BRB-AAW with the multiple rounds of the control variable 
experiments are documented in  "Comparison with other methods".

Dataset setting
Step 1: The dataset undergoes preprocessing to establish the diagnostic result set of the model. It comprises 
thermal conditions, atmospheric moisture, brightness, and electrical potential data gathered by sensors deployed 
within a laboratory room. Taking into account the sensor arrangement and the trajectory of the data 28, tempera-
ture readings collected by sensors 1 through 4 recorded between March 1 and 7 were selected for further analysis. 
Preprocessing is necessary due to data gaps. Furthermore, to showcase the model’s capacity to effectively address 
noisy data, Gaussian noise is added during dataset simulation.

After processing, the dataset comprises a total of 2016 data points with a 5-min interval between successive 
records. Figure 6 illustrates the temperature data recorded by sensors 1 through 4.

Step 2: This paper endeavors to identify sensor states, including normal, fixed-value faults, outlier faults, 
high-noise faults, and offset faults. To achieve this, the simulation of the aforementioned five sensor state types 
on sensor 1 was carried out using a software-based approach that aligns with specific characteristics of faults. The 
technique employed for simulating state data is presented in Table 3, and Fig. 7 illustrates the resulting simulated 
state data. In Fig. 7, 1–399 indicates normal data, and 400–799 indicates offset fault data. 800–1199 is high noise 
fault data, 1200–1599 is abnormal value fault data and 1600–2016 is fixed value fault data.

(15)

minMSE(τ )

s.t.

N
∑

n=1

Dn,i ≤ 1, i = 1, 2, ...,K

0 ≤ Dn,i ≤ 1, n = 1, 2, ...,N , i = 1, 2, ...,W

0 ≤ θi ≤ 1, i = 1, 2, ...,K

0 ≤ δ
j
i ≤ 1, i = 1, 2, ...,W , j = 1, 2, ...,K

(16)
MSE(τ) =

NUM
∑

i=1

(

S(t)expected − S(t)
)2

NUM
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Step 3: According to the dataset in the case study, the framework for identifying fault diagnosis models 
produces five separate states: normal states (NS), offset faults (OSF), high noise faults (HNF), outlier faults 
(OLF), and fixed value faults (FVF). These states are defined by Eq. (17), with their respective reference values 
provided in Eq. (18).

(17){NS,OSF,HNF,OLF, FVF}

Figure 3.  Optimization process using the P-CMA-ES algorithm.
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Adaptive attribute weights of the

input attributes are determined

Expert knowledge

Observation data

Data features were extracted

Model parameters were initialized and

model rules wereintegrated through ER

Optimized Parameters

Fault DiagnosisModel

P-CMA-ES optimization algorithm

Figure 4.  BRB-AAW-based fault diagnosis model for WSN nodes.

Figure 5.  Distribution of laboratory sensors.

Table 2.  Information about the dataset.

Parameter Information

Acquisition time February 28, 2004—April 5, 2004

Collection location The Intel Berkeley Research lab

Sensor type Mica2Dot sensors with weatherboards

Data acquisition system TinyDB5431

Number of sensors 54

Acquisition interval 31 s

Collecting information Temperature, humidity, light, and voltage

Data size 2.3 million
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Construction of the BRB‑AAW model
Step 1: Following data preparation, the data features were extracted utilizing the approach outlined in "Dataset 
setting". Specifically, the MeanGap and Kurtosis were extracted as input features of the model. The duration for 
feature extraction was set to 12, and the resulting features were normalized. Figure 8 illustrates the extracted data 
features. The mean gap data feature in the 800–1199 part of Fig. 8 is more effective in distinguishing between 
differentiated fault types than the Kurtosis data feature in the same part of Fig. 8. Therefore, this serves as an 
important basis for expert knowledge to provide the set of adaptive attribute weights.

Step 2: After the extraction of data features, it is necessary to determine the reference values and reference 
points for each attribute. To accomplish this, the data distribution characteristics of Figs. 8 and 9 were considered. 
Specifically, benchmark values and reference points for the MeanGap and Kurtosis were established. For the 
MeanGap, reference points were established as small (S), relatively small (RS), medium (M), relatively large (RL), 
and large (L), with corresponding reference values presented in Table 4. Conversely, Kurtosis was characterized 
by reference points of small (S), relatively small (RS), relatively large (RL), and large (L), with associated reference 
values displayed in Table 5.

Step 3: The optimization of other parameters of the model is performed by applying the P-CMA-ES approach 
described in "Optimization process of the model". The optimized parameters are presented in Table 6, where 
each row corresponds to a rule. After optimization, the model inference process described in "Formulation of 
rules and reasoning process of the BRB-AAW " is employed in conjunction with the optimized parameters for 
the purpose of sensor fault diagnosis and result generation.

(18){0, 1, 2, 3, 4}

Figure 6.  Sensor data after preprocessing.

Table 3.  Fault simulation methods.

Fault type Simulation Method

Offset faults Random numbers within the range of [0, 10] were added to the data between sample numbers 400 and 799 by means of 
superimposition

High noise faults The dataset consisting of sample numbers 800 to 1199 is created by adding random numbers from the range of [10, 20] 

Outlier faults A random number generator was used to replace 10% of the data in the sample range of 1200 to 1599 with values in the 
interval of [0, 40]

Fixed faults The data collected is kept constant at the value measured immediately prior to the occurrence of the fault
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Training and testing of the model
Training data and iterative data are determined, and data features are extracted from the simulated fault data. The 
data samples are randomly divided into 3:7, 4:6, 5:5, 6:4, 7:3, and 8:2 according to the commonly used training 
and test set ratios.

Figure 7.  Sensor data after adding Gaussian noise.

Figure 8.  Mean gap data feature image.
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Figure 9.  Comparative results of optimization algorithms.

Table 4.  Reference value of mean gap.

Reference point S RS M RL L

Reference value −0.001 0.184 0.358 0.700 1.001

Table 5.  Reference value of kurtosis.

Reference point S RS RL L

Reference value −0.001 0.184 0.700 1.001

Table 6.  Tolerance range parameters of data features.

Input attributes Diagnostic results Average value Standard deviation

Mean gap

NS 0.2333 0.0213

OSF 0.4633 0.0405

HNF 0.8723 0.0563

OLF 0.2236 0.0702

FVF 0.4071 0.0987

Kurtosis

NS 0.1715 0.1084

OSF 0.1085 0.0571

HNF 0.1018 0.0519

OLF 0.5866 0.2924

FVF 0.0090 0.0917
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The evaluation criteria for the fault diagnosis model are established. To assess the effectiveness of the method, 
the evaluation metrics chosen include overall accuracy, false negative rate (FNR), false positive rate (FPR), true 
positive rate (TPR), true negative rate (TNR), and precision. In this context, samples without faults are considered 
negative samples, while samples with faults are considered positive samples. The equations representing these 
metrics are provided as follows: Eq.  (19) for Accuracy , Eq. (20) for FNR , Eq. (21) for FPR , Eq. (22) for TNR , Eq. 
(23) for TPR , and Eq. (24) for Precision.

The variable NUMbrochure indicates the quantity of correctly diagnosed samples by the model. The term 
NUMright refers to the overall number of samples analysed.

The variable FN represents the quantity of samples that were falsely diagnosed as negative, while TP indicates 
the number of samples that were accurately diagnosed as positive.

The variable FP denotes the quantity of samples that were falsely diagnosed as positive, while TN indicates 
the number of samples that were correctly diagnosed as negative.

The variable TN denotes the quantity of samples judged negative and actually negative.

The variable TP denotes the quantity of samples judged positive and actually positive, while TN indicates the 
number of samples that were correctly diagnosed as negative.

Comparison of optimization algorithms
Expert knowledge is utilized to set parameters such as adaptive attribute weights and rule weights, but these initial 
parameter settings may not be the best. Therefore, optimization algorithms are employed to achieve more precise 
diagnosis results. Three common optimization algorithms for BRB, namely, particle swarm optimization (PSO), 
the genetic algorithm (GA), and the P-CMA-ES method, are tested on six distinct datasets of varying sizes, as 
described in  "Training and testing of the model". The test outcomes are illustrated in Fig. 9. First, the GA exhibits 
the highest MSE value and the least favorable optimization effect. The PSO algorithm and P-CMA-ES algorithm 
yield similar MSE values. Second, in terms of optimization time, the GA algorithm and P-CMA-ES algorithm 
demonstrate comparable performance. However, the GA exhibits an excessively high MSE value. Finally, the 
P-CMA-ES algorithm emerges as the most effective optimization algorithm for the model. The optimized results 
are presented in Table 7.

Results of the experiment
To verify that the BRB-AAW-based WSN node fault diagnosis method can effectively reduce the influence of 
noisy data on the WSN node fault diagnosis process, experiments were conducted using BRB-AAW, artificial 
neural network, Gaussian regression, SVM, decision tree, and boosting tree at different ratios of training samples 
to test samples. In addition to the above methods, it can be compared with algorithms such as logistic regression, 
plain Bayesian classifier, K-nearest neighbor classification, and K-mean clustering, and the comparison metrics 
include the overall accuracy, false negative rate (FNR), false positive rate (FPR), true positive rate (TPR), true 
negative rate (TNR), and precision. The experimental results are presented in Fig. 10. Indicators data for different 
methods at different ratios of training samples to test samples can be seen in Table 8.

Comparison with other methods
To assess the effectiveness of the method proposed in this paper and the advancements made by the BRB method, 
a comparison with other methods was carried out. The fault diagnosis results were compared to those obtained 
using the BRB method, as illustrated in Fig. 11. The average values of the assessment indicators for each method 
are presented in Fig. 12. Taking the ratio of training samples to test samples as 7 to 3 as an example, the values 
of all assessment metrics of each method are shown in Fig. 13.

(19)Accuracy =
NUMright

NUMbrochure

(20)FNR =
FN

TP + FN

(21)FPR =
FP

FP + TN

(22)TNR =
TN

TN + FP

(23)TPR =
TP

TP + FN

(24)Pr ecision =
TP

TP + FP
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Upon conducting a comparison between the outcomes of the BRB-AAW and BRB, it becomes apparent that 
the BRB-AAW values more accurately reflect the real scenario, particularly when the standard value is 0. The test 
results indicated that BRB-AAW’s overall accuracy, narrow neural networks, and SVM were 92.25%, 90.29%, and 
87.98%, respectively, while the corresponding values for BRB were 90.24%, 23.35%, and 1.09%29. The scattered 
diagnostic results of the BRB approach can be attributed to the use of static attribute weights, which can lead to 
incorrect fault type identification based on attribute weights. To address this issue, adaptive attribute weights 
are obtained by improving static attribute weights, which enhances the relevance of diagnosis and effectively 
identifies fault types.

Based on the comparison of evaluation indexes among different methods, the following conclusions can be 
drawn. First, the BRB-AAW and BRB methods generally outperform other approaches in relation to Accuracy . 
Second, the BRB-AAW method exhibits a low occurrence of false positives, which reduces the likelihood of nodes 
being misdiagnosed as faults. Finally, there are minor discrepancies in the false-negative rate across all methods, 
fluctuating by approximately 1.3% or less, and there are no significant differences observed.

These results can be attributed to several factors. First, the BRB-AAW method incorporates adaptive attribute 
weights and enhances the calculation methodology for attribute weights, enabling the identification of reliable 
fault types and more precise adaptive attribute weights. Second, the reasoning approach employed by BRB-AAW 
is similar to that of BRB and can effectively deal with ambiguous information, including vagueness, unpredict-
ability, and ignorance. Finally, the configuration of the model parameters for BRB-AAW is based on expert 
knowledge and experience, resulting in more reasonable parameter values. The synergistic effect of these factors 
contributes to the improved accuracy of diagnosis in the BRB-AAW method.

Conclusion
After analysing the relevant literature, there are three problems with the current fault diagnosis methods used for 
WSNs. First, these methods do not take into account the effect of environmental noise on sensor readings during 
fault diagnosis. Second, the neural network-based methods require a large number of uniform fault samples to 
train the model parameters, which makes them less practical. Finally, the attribute reliability calculation of BRB 
methods cannot consider unreliable data with large variations in attribute values in the middle section, which 
leads to inaccurate fault diagnosis. To address these drawbacks, in this paper, the BRB-AAW model is proposed 
as a fault diagnosis method.

Nevertheless, the BRB-AAW method has some limitations. Future research will focus on solving the combi-
national explosion problem in the BRB-AAW model by reducing the number of rules. A network structure with 
a BRB will also be designed to minimize the number of rules per submodule and help parameter initialization. 
In addition, the construction method of the BRB network structure will be explored and designed to enhance 
its model consistency with the underlying working mechanism.

Table 7.  Optimized model parameters.

Ruler number

Input attributes

Rule weight

Belief distribution

MeanGap Kurtosis {NS, OSF, HNF, OLF, FVF}

1 S S 0.16930.3636 0.21816, 0.09817, 0.27579, 0.13844, 0.26944

2 S RS 0.4936 0.0024, 0.40539, 0.01229, 0.03631, 0.54362

3 S RL 0.9784 0.0623, 0.06429, 0.06813, 0.41309, 0.39219

4 S L 0.9234 0.09458, 0.135282, 0.065474, 0.12399, 0.580676

5 RS S 0.0062 0.0448, 0.517374, 0.00352, 0.000652, 0.433654

6 RS RS 0.0118 0.99599, 0.00193, 0.00006, 0.00172, 0.00031

7 RS RL 0.0028 0.36190, 0.36689, 0.25268, 0.00607, 0.01246

8 RS L 0.0002 0.30607, 0.07011, 0.12829, 0.10386, 0.39168

9 M S 0.8700 0.00050, 0.00036, 0.00189, 0.00124, 0.99601

10 M RS 0.0001 0.63492, 0.05458, 0.09995, 0.15465, 0.05589

11 M RL 0.0033 0.22425, 0.07192, 0.08152, 0.26334, 0.35897

12 M L 0.0082 0.02146, 0.17697, 0.07801, 0.11676, 0.60680

13 RL S 0.0094 0.88110, 0.07109, 0.04148, 0.00366, 0.00267

14 RL RS 0.0723 0.45348, 0.30286, 0.03648, 0.01569, 0.19148

15 RL RL 0.2681 0.47403, 0.19242, 0.21118, 0.0733, 0.04904

16 RL L 0.0964 0.21497, 0.18619, 0.08708, 0.38059, 0.13118

17 L S 0.7690 0.00430, 0.09177, 0.34379, 0.52273, 0.03741

18 L RS 0.9867 0.00018, 0.56913, 0.11641, 0.03250, 0.28178

19 L RL 0.9347 0.08987, 0.35595, 0.10905, 0.13588, 0.30925

20 L L 0.3636 0.08792, 0.17882, 0.23044, 0.05537, 0.44745
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Figure 10.  Experimental results for different ratios of training samples to test samples.
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Table 8.  Indicators data for different methods at different ratios of training samples to test samples.

indicators Methods 8:2 (%) 7:3 (%) 6:4 (%) 5:5 (%) 4:6 (%) 3:7 (%) Average (%)

Overall accuracy

BRB-AAW 93.77 92.18 91.15 92.32 92.85 91.23 92.25

BRB 91.02 90.68 89.65 89.82 91.02 89.52 90.29

Narrow neural networks 91.27 89.02 88.15 89.72 89.03 86.96 89.02

Squared exponential Gaussian regression 89.78 88.85 89.90 88.82 88.45 87.88 88.95

SVM 90.27 89.52 89.78 88.42 85.62 84.25 87.98

Decision trees 90.77 89.52 89.53 87.03 86.03 83.68 87.76

Boosting tree 89.03 85.04 87.53 88.22 87.95 86.46 87.37

False negative rate

BRB-AAW 1.78 1.43 1.08 2.35 2.67 1.15 1.74

BRB 0.30 0.41 1.23 1.37 1.86 1.34 1.09

Narrow neural networks 0.93 1.47 0.78 1.67 1.25 0.89 1.16

Squared exponential Gaussian regression 0.64 1.67 1.57 0.63 1.68 0.89 1.18

SVM 1.24 1.90 2.07 2.49 1.36 0.81 1.65

Decision trees 0.97 1.22 1.08 1.62 2.17 0.35 1.23

Boosting tree 1.59 2.54 1.52 1.38 1.86 1.52 1.73

False positive rate

BRB-AAW 14.06 11.71 25.83 8.21 10.04 17.54 14.56

BRB 22.22 26.27 24.34 24.37 19.15 23.76 23.35

Narrow neural networks 19.48 16.13 31.85 20.63 25 36.50 24.93

Squared exponential Gaussian regression 23.86 26.23 23.17 32.20 26.09 31.05 27.10

SVM 24.05 20.31 15.61 21.61 33.60 43.10 26.38

Decision trees 23.08 23.15 27.27 17.68 20.68 56.18 28.00

Boosting tree 9.30 10.47 14.48 12.81 10.30 19.08 12.74

True positive rate

BRB-AAW 95.43 94.24 94.05 93.78 94.53 94.31 94.39

BRB 92.32 91.97 91.76 90.97 91.26 91.04 91.55

Narrow neural networks 91.45 91.31 90.87 90.01 89.97 88.56 90.36

Squared exponential Gaussian regression 90.79 89.73 88.56 88.99 87.78 87.06 88.82

SVM 91.07 89.43 88.92 87.45 85.23 85.14 87.87

Decision trees 90.08 89.32 88.76 86.43 84.76 83.35 87.12

Boosting tree 89.78 88.76 86.23 87.89 87.94 86.73 73.07

True negative rate

BRB-AAW 93.78 92.07 94.11 93.92 93.87 93.99 93.62

BRB 92.14 93.12 91.89 91.76 91.38 90.83 91.85

Narrow neural networks 92.18 91.73 90.60 90.32 89.21 88.18 90.37

Squared exponential Gaussian regression 91.32 91.03 89.12 87.13 87.98 87.37 88.99

SVM 90.78 89.77 87.99 87.21 85.39 85.02 87.69

Decision trees 91.98 91.20 89.93 87.92 88.08 86.68 89.30

Boosting tree 89.39 90.82 89.73 87.12 84.46 85.08 87.77

Precision

BRB-AAW 85.78 87.07 85.91 86.72 86.97 86.69 86.52

BRB 83.14 82.92 82.39 82.33 81.98 80.73 82.25

Narrow neural networks 79.28 78.93 78.62 79.22 79.27 77.12 78.74

Squared exponential Gaussian regression 78.22 79.27 79.32 77.98 78.02 78.17 78.50

SVM 76.28 75.60 74.92 73.93 72.79 70.07 73.93

Decision trees 72.53 75.27 77.26 74.91 74.18 72.88 74.51

Boosting tree 73.69 73.02 72.73 72.82 72.36 75.87 73.42
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Figure 13.  All results of BRB-AAW compared to other methods at the same training to test sample ratio.
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