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Adaptive estimation 
of the Gutenberg–Richter b 
value using a state space model 
and particle filtering
Daichi Iwata 1* & Kazuyoshi Z. Nanjo 2,3,4,5

Earthquakes follow an exponential distribution referred to as the Gutenberg–Richter law, which 
is characterized by the b value that represents a ratio of the number of large earthquakes to that 
of small earthquakes. Spatial and temporal variation in the b value is important for assessing the 
probability of a larger earthquake. Conventionally, the b value is obtained by a maximum-likelihood 
estimation based on past earthquakes with a certain sample size. To properly assess the occurrence of 
earthquakes and understand their dynamics, determining this parameter with a statistically optimal 
method is important. Here, we discuss a method that uses a state space model and a particle filter, as 
a framework for time-series data, to estimate temporal variation in the b value. We then compared 
our output with that of a conventional method using data of earthquakes that occurred in Tohoku 
and Kumamoto regions in Japan. Our results indicate that the proposed method has the advantage 
of estimating temporal variation of the b value and forecasting magnitude. Moreover, our research 
suggests no heightened probability of a large earthquake in the Tohoku region, in contrast to previous 
studies. Simultaneously, there is the potential of a large earthquake in the Kumamoto region, 
emphasizing the need for enhanced monitoring.

The magnitude frequency of earthquakes follows an exponential distribution, and when the magnitude is con-
verted to seismic energy, it follows a power-law distribution, the Gutenberg–Richter (GR) law in which the 
number of earthquakes with a magnitude over M, n(M), is approximated as follows: log n(M) = a− bM (ref.1). 
The a value represents seismic activity or earthquake productivity while the b value represents the slope of the 
exponential or the power-law distribution and indicates a ratio of the number of large earthquakes to that of 
small earthquakes. Spatial and temporal variations in the b value are known to indicate structural heterogeneity, 
strength, and temperature within the seismicity area2–4. Experimental research demonstrated a negative correla-
tion between the b value and differential stress in controlled laboratory settings5. Furthermore, observational 
research revealed an inverse association between the b value and the slip-deficit rate at plate boundaries6. These 
findings suggest that detailed analysis of the b value could allow it to serve as a stress proxy, potentially aiding in 
the identification of asperities or highly stressed regions at the plate boundary where future large earthquakes 
are expected to occur. Hence, accurate and real-time estimation is important for assessing the probability of a 
larger earthquake.

The b value of the GR law is conventionally estimated based on the maximum likelihood estimation (see 
Eq. (1) in Calculating method for the b value of the Methods section)7. The maximum likelihood method for the 
b value, which requires calculating the mean magnitude of earthquake samples, is controlled by sample size, as 
a parameter called ‘window width’, which has a temporal meaning in the present study.

In terms of the logarithmic linear fitting of a power-law distribution, the average error of the estimated 
scaling parameter is reduced to less than 1% once sample size exceeds 50 (ref.8), and 50 events were adopted as 
the minimum number of events for stable b value estimation in various studies4,9,10. Furthermore, a previous 
study11 illustrated that a more robust estimation of b value stability requires the inclusion of a space-time window 
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encompassing 100 earthquakes. Complementing these findings, it has been proposed that a minimum of 200 
events is essential to compute the b value10,12. More recently, a suggested minimum data volume of 300 events 
was required for accurate b value estimation13. Although a large window width can provide statistically accurate 
estimates, it provides a lower time resolution, making it difficult to estimate the detailed temporal properties of 
the b value. Conversely, a smaller window width, while offering higher resolution of time, may lead to less statisti-
cally accurate estimates due to a reduced data volume. The optimal window width of the conventional method 
for estimating the b value needs to be set to an appropriate value between a large window width and a small 
one. Furthermore, seismic activity varies in time, suggesting that the optimal window width also varies in time.

The state space model is an elegant statistical framework for describing time series data, with practical applica-
tions in various research fields due to its flexibility for interpreting observed data14–18. Simple state space models, 
such as linear and Gaussian type models, can be estimated efficiently using the Kalman-filter19. A nonlinear and 
non-Gaussian state space model, in which the Kalman-filter might not be effective, can be estimated using a 
particle filter, also known as the sequential Monte Carlo method. The particle filter approximates the posterior 
probability density function of the state variables using a set of particles, in which each particle represents a 
possible state of the system and its weight reflects the likelihood of the observations14,15,17. A flexible and widely 
applicable method that combines a state space model and a particle filter enables real-time estimation that 
robustly follows unsteady-changing objects such as the b value of the GR law. This enables real-time forecasting 
of seismic activity.

In this study, we propose such a method to estimate the temporal variation in the b value. The parameter, 
which corresponds to the window width of the conventional method and determines the ability to adapt to varia-
tion in the b value, is automatically adjusted from the data to the optimum value in our method. To demonstrate 
our method’s effectiveness for real-time monitoring of the b value, we incorporated earthquake data before and 
after the 2011 Tohoku earthquake (Fig. 1a) and the 2016 Kumamoto earthquake (Fig. 1b). Previous studies sug-
gested a rise in b values in these regions following the main shock, but these subsequently decreased to lower 
levels, implying an increase in probability of a larger earthquake2,20. Therefore, we also estimated the b value with 
our proposed method using more recent data, under the same regional and magnitude conditions as previous 
studies2,20, and evaluated whether the b value remained low, thus indicating a high probability of a large earth-
quake. Moreover, we assessed the ability of forecasting magnitude compared to using the conventional approach.

Results
Comparison of methods for estimating the b value
Figure 2 shows a comparison of estimated b values using a particle filter, the simple moving averages with a fixed 
length of 200 events (SMA-200), and the weighted average of the conventional method (WAC-opt). The b value was 
determined for every earthquake event. Figure 2a and 2b are results for data of two areas, the 2011 Tohoku earth-
quake (M 9.0; 11 March 2011) and the 2016 Kumamoto earthquake (M 7.0; 16 April 2016), respectively. Details 
of analytical conditions for the data are described in the earthquake catalog section of the Methods. It should be 
noted that the estimated b value at each time point was calculated based exclusively on previous data and was not 
influenced by subsequent data. In both datasets, before and after the Tohoku earthquake (Fig. 2a) and before and 
after the Kumamoto earthquake (Fig. 2b), the b value estimated by the particle filter reveals more detail of temporal 
variations than the moving average based on the conventional method. The estimated b value for the dataset before 
and after the 2011 Tohoku earthquake indicates similar fluctuations for the WAC-opt and particle filter methods 
(Fig. 2a). In contrast, the estimated b values for the dataset before and after the Kumamoto earthquake indicates 
a smaller fluctuation in the WAC-opt compared to the particle filter method (Fig. 2b). The particle filter method 
enabled us to capture the uncertainty of estimation, and the credible interval of the b value’s posterior distribution 
using Bayesian statistics (filled area in Fig. 2a, b). The procedure for calculating the posterior distribution using 
the particle filter is presented in the Methods section (see Algorithm for particle filter for details).

The conventional method to estimate the b value using a time window (e.g., SMA in Fig. 2) can also be used 
to evaluate its uncertainty, such as the statistical approach11 and the bootstrap method21. The methodologies for 
assessing the uncertainty of the b value involve statistical assumptions, statistical independence within a time win-
dow, and the same sample weight. It is important to note that the term ‘uncertainty’ in the method of uncertainty 
estimation and our proposed methods refer to statistically different concepts. The uncertainty that Shi and Bolt 
referred to11 is based on the asymptotic behavior of the variance of a score function, assuming that data within 
the same time window independently follow an exponential distribution. In contrast, the bootstrap method21 
does not require parametric assumptions and evaluates the variability in estimates of the b value through resa-
mpling, assuming data independence within the same distribution. The state space model and particle filter in 
our method, grounded in Bayesian statistics, differs from these as it provides the posterior distribution of the b 
value. Being based on a time series model, the estimated uncertainty indicates uncertainty exclusively at time t.

Moreover, more detailed characteristics of the temporal variation of the b value were clarified by applying the 
particle filter method, resulting in a better forecast of the magnitude. Before the 2011 Tohoku earthquake, the 
b value had been decreasing over time. This long-term decreasing trend of the b value in Tohoku is consistent 
with that observed in previous studies based on the conventional method2,22. In addition to these characteristics, 
the more detailed variation of b estimated in this study suggests that the decreasing trend was not a monotonic 
decrease, but instead a stepwise decreasing variation associated with the occurrence of earthquakes with a mag-
nitude of about 4 to 6. Moreover, the trend did not recover to the original level afterwards, i.e., at the end of 2008 
and before the 2011 Tohoku earthquake. After the 2011 Tohoku earthquake, an opposite pattern was observed, 
namely an increase in the b value after the main shock, with a recovery to its original level about 2 years later.

Variation of the b value before the 2016 Kumamoto earthquake indicates little change, consistent with the 
findings of a previous study23. After the 2016 Kumamoto earthquake, the b value increased to about 1.0, finally 
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equilibrating at around 0.8, which is the level between 2000 and 2016. Focusing on more detailed patterns, a 
tendency to oscillate can be seen between 0.6 and 0.8, from a sharp decrease to a slight increase after earthquakes, 
when dividing the time line into three periods: 2000–2006, 2006–2011, and 2011–2016.

Evaluating performance of the estimated b value for forecasting magnitude
The evaluation of estimated b values raises a fundamental question: How can these estimations be accurately 
assessed? It is important to note that b values are not directly measurable; instead, they are inferred from observed 
magnitudes. One approach to evaluate the precision of b value estimations involves generating artificial data, 
which includes b values and corresponding magnitudes, and then comparing the estimated results with the true 
values within this dataset24. We utilized this approach with artificial data, which implied the effectiveness of 
our proposed method (see Supplementary Figs. S6, S12 and S13 and Supplementary Materials S2 for details). 
However, it remains unclear whether these results are equally valid when applied to actual observational data. 
Therefore, instead of evaluating the accuracy of the b value estimates, we assessed how close the magnitudes 
predicted based on these estimated b values were.

Figure 3 shows the ability of earthquake magnitude forecasting based on the estimated b values using the 
particle filter and conventional methods. The performance of magnitude forecasting was evaluated by comparing 

Figure 1.   Study regions in (a) Tohoku and (b) Kumamoto. Earthquakes bounded by black rectangular and 
white areas in the top panel in a and b were used to create Fig. 2, and Fig. 4, respectively. Circles in the top 
panels indicate earthquakes with a magnitude greater than 5.0 (a) and 4.0 (b). Red stars show the epicenter of 
the 2011 Tohoku earthquake and 2016 Kumamoto earthquake. Orange lines in b indicate active faults. Bottom 
panels: zoomed areas are displayed with all earthquakes used to estimate the b value with a magnitude greater 
than 2.5 (Tohoku) and 2.0 (Kumamoto). This map was generated using Generic Mapping Tools (version 6.2.0, 
https://www.generic-mapping-tools.org/).
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loss (Fig. 3), which represents the difference between the number of events that exceeded the q-th quantile of 
predictive distribution of magnitude, meaning predictive distribution calculated based on Bayesian statistics, 
and the expected number of such events, as described in the Method section and Supplementary Fig. S4.

For the dataset of Tohoku earthquakes, the results of the particle filter (red marks in Fig. 3a) at quantiles of 
0.3 and 0.35 tend to indicate less loss than the conventional method (blue marks in Fig. 3a). For the dataset of 
Kumamoto earthquakes, the results of the particle filter (red marks in Fig. 3b) at each quantile tend to indicate 
less loss than the conventional method (blue marks in Fig. 3b). The loss of the conventional method strongly 
depends on the window width and indicates a large deviation among the results at each q-th quantile. On the 
other hand, the loss of the particle filter-based method indicates a similar value at each q-th quantile. Therefore, 
the particle filter method indicates a better forecast of magnitude than the conventional method.

The magnitude completeness Mc level has a critical impact on b value estimation, as highlighted for instance 
by a study by Tormann et al.2. Hence, to evaluate the influence of Mc in estimating the b value, instead of cal-
culating Mc for different periods to estimate the b value, we fixed Mc to a single value for the entire dataset and 
conducted a similar analysis (Supplementary Fig. S10). The results of this analysis particularly show that in the 
analysis of the dataset from the Tohoku datasets, the loss using traditional methods is significantly high (Sup-
plementary Fig. S10) compared to the results in Fig. 3a. For both datasets, the results of the analysis in which Mc 
was fixed to a single value indicate less loss of the proposed method than that of the conventional method. These 
findings suggest that the proposed method might estimate the b value more robustly and with less influence by 
the accuracy of the Mc setting than the conventional method.

Discussion
The conventional method of maximum likelihood estimation is limited to a constant b value and does not 
consider its time-series structure. In contrast, the method based on the state space model and particle filtering 
assumes the time-series structure and can adapt to temporal variation of the b value. Supplementary Fig. S5 
illustrates the optimal window width for the conventional moving average method based on WAC-opt. The graph 
indicates that the appropriate window width for the conventional moving average method dynamically varies 
throughout the observation period (e.g., 2008–2012 in the Tohoku case Supplementary Fig. S5a, and 2004–2008 
in the Kumamoto case Supplementary Fig. S5b). In the method of the state space model using the particle filter, 
the system equation represents the dynamics of the b value. The parameter σlog b in the system equation controls 
the degree of variation of the b value (see description of Models 1–4 in the Method for details). Adjusting σlog b 
to an appropriate value for each observation enables the model to adaptively follow variations in the b value. 
Specifically, incorporating a truncated normal distribution into the dynamics of σlog b in Models 3 and 4 allows 
adaptation to those changes in the b value. Hence, the particle filter estimation provides the temporal variation of 
the b value more adaptively and more accurately, relative to the conventional method for estimating the b value.

Figure 4 shows b value estimation using earthquake data with the same regions and magnitudes as those 
employed in previous studies2,20. This analysis also incorporated data of time periods subsequent to those 
examined in those studies. In the Tohoku region, it was reported that the b value increased after the 2011 Tohoku 
earthquake, and then showed a gradual declining trend until around 20152. However, our analysis shows that the 

Figure 2.   b value of the GR law estimated with a particle filter and a conventional method. (a) Tohoku and (b) 
Kumamoto cases. a, Earthquakes in the black rectangle in Fig. 1a were used. b, Same as a for Fig. 1b: Black line 
and filled area indicate median and 50% area of the posterior distribution of the b value estimated by a particle 
filter (Model 1: Eqs. (8) and (9) in Methods. The results of Models 2–4 are displayed in Supplementary Fig. S1–
S3). Green dashed and blue dotted lines indicate the b value estimated by conventional method SMA-200 and 
the WAC-opt (see Methods for details), respectively. The gray dotted line around SMA-200 indicates the 50% 
confidence interval of the b value computed by bootstrapping21. The stem plot in a and b shows the magnitude 
of earthquakes. The magnitudes of the Tohoku and Kumamoto earthquakes are highlighted by circles.
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b value displays an upward trend from around 2015 until 2022, varying at around a value of 1.2 and 1.4 at the 
end of the data series (Fig. 4a). The latest level of the b value suggests that the increase in probability of a large 
earthquake, which was a concern in a previous study2, might not be high. In the Kumamoto region, a decrease 
in the b value at around the Hinagu faults zone (white circle in Fig. 1b) from immediately after the Kumamoto 
earthquake until 2019 was indicated in a previous study20. The result of our analysis indicates that the b value 
has continued to remain at a relatively low level since 2019 (Fig. 4b). This result lends support to the possibility 
that an increase in probability of a large earthquake in the Hinagu faults zone, which was a concern in a prior 
study20, might still exist. This suggests the need for enhanced monitoring in this area.

With conventional methods, the estimated b values and the predicted distribution of magnitudes could 
be significantly different if the underlying process changes before the next earthquake occurs. This is because 
traditional methods focus only on what happened within a past window of samples, without any estimation of 
how b values could dynamically change, assuming that the current state of b values will persist until the next 
earthquake. In contrast, our method based on the state space model assumes that b values change according to 
dynamics, as represented in the model (e.g., Eqs. (8) and (11) in Methods). This allows us not only to update 
estimates from past time t − 1 to the present time t, but also to predict how they will change for the future time 
t + 1 based on current estimates. Our study aims to contribute to estimating b values and assessing the probability 
of a large earthquake. To achieve this, it is necessary to consider the possibility of changes in the underlying 
state until the next earthquake, which makes our proposed method, which employs a state space model and a 
particle filter, more fitting for the problem than traditional moving average methods or their weighted average.

To facilitate a comparison of methods for estimating the b value that approximates real-world conditions, we 
primarily utilized actual seismic data for validation. However, further validation using synthetic data, as shown 
in Supplementary Fig. S6 and Supplementary Materials S2, is also considered valuable. Apart from the stepwise 
varying b value demonstrated in our research, several validation patterns can be envisioned, such as those with 
a gradually changing true b value or an oscillating true b value. It is believed that conducting these validations 
will enable us to understand how each method can adaptively estimate the b value in response to different types 
of data. This knowledge is likely to be beneficial when applied to seismic activities that vary in characteristics 
based on location and period.

Figure 3.   Evaluating the performance of forecasting magnitude. (a) Tohoku and (b) Kumamoto cases. The 
abscissa represents the level of the quantile of predictive distribution of magnitude for evaluating performance. 
Marks indicate how close, shown as a value in the ordinate, the percentage exceeded the quantile (abscissa) of 
the predictive distribution of magnitude, calculated based on the estimated b value, is to the theoretical value. 
The b values are estimated with conventional methods and particle filter method with an earthquake catalog 
of magnitude over the time-varying magnitude completeness Mc (Supplementary Fig. S11). The output of the 
particle filter is represented by red markers in each quantile q, while the output of the moving average based 
on the conventional method, and comprising 21 (3 kind of moving average methods times 7 kind of window 
length) points, is shown by blue markers. To avoid overlapping of marks, and to facilitate visualization, -0.005 
or +0.005 were added to the value along the abscissa for blue and red marks, respectively. Models 3 and 4 with 
the state space model and the particle filter method tuned the hyper-parameter automatically unlike Models 1 
and 2, which were manually tuned. In this context, ‘quantile’ refers to the quantile of the predictive distribution 
of magnitude. The shape of this predictive distribution of magnitudes varies depending on the b value, which 
varies with time and location. Consequently, as the quantile of the predictive distribution of magnitudes varies 
with time and location, the corresponding magnitude levels also change. The results of a similar analysis 
performed on data above magnitude completeness Mc , which was set commonly for the entire dataset, are 
shown in Supplementary Fig. S10.
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In this study, we utilized a particle filter to estimate four models, all of which demonstrated better forecasting 
of magnitude than a conventional method. However, modeling more detailed variation in the b value could 
potentially improve the ability of forecasting magnitude. In addition, developing a time-series model that does 
not assume the GR law locally and in the short term, but holds the GR law globally, could allow us to uncover 
the physical background of the temporal variation in the b value. The proposed method is expected to enhance 
real-time estimation and enables the immediate evaluation and long-term forecasting of probability for a large 
earthquake through further improvements to these models. Thus, as was shown in our study, applying this 
approach to various time-series data in the field of earth science has the potential to monitor and mitigate the 
risk of disasters, contributing to the betterment of our society.

Methods
Earthquake catalog
The earthquake dataset used in this study was obtained from the earthquake catalog published by the Japan 
Meteorological Agency (JMA). To show the applicability of our proposed method for estimating the b value, 
we analyzed earthquake sequences in the Tohoku and Kumamoto regions, observed between 2000 and 2022. 
Seismicity in the Tohoku region, situated along a plate boundary, is characterized by high seismic activity and 
large-scale earthquakes, such as the 2011 Tohoku earthquake. On the other hand, the Kumamoto region is 
characterized by inland seismic activity and a lower frequency of earthquakes. For the analysis of the Tohoku 
region (Fig. 2a), data of M ≥ 2.5 and a depth ≤ 60 km in the region, shown as a black square in Fig. 1a, were used. 
For the analysis of the Kumamoto region (Fig. 2b), data of M ≥ 2.0 and a depth ≤ 25 km in the region, shown as 
a black square in Fig. 1b, were used. The analyzed region for both datasets was set to that employed in previous 
studies22,23. To estimate the b value under the same conditions as previous studies2,20, we additionally estimated 
the b value using data of M ≥ 3.0 in the region shown as a white rectangle in Fig. 1a for the Tohoku region, and 
data of M ≥ 0.0 in the region shown as a white circle in Fig. 1b for the Kumamoto region.

Method for calculating the b value
Conventional method
The b value, conventionally estimated by a maximum-likelihood estimation method, was calculated according 
to the following formula:

where M̄ is the mean magnitude of the dataset and Mbin and Mc are the bin width of the catalog and complete 
magnitude, respectively1,7,25,26. In this study, Mbin was 0.1. For the result of Fig. 3, Mc was set to each divided 

(1)b =
log10 e

M̄ − (Mc −
1
2Mbin)

Figure 4.   b value of the GR law estimated with a particle filter and conventional method using earthquake 
data extracted under the same conditions as previous studies2,20. (a) Tohoku and (b) Kumamoto cases. 
Black line and filled area indicate median and 50% area of posterior distribution of the b value estimated 
by a particle filter (Model 4: Eqs. (11) and (10) in Methods). Red dashed lines in (a) and (b) indicate the b 
value estimated by applying a conventional method SMA of window width 250 and 100, respectively, to data 
greater than magnitude completeness Mc calculated using the EMR method7 within the window width. These 
results are based on the calculation conditions for the b value of previous studies (Fig. 3a in ref.2, Fig. 3c in 
ref.20, respectively). The gray dotted line around previous study estimates (red dashed line) indicates the 
50% confidence interval of the b value computed by bootstrapping21. The stem plot in each panels shows the 
magnitude of earthquakes. The gray dashed vertical lines indicates the end date of data analyzed in previous 
studies2,20.
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period (Tohoku: Mc = 2.5 before 11 March 2011, Mc = 3.5 between 26 March 2011 and 10 May 2011, Mc = 3.0 
after 10 May 2011, Kumamoto: Mc = 2.0 before 14 April 2016 and after 20 April 2016, Mc = 2.3 between 14 April 
2016 and 20 April 2016) based on the time series (Supplementary Fig. S11) calculated using Entire-Magnitude 
Range method7. For the result of additional analysis of Supplementary Fig. S10, Mc was set to each dataset: 
Mc = 2.5 for Tohoku and Mc = 2.0 for Kumamoto. In order to calculate the time series of the b value, the mean 
magnitude M̄ in Eq. (1) at time t needed to be calculated using moving average M̄t . In this study, three types of 
moving average—simple, weighted, and exponential smoothing—were used, and analyzed with various window 
widths of 50, 75, 100, 125, 150, 175, and 200 events. The following is a summary of the methods to calculate each 
type of moving average.

•	 Simple moving average (SMA) 

 where Mt and M̄t are observed magnitude and mean value of the magnitude, respectively. The parameter s 
is the window width controlling sample size.

•	 Exponential moving average (EMA) 

 where the value of η = 2
s+1 is according to the Python package27.

•	 Weighted moving average (WMA) 

In this study, the method combining the moving average type (MA) and window width s was denoted as MA-s, 
e.g., SMA-100 for the combination of simple moving average and a window width of 100. The moving average 
kernels are displayed in Supplementary Fig.  S7.

Weighted average of conventional forecasting
The estimation with conventional methods involves the uncertainty of the appropriate window width setting. 
To address this issue, we introduced a weighted average of the conventional method, WAC-opt (a special case 
of Bayesian predictive likelihood model averaging method28,29) that synthesizes results calculated with different 
window widths. The b value determined by this technique was computed from the following equation:

where bt,k denotes the k-th estimated b value among the K conventional estimates (number of moving average 
methods times the number of possible window lengths, here 3× 7 = 21 ), and wt,k represents the weight of the 
k-th method. To calculate wt,k , we first obtained the b value for each conventional estimate. Next, the weighted 
average of those b values was computed using Eq. (5). The weights in Eq. (5) were determined by:

where the log-likelihood of the k-th model is indicated by lt,k , and lmax represents the largest of lt,1 to lt,K . Then, 
the average of the log-likelihood related to the past N events is represented by l̂t,k . The parameter γ controls the 
influence of the difference in log-likelihood between models, but it is difficult to know the appropriate value in 
advance. The objective of this study is to demonstrate the methodology of combining a state space model and 
particle filter against estimates derived from conventional methods and their weighted averages. Consequently, 
the gamma value for the weighted average method was determined after conducting several trials. In this study, 
γ was set to 100. To calculate the log-likelihood lt,k , the GR law for magnitude was assumed.

State space model for estimating the b value
The state space model, a framework for analyzing time-series data, offers flexibility for interpreting observed 
data and has practical applications in various research fields14–18. The observed numerical values were denoted 
by y(t) and the internal state of the observed system was denoted by x(t) . Then, the state space model assumes 
that y(t) is observed according to the following equations30:

where, η(t) and v(t) represent noise terms, and the functions f (·) and h(·) are generally nonlinear. The first and 
second equation are referred to as the system equation and observation equation, respectively. This estimation 
based on the nonlinear state space model is efficiently performed by using a particle filter14,15. Using a particle 

(2)M̄t =
Mt +Mt−1 + · · · +Mt−s+1

s

(3)M̄t = ηMt + (1− η)M̄t−1

(4)M̄t =
sMt + (s − 1)Mt−1 + · · · +Mt−s+1

s + (s − 1)+ · · · + 1

(5)b̂t =

K∑

k=1

wt,kbt,k

(6)wt,k =
exp(−γ (l̂max − l̂t,k))∑K
i=1 exp(−γ (l̂max − l̂t,i))

(7)
x(t) = f (x(t − 1), η(t))

y(t) = h(x(t), v(t))
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filter, it is possible to estimate the state x(t) based on the observed values y(1), · · · , y(t) obtained until time t. A 
detailed algorithm of the particle filter is presented in the next section. The value estimated using the particle 
filter at a certain time is based on the data from only before that time, and does not include information after 
that time. Since the functions f (·) and h(·) in the state space model can be configured flexibly, this allows the 
model’s estimated values to adapt dynamically to variations in the observational target, such as the time-varying 
b value in the GR law. In this study, we built four models represented by pairs of systems and observation equa-
tions, as follows:

•	 Model 1

•	 System equation: 

 where, the variable ǫ is a normally distributed random variable with a mean of 0 and a standard deviation 
of σlog b , ǫ ∼ Normal(0, σlog b)

•	 Observation equation: Exponential distribution 

M0 represents the lower bound of the magnitude of the earthquake under consideration. There is a 
relationship between β(t) and b(t) given by β(t) = b(t) log(10).

•	 Model 2

•	 System equation: same as Eq. (8)
•	 Observation equation: Exponential with upper bound ML

 In this study, the ML value for analysis of the Tohoku region data was set at 9.0, while that for the 
Kumamoto region data was set at 8.0.

•	 Model 3

•	 System equation: 

 where the variable ǫ1 is a truncated normally distributed random variable assuming values from -10 to -3 
with a mean of 0 and a standard deviation of 0.5, ǫ1 ∼ TruncatedNormal(lower = −10, upper = −3, 0, 0.5) . 
ǫ2 ∼ Normal(0, σlog b(t))

•	 Observation equation: same as Eq. (9)

•	 Model 4

•	 System equation: same as Eq. (11)
•	 Observation equation: same as Eq. (10)

In Eq. (8) of Models 1 and 2, log b(t) is a state variable and σlog b is a hyperparameter, which is predetermined 
to maximize likelihood. On the other hand, in Eq. (11) of Models 3 and 4, both log b(t) and log σlog b(t) are 
considered state variables. Unlike Models 1 and 2, here it is assumed that they vary over time and are estimated 
sequentially from the data without being predetermined. The result of b value estimates for artificial data using 
Model 4 is presented in Supplementary Fig. S6.

The equations in the state space model, as specified in Eqs. (8)–(11), are focused on describing the temporal 
variations of the b value. Models 1 through 4 represent incremental modifications in conditions. The state Eq. (8) 
in Model 1 represents the gradual temporal variation of the b value using a random walk model. In this model, 
the extent of time variation is constant and denoted as σlog b . The observation Eq. (9) in Model 1 denotes that the 
observed earthquake magnitudes follow the standard GR law, assuming a time-varying b value. Model 2 differs 
from Model 1 in its observation Eq. (10), representing adherence to a truncated GR law. Model 3, unlike Models 
1 and 2, allows for the time variation width σlog b of the b value to also change over time in Eq. (11). This is to 
model periods of more rapid or slower changes in the b value. The observation equation in Model 3 remains the 
same as in Model 1, adhering to the standard GR law. Model 4 combines elements from Models 1 through 3. 
This study presents an introductory exploration into the application of state space models and particle filters to 
estimate the b value, indicating that these models may not fully accurately represent changes in the b value and 
suggesting the need for further model refinement.

(8)log b(t) = log b(t − 1)+ ǫ

(9)p(M(t)) = β(t) exp(−β(t)(M(t)−M0))

(10)p(M(t)) =
β(t) exp(−β(t)(M(t)−M0))

1− exp(−β(t)(ML −M0))

(11)
log σlog b(t) = log σlog b(t − 1)+ ǫ1

log b(t) = log b(t − 1)+ ǫ2
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Algorithm for the particle filter
Particle filtering is a sequential Monte Carlo method used for estimating the state of a dynamic system given 
a sequence of observations14–16. The state variable was denoted as xt and the observation as yt , where t is the 
time index. The objective was to estimate the posterior distribution p(xt |y1:t) given a set of observations y1:t = 
{y1, y2, · · · , yt}.

The algorithm proceeds as follows: 

1.	 Initialization At time t = 0 , generate N particles (samples) x(i)0  from the initial state distribution p(x0) . Assign 
equal weights w(i)

0 = 1
N  to each particle i = 1, 2, · · · ,N.

	   For t = 1, 2, · · · ,T : 

(a)	 Propagation (prediction) For each particle i = 1, · · · ,N , draw a new state x(i)t  from the state transition 
distribution p(xt |x

(i)
t−1) representing the system dynamics.

(b)	 Update (correction) For each particle i = 1, 2, · · · ,N  , compute the importance weight w(i)
t  as the 

likelihood of the observation yt given the current state x(i)t  : 

(c)	 Normalize the weights such that their sum equals 1 

 for i = 1, 2, · · · ,N , where Wt =
∑

i w
(i)
t .

(d)	 Resampling Resample N particles from the current set with replacement extraction, with probabilities 
proportional to the normalized weights w(i)

t  . This step helps to eliminate particles with low weights 
and duplicate those with high weights, resulting in a set of particles that better represent the true 
posterior distribution.

The state transition distribution p(xt |x(i)t−1) is represented by system equations, which in our case are Eqs. (8) 
and (11). For instance, a transformation of Eq. (8) as noted below in Eq. (14) reveals how it can be considered 
as a state transition distribution.

In the current problem setting, the state variable xt is represented by log b(t) and log σlog b(t) , as defined in the 
system Eqs. (8) and (11) of the state space model. The observed values yt correspond to the magnitudes Mt of 
the earthquakes. Thus, determining the posterior distribution p(xt |y1:t) of the state implies estimating the state 
of the b value according to the GR law from the magnitudes of earthquakes, which includes accounting for the 
distribution of its uncertainties. The posterior distribution p(xt |y1:t) can be approximated by the set of particles 
x
(i)
t  as p(xt |y1:t) ≃ 1

N

∑N
i=1 δ(xt − x

(i)
t ) , where δ(x) is the delta function δ(x) = ∞ (where x = 0 ), otherwise 

δ(x) = 0 and 
∫∞
−∞ δ(x)dx = 1 . The number of particles N was set to 105 in this study. In the context of applying 

the state space model and particle filter to the present study to estimate temporal variation of the b value, the 
initial distribution p(x0) refers to the initial distributions of the state variables b(0) and σlog b(t) . Ideally, these 
distributions should be based on physical laws. However, in cases like ours where direct observation is difficult, 
the distribution is set to cover a wide range of values. In this study, we set the initial distribution for log b(0) in 
Eq. (8) as a normal distribution, log b(0) ∼ Normal(0, log 10) , and for log σlog b(0) in the first part of Eq. (11) as 
a uniform distribution, log σlog b(0) ∼ Uniform(e−10, e−3).

Evaluation method for magnitude forecasting
To compare the estimation of the b value from the conventional moving average and from the particle filter, 
the accuracy of the estimation should be evaluated. The accuracy is the deviation of the estimated b value from 
the true b value. However, the true b value cannot be observed. Thus, we derived the predictive distribution of 
magnitude using the b values from each method and evaluated their performance of forecasting magnitude 
using the following procedure (Supplementary Fig. S4). First, we obtained the q-th percentile of predictive 
distribution of magnitude, and then determined whether the magnitude of earthquakes occurring subsequently 
exceeded the q-th percentile or not. If the estimation method adaptively captured the temporal characteristics of 
the b value associated with the time-varying physical environment and accurately predicted them, we expected 
the probability that the actual magnitude exceeded the q-th percentile to be close to q. Therefore, the ability of 
magnitude forecasting was evaluated by following a loss measurement, as the Kolmogorov-Smirnov distance31. 
A smaller loss value indicates better forecasting of magnitude.

In this context, Nexc.(n) denotes the number of times the cumulative count of events has surpassed the q-th 
percentile of the predictive distribution of magnitude by the time of the n-th earthquake. N is the total number 

(12)w
(i)
t = p(yt |x

(i)
t )

(13)w
(i)
t ←

w
(i)
t

Wt

(14)
log b(t) = log b(t − 1)+ ǫ, where ǫ ∼ Normal(0, σlog b)

log b(t) ∼ Normal(log b(t − 1), σlog b)

(15)loss = max
n

∣∣∣∣
Nexc.(n)− nq

N

∣∣∣∣
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of events. The notation max
n

|X| is used to represent the maximum absolute value of X with respect to various 
values of n. The actual values of Nexc.(n) obtained in this study are displayed in Supplementary Figs. S8 and S9. 
The quantiles, which depend on the predictive distribution of magnitudes, were calculated from the b values that 
vary over time. Consequently, the level of magnitude associated with the quantile also changes with the temporal 
variations in b value.

Data availibility
The datasets that support this study are available from the corresponding author and can be accessed upon 
reasonable request. The source code is available at the GitHub repository (https://github.com/D-I-29/gr-b-pf) 
(see Supplementary Material 1 for details).
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