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Life course plasma metabolomic 
signatures of genetic liability 
to Alzheimer’s disease
Hannah Compton 1, Madeleine L. Smith 1,2, Caroline Bull 1,2,3, Roxanna Korologou‑Linden 1,2, 
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Mechanisms through which most known Alzheimer’s disease (AD) loci operate to increase AD risk 
remain unclear. Although Apolipoprotein E (APOE) is known to regulate lipid homeostasis, the effects 
of broader AD genetic liability on non-lipid metabolites remain unknown, and the earliest ages at 
which metabolic perturbations occur and how these change over time are yet to be elucidated. We 
examined the effects of AD genetic liability on the plasma metabolome across the life course. Using 
a reverse Mendelian randomization framework in two population-based cohorts [Avon Longitudinal 
Study of Parents and Children (ALSPAC, n = 5648) and UK Biobank (n ≤ 118,466)], we estimated the 
effects of genetic liability to AD on 229 plasma metabolites, at seven different life stages, spanning 8 
to 73 years. We also compared the specific effects of APOE ε4 and APOE ε2 carriage on metabolites. 
In ALSPAC, AD genetic liability demonstrated the strongest positive associations with cholesterol-
related traits, with similar magnitudes of association observed across all age groups including in 
childhood. In UK Biobank, the effect of AD liability on several lipid traits decreased with age. Fatty acid 
metabolites demonstrated positive associations with AD liability in both cohorts, though with smaller 
magnitudes than lipid traits. Sensitivity analyses indicated that observed effects are largely driven by 
the strongest AD instrument, APOE, with many contrasting effects observed on lipids and fatty acids 
for both ε4 and ε2 carriage. Our findings indicate pronounced effects of the ε4 and ε2 genetic variants 
on both pro- and anti-atherogenic lipid traits and sphingomyelins, which begin in childhood and either 
persist into later life or appear to change dynamically.
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IV	� Instrumental variable
CVD	� Cardiovascular disease

By virtue of our ageing population, the number of patients with Alzheimer’s disease (AD) continues to rise1. 
Neuropathological hallmarks of AD precede the onset of clinical symptoms by decades2, yet diagnosis is often 
late in the disease course. Brain and cerebrospinal fluid (CSF) biomarkers discriminate AD cases from controls 
with high accuracy3,4, though sample collection is invasive. Thus, great impetus remains for identification of 
more easily measured plasma AD biomarkers, which could improve our understanding of early disease aetiology.

AD involves a complex genetic architecture. Genome-wide association studies (GWAS) have illuminated 
many AD-associated single nucleotide polymorphisms (SNPs); the largest to date identifying independent 75 risk 
loci5. The apolipoprotein E (APOE) ε4 allele (UK allele frequency 0.15), encoding an isoform of Apolipoprotein 
E (ApoE), greatly elevates AD risk, accounting for ~ 50% of total genetic susceptibility6. The APOE ε2 allele (UK 
allele frequency 0.8) reduces AD risk by up to 87% compared to ε3 homozygotes7. Given that ApoE functions 
to regulate lipid homeostasis8, it is postulated that circulating lipid perturbations are associated with both AD 
risk and early pathology. Indeed, lipidomic studies suggest that both increased and decreased cholesterol, phos-
pholipids, and sphingolipids9 may reflect neurodegeneration-associated membrane changes10. Many studies are, 
however, underpowered and given evaluation of AD patients in case–control studies, we cannot ascertain whether 
metabolic derangements are a cause or a secondary consequence of disease (i.e. biased by reverse causation), or 
confounded by lifestyle factors, medications or comorbidities such as cardiovascular disease (CVD)10. Consider-
ing other metabolic markers, glucose dysregulation is likely implicated in, or a reflection of, AD pathogenesis, 
given that abnormally low rates of glucose metabolism in APOE4 carriers are observed decades before disease 
onset11. Serum amino acid profiles also accurately discriminate AD cases from controls12, hence impaired amino 
acid metabolism may contribute to AD pathogenesis or vice-versa13.

Using a reverse Mendelian Randomisation (MR) approach, this study aimed to characterise the metabolic fea-
tures (both lipid and non-lipid) of higher genetic liability to AD, revealing early biomarkers of AD pathogenesis, 
which may be potentially targeted to prevent the clinical onset of AD. We constructed a genetic instrument for 
AD liability and examined the effects on circulating metabolites across the life-course, in two large population-
based cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank. Finally, we 
performed a secondary analysis to further evaluate the potential molecular mechanisms underpinning the AD 
risk-increasing effect of APOE ε4 carriage, versus the protective effect of ε2 carriage, when compared with ε3 
homozygosity.

Methods
Study participants
We used data from two UK population-based cohort studies. First, ALSPAC; a population-based multi-gener-
ational birth cohort study of 14,541 women and their offspring, from the Southwest of England14,15. Full details 
of ALSPAC are provided in the online supplement. ALSPAC offspring with the following information recorded 
were eligible for this study: genotype, sex, age, and at least one metabolic trait at any time point. A total of 5,648 
individuals were eligible for analysis on at least one occasion. See Supplementary Fig. 1 for full details of the 
eligibility criteria and Supplementary Tables 1 and 2 for descriptive statistics of the eligible ALSPAC cohort. 
Second, we also used a combination of pre-existing summary-level GWAS data and novel analyses of individual-
level data from UK Biobank; a large-scale multicentre cohort study of half a million UK participants aged 39–73 
years at baseline assessments in 2006–2010. A total of 118,466 UK Biobank participants were included in these 
analyses. Full details of the UK Biobank design, participants, quality control and its strengths and limitations 
have been described previously16–18.

Assessment of genetic liability to Alzheimer’s disease
In ALSPAC, genotypes were assessed using the Illumina HumanHap550 quad chip, with imputation performed 
with the Haplotype Reference Consortium panel19. AD liability was defined using weighted genetic risk scores 
(GRS) based on 25 SNPs associated with AD risk at genome-wide significance (p ≤ 5 × 10−8) reported by Kunkle 
et al.20 (n = 21,982 clinically diagnosed cases and n = 41,944 cognitively normal controls). This AD GWAS was 
chosen because it is the largest GWAS comprising only clinically diagnosed AD cases, not ‘by-proxy’ cases, which 
have been shown to cause bias in downstream analyses using GWAS summary data21. Risk-increasing alleles and 
log odds ratios from the final stage meta-analysis (Supplementary Table 3) were used as external weights. Data 
were harmonized such that the effect (risk-increasing) alleles were coded in the same direction in both the AD 
GWAS and ALSPAC data. One AD SNP (rs9331896, CLU gene) was not present in the ALSPAC dataset, thus, a 
proxy SNP in high linkage disequilibrium (LD) (within 10,000kb, r2 = 0.8) was used. AD-associated SNPs were 
combined into two GRSs; one including and one excluding the SNPs denoting the APOE isoforms to examine 
non-APOE driven effects. Given the missingness of genotype data for some ALSPAC participants, GRSs were 
created for all individuals with genotype data for at least one AD SNP to preserve sample size and statistical 
power. Over 90% of participants had 22 of the 25 AD SNPs, and the smallest number of SNPs for any included 
individual was 18 out of 25. In UK Biobank, genetic liability to AD was instrumented using the same SNPs used 
to create the GRSs in ALSPAC (i.e. including the same proxy SNP for CLU). As such, the same data harmonisa-
tion process was used.

Assessment of metabolites
In ALSPAC, blood samples were taken at clinics when participants were approximately 8, 16, 18 and 25 years 
old. Samples were fasted except for those obtained at age 8 years. A total of 229 metabolites from a targeted 
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metabolomics platform were measured via proton nuclear magnetic resonance (1H-NMR) spectroscopy using 
EDTA-plasma22. All metabolites were quantified at the first three time points; however, the following were not 
measured at 25 years: diacylglycerol, ratio of diacylglycerol to triglycerides, fatty acid chain length, degree of 
unsaturation, conjugated linoleic acid, and ratio of conjugated linoleic acid to total fatty acids. Most metabo-
lites relate to lipoproteins, categorised by density and size. Lipoprotein characteristics are recorded, including 
their triglyceride, phospholipid and cholesterol content. Various fatty acid, glycolysis-related, amino acid and 
inflammatory trait concentrations are also included. In UK Biobank, non-fasting EDTA plasma samples from a 
random subset of participants (n = 118,466, phase one NMR release) were analysed for levels of 249 metabolites 
and ratios, using the same 1H-NMR platform as in ALSPAC, but with several additional ratios of lipid measures.

Statistical approach
Primary analysis: effects of the AD GRS of the life course plasma metabolome
We adopted a reverse MR23 framework, such that genetic liability to AD is treated as the exposure and metabolites 
as the outcome, to ascertain the metabolic features of AD liability in a preclinical population. The reverse MR 
framework is useful for excluding reverse causation and confounding as potential explanations for any findings, 
because AD genetic variants are randomized at conception and, thus, cannot be altered by subsequent disease 
(both clinical and prodromal) and should not be confounded by lifestyle, social and behavioural factors. Figure 1 
outlines the analytical methods performed.

In ALSPAC, we conducted a GRS analysis which combines alleles into a score. In the UK Biobank, we per-
formed a formal MR analysis which uses SNPs as instrumental variables (IVs) for AD liability24 (i.e. generating 
a Wald ratio for each SNP and then meta-analysing them). GRS analyses are typically better powered than MR 
analyses and hence were more suitable for ALSPAC’s smaller sample size. GRSs do not, however, allow interroga-
tion of potential bias due to horizontal pleiotropy. Though MR analyses are less well powered than GRS analyses, 
several sensitivity analyses (including MR-Egger, weighted median and weighted mode) enable the assessment 
of, and control for, horizontal pleiotropy25. To examine potential horizontal pleiotropy in the ALSPAC GRS 
analysis, we examined whether the AD GRS was associated with BMI, height, smoking, alcohol consumption, 
physical activity, maternal and paternal educational attainment, or maternal or paternal occupational social 
class (Supplementary Table 4).

Results across the two cohorts are directly comparable despite the different analysis methods; firstly, the 
exposure (AD liability) is on the log odds scale in both the GRS and the reverse MR (i.e. per log unit increase in 
AD liability). Secondly, the same standardizing transformation was applied to all metabolites. Thirdly, all effect 
estimates (from both GRS and MR) were multiplied by 0.693 (loge2), as recommended by Burgess et al.26 for 
binary/liability exposures, and estimates are therefore interpreted as SD-unit differences in each metabolic trait, 
per doubling of genetic liability to AD.

Main analysis: ALSPAC
Analysis: Gene�c risk score analysis (with and 

without APOE)

Exposure (units): Combined allele score of 25 AD 
SNPs (log odds of AD)

Outcome (units): 229 NMR metabolites (SDs)
Covariates: Age & Sex

Transforma�on of effect es�mates: Loge2
Measurement occasions: 8, 16, 18 and 25 years

More power
than MR

Difficult to iden�fy and
adjust for pleiotropy

Data: Individual level data

Main analysis: UK Biobank
Analysis: Mendelian randomiza�on analysis (with and 

without APOE)

Exposure (units): Wald ra�o of each SNP meta-analysed
(log odds of AD)

Outcome (units): 229 NMR metabolites (SDs)
Covariates: GWAS level covariates (age, sex, PCs, genotype 

array)
Transforma�on of effect es�mates: Loge2

Measurement occasions: 39-53, 53-61 and 61-73 years

Less power
than GRS

Able to iden�fy and
adjust for pleiotropy

Data: Summary level data

8 years 16 years 18 years 25 years
N=4316 N=2691 N=2361 N=2338

39-53 years 53-61 years              61-73 years
N=39,488 N=39,489             N=39,489

25 AD SNPs
(gene�c liability)

229 metabolites

Addi�onal analysis: ALSPAC Addi�onal analysis: UK Biobank
Data: Individual level data Data: Individual level data (total N=118,466)

Genotype N (%) whole 
sample

ε2 carriage 13660 (15.5)
ε2 homozygotes 545 (0.6)
ε4 carriage 25,382 (28.8)
ε4 homozygotes 2073 (2.4)

Genotype N (%) whole 
sample

ε2 carriage 876 (15.5)
ε2 homozygotes 28 (0.5)
ε4 carriage 1377 (24.4)
ε4 homozygotes 101 (1.8)

Exposure: ε2 carriers vs ε3
homozygotes, ε4 carriers vs
ε3 homozygotes
Outcome (units): 229 NMR 
metabolites (SDs)
Covariates: Age & Sex

Exposure: ε2 carriers vs ε3
homozygotes, ε4 carriers vs
ε3 homozygotes
Outcome (units): 229 NMR 
metabolites (SDs)
Covariates: Age & Sex

Figure 1.   Illustration of the analytical models performed.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3896  | https://doi.org/10.1038/s41598-024-54569-w

www.nature.com/scientificreports/

In both UK Biobank and ALSPAC analyses, all metabolites were standardized and normalized prior to analy-
ses using rank-based inverse normal transformation. For the ALSPAC GRS analysis (n = 4316 at 8 years, n = 2691 
at 16 years, n = 2361 at 18 years and n = 2338 at 25 years), associations between the AD GRS and each metabolite 
at each time point were assessed using separate linear regression models, adjusting for age at time of metabolite 
assessment and sex. Only eighteen percent (N = 779) of participants included in the age 8 analyses additionally 
had metabolites measured at the three subsequent time points. These analyses were performed in Stata Version 16.

For the main UK Biobank MR analysis, 118,466 participants of European ancestry were stratified into tertiles 
of age (youngest: 39–53 years. N = 39,488, middle: 53–61 years, n = 39,489, oldest 61–73 years, n = 39,489), before 
a GWAS of each metabolite was performed. Genetic association data for metabolites were generated using the 
MRC IEU UK Biobank GWAS pipeline27. SNP-exposure associations based on the same 25 SNPs for AD that 
were used to create GRSs in ALSPAC (i.e. including the proxy SNP for the CLU gene) were integrated with the 
SNP-metabolite associations. The following statistical methods were used to generate MR effect estimates using 
the TwoSampleMR package in R version 4.0.228: inverse variance weighted (IVW), MR Egger, weighted median, 
and weighted mode, each making different assumptions about directional pleiotropy29,30. MR analyses were also 
repeated with a set of 23 SNPs excluding the two major APOE SNPs (rs7412 and rs429358), to compare with 
the ALSPAC GRS analysis.

Additional analysis: comparing metabolic profiles of APOE4 and APOE2 with APOE3
As previous work in this area has shown that most associations observed between the AD GRS and downstream 
phenotypes are primarily driven by variation in the APOE locus, we conducted a further analysis to examine 
the molecular mechanisms that may underpin the risk-increasing effect of APOE ε4 carriage, and the protective 
effect of APOE ε2, when compared with APOE ε3 homozygosity. To do this, we used individual-level data from 
both ALSPAC and the UK Biobank. First, metabolic profiles in participants with at least one APOE ε4 allele (i.e. 
ε4 carriers) were compared to profiles in those who were APOE ε3 homozygous, omitting participants carrying 
an ε2 allele. Second, metabolic profiles in participants with at least one APOE ε2 allele (i.e. ε2 carriers) were 
compared to profiles in those who were APOE ε3 homozygous, omitting participants carrying an APOE ε4 
allele. These models were based on multivariable linear regression, with binary independent variables for ε4 or 
ε2 carriage. Models were adjusted for age at follow-up and sex in ALSPAC. In keeping with the linear regression 
implementation of the GWAS pipeline used for the main analyses, the UK Biobank APOE—metabolite analyses 
were restricted to: (i) participants of European ancestry (as defined by the largest cluster following a K means 
clustering analysis of the top four genetic principal components); (ii) individuals with genotypic data passing 
quality control steps (no sex mismatches, aneuploidy, excess heterozygosity); (iii) individuals with no degree 
of kinship with other cohort members—one individual within pairs of the kinship matrix provided by the UK 
Biobank study team were randomly dropped. Models in UK Biobank included adjustments for age (within 
tertile), sex, genotype array and the first 10 genetic principal components provided by UK Biobank. This left a 
UK Biobank sample of n = 88,287, and an ALSPAC sample of n = 5648, prior to splitting into age tertiles and the 
omission of ε2 carriers from ε4 modelling and vice-versa. Sample sizes for the ε4 analysis in each age group were 
as follows: 8 years: N = 3452, 16 years: N = 2159, 18 years: N = 1871, 25 years: N = 1853, 39–53 years: N = 25,614, 
53–61 years: N = 27,666 and 61–73 years: N = 21,347. For the ε2 analysis: 8 years: N = 3106, 16 years: N = 1928, 18 
years: N = 1689, 25 years: N = 1695, 39–53 years: N = 21,420, 53–61 years: N = 23,363 and 61–73 years: N = 18,122. 
Supplementary Table 5 shows the number of heterozygotes and homozygotes for ε2 and ε4. Results are interpreted 
as the mean difference in metabolites in ε4 carriers and ε2 carriers, compared to ε3 homozygotes.

Ethics approval
Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 
Ethics Committees. Informed consent for biological samples has been collected in accordance with the Human 
Tissue Act (2004). UK Biobank has approval from the North West Multi-centre Research Ethics Committee 
(MREC) as a Research Tissue Bank (RTB) approval.

Results
Primary analysis: effects of AD liability on the life course plasma metabolome
Supplementary Tables 6 and 7 show associations of the AD GRS with metabolites in ALSPAC. Supplementary 
Tables 8–11 show effects of genetic liability to AD on the metabolites in the UK Biobank for the IVW, MR-
Egger, weighted median and weighted most models, respectively. Overall, when strong evidence was observed 
for effects of the AD GRS on metabolites (i.e., confidence intervals did not span the null), the direction and 
magnitude of the effect sizes remained consistent across the life course (Figs. 2, 3 and 4). One exception to this 
was for the main lipid metabolites in UK Biobank, where there was generally attenuation of effect sizes towards 
the null in the older age tertile. UK Biobank estimates were largely consistent across MR sensitivity models, with 
expectedly wider confidence intervals for MR Egger estimates and narrower confidence intervals for weighted 
median and weighted mode estimates compared to IVW. In addition, there was little evidence to suggest the AD 
GRS was associated with BMI, height, smoking, alcohol consumption, physical activity, maternal and paternal 
educational attainment, or maternal or paternal occupational social class in ALSPAC (Supplementary Table 5). 
For all metabolite subcategories, there was substantial attenuation of beta values towards the null, with some 
loss of statistical power when excluding APOE variants from the GRS. This suggests that results were largely 
driven by APOE variants.
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Genetic liability to AD and lipid traits
Associations between genetic liability to AD and lipid metabolites are illustrated in Fig. 2 and Supplementary 
Tables 6–11. Of all metabolite subtypes, when including APOE variants in the GRS, lipid traits demonstrated 

Figure 2.   Forest plot showing the estimated effect of higher AD liability on main lipid metabolites (left panel 
including APOE variants; right panel excluding them). UK Biobank MR estimates are from the inverse variance 
weighted model.
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the most consistent and largest magnitude of association with higher AD liability (Fig. 2). There was evidence of 
positive associations between higher AD liability and the following lipid metabolites across the life course: serum 
total cholesterol, very-low density lipoprotein (VLDL) cholesterol, remnant cholesterol, low-density lipoprotein 

Figure 3.   Forest plot showing the estimated effect of higher AD liability on main fatty acid metabolites (left 
panel including APOE variants; right panel excluding them). UK Biobank MR estimates are from the inverse 
variance weighted model.
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(LDL) cholesterol, esterified cholesterol, free cholesterol, apolipoprotein B, ratio of apolipoprotein B to apoli-
poprotein A1, and sphingomyelins. For these same lipid metabolites, UK Biobank effect estimates from IVW 
models remained positive but attenuated towards the null across higher age tertiles, though confidence intervals 
overlapped (e.g., LDL cholesterol, youngest: 0.15 SD; 95% CI 0.07, 0.23, intermediate: 0.13 SD; 95% CI 0.07, 
0.20, oldest: 0.10 SD; 95% CI 0.05, 0.16). Estimates from weighted mode and weighted median models in UK 
Biobank showed similar trends across age tertiles for total, VLDL and LDL cholesterol and apolipoprotein B, 

Figure 4.   Forest plot showing the estimated effect of higher AD liability on main non-lipid metabolites (left 
panel including APOE variants; right panel excluding them). UK Biobank MR estimates are from the inverse 
variance weighted model.
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but with non-overlapping confidence intervals between the intermediate and oldest tertile. Across both cohorts, 
there was evidence of an inverse effect of AD liability on high-density lipoprotein (HDL) cholesterol, that was 
closer to the null at higher ages. There was no association with triglycerides in HDL at any ALSPAC time point. 
However, the effect estimates from IVW models for AD liability in UK Biobank were negative for triglycerides 
in HDL and increased in magnitude with age, which was consistent across sensitivity models. AD liability had 
no effect on apolipoprotein A1 in ALSPAC but was there was evidence of an inverse effect in UK Biobank that 
did not differ across age groups. For sphingomyelins, there was consistent evidence of a positive effect of AD 
liability in both ALSPAC (e.g., 25 years: 0.07 SD; 95% CI 0.04, 0.09) and UK Biobank, without differences by age. 
There was evidence of a positive effect of AD liability on triglycerides in LDL at all ages, but with a more modest 
effect in the oldest tertile of UK Biobank.

Genetic liability to AD and fatty acids
Associations between genetic liability to AD and fatty acid metabolites are illustrated in Fig. 3 and Supplementary 
Tables 6–11. At each of the seven time points, there was evidence to suggest that when including APOE, higher 
AD liability had a strong positive effect on many fatty acid (FA) metabolites. The largest magnitudes of associa-
tions were observed for total FA, linoleic acid, omega-3 FA, omega-6 FA, polyunsaturated FA, monounsaturated 
FA, and saturated FA (Fig. 3), and the ratio of linoleic acid to total FA. Estimated effects of AD liability on other 
corresponding FA ratios were attenuated towards the null. Overall, for FAs there was a trend of smaller effect 
sizes as age increased; for some (e.g. total FAs, monounsaturated and saturated FAs), the confidence intervals 
of the oldest age tertile did not overlap with the intermediate age tertile (e.g. IVW: total FAs, oldest tertile: 0.02 
SD, 95% CI 0.01, 0.03, youngest tertile: 0.06 SD, 95% CI 0.04, 0.08). The effect of liability to AD on the ratio of 
docosahexaenoic acid (DHA) to total FAs turned from negative to null with increasing age across both cohorts, 
whilst the effect on the ratio of linoleic acid to total FAs remained consistent across all age groups.

Genetic liability to AD and non‑lipid traits
Associations between genetic liability to AD and non-lipid metabolites are illustrated in Fig. 4 and Supplemen-
tary Tables 6–11.

Glycolysis‑related traits
In ALSPAC, effect sizes for the association between higher AD liability and glycolysis-related traits (glucose, cit-
rate, and lactate), both including and excluding APOE variants, centre around zero, and estimates were imprecise 
and generally close to the null. Considering associations including APOE variants, within the oldest UK Biobank 
tertile, there was evidence of an inverse effect of AD liability on citrate in all models. In ALSPAC, associations 
of AD liability with lactate were more positive at older ages (25 years: 0.04 SD; 95% CI 0.01, 0.06) with largely 
overlapping confidence intervals for each age group, but effect estimates in all UK Biobank age tertiles were 
negative (e.g., IVW, oldest: − 0.01 SD; 95% CI − 0.02, 0.00).

Amino acids and inflammation
Of all metabolite subcategories, amino acids (including the branched chain amino acids (BCAAs) isoleucine, 
leucine, and valine) demonstrated the weakest associations with higher AD liability including APOE variants. In 
ALSPAC, there were no consistent positive associations with any amino acids at any time point. In UK Biobank, 
higher liability to AD including APOE variants had an inverse association with some amino acids—either in all 
three age groups (e.g., tyrosine, leucine and isoleucine) or with the strongest evidence in the oldest group alone 
(histidine, valine, GlycA). There was also no association of higher AD liability with glycoprotein acetyls, a marker 
of inflammation, at any time point in ALSPAC or UK Biobank IVW models.

Additional analysis: comparing metabolic profiles of ε4 and ε2 carriers with ε3 homozygotes
Given our primary results indicate that most associations are largely driven by APOE variants, we evaluated the 
metabolic profiles of participants who were ε2 and ε4 carriers (one or two copies) compared with ε3 homozygotes, 
in ALSPAC and UK Biobank.

Lipids
Figure 5 and Supplementary Table 12 shows effects of APOE on lipid metabolites. There was evidence that ε4 
carriers had, on average, higher levels of all lipids than ε3 homozygotes at all time points, with the exception of 
HDL cholesterol and Apolipoprotein A-I. The magnitude of effects of APOE4 ε4 carriage on lipid metabolites 
generally decreased at higher ages (noting that differences in total triglycerides, triglycerides in VLDL, and tri-
glycerides in HDL were very close to null in the oldest age tertile of the UK Biobank). ε4 carriage was associated 
with lower total HDL cholesterol and Apolipoprotein A-I, but the magnitude of effect was smaller than for other 
lipids and confidence intervals crossed the null for the two older timepoints in ALSPAC for HDL, and for all 
ALSPAC timepoints for Apolipoprotein A-I. ε2 carriage (relative to ε3 homozygosity) was associated with lower 
levels of total cholesterol, VLDL, remnant cholesterol, LDL, esterified cholesterol, free cholesterol, Apolipopro-
tein B, Apolipoprotein B to Apolipoprotein A-I ratio, and sphingomyelins. Magnitudes of effects were generally 
consistent across all timepoints. ε2 was also associated with higher HDL, but confidence intervals crossed the 
null before mean age 25. There was little evidence of an effect of ε2 on other lipid metabolites.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3896  | https://doi.org/10.1038/s41598-024-54569-w

www.nature.com/scientificreports/

Fatty acids
Figure 6 and Supplementary table 13 shows effects of APOE on fatty acid metabolites. ε4 carriage was associated 
with higher levels of total FAs, linoleic acid, omega-3 and 6, poly- and mono-unsaturated FAs, saturated fatty 
acids, and the ratio of saturated to total FAs. ε2 carriage was associated with lower levels of total FAs, linoleic 
acid, omega-6, polyunsaturated, saturated, and the ratios of linoleic, omega-6 and polyunsaturated to total FAs. 
For ε4 carriage, the magnitudes of effects for each metabolite were generally higher during childhood and early 

Figure 5.   Forest plot showing the estimated effects of ε4 carriage (left panel; reference ε3 homozygotes) and ε2 
carriage (right panel; reference ε3 homozygotes) on lipid metabolites.
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adulthood, and attenuated with each increasing age tertile in UK Biobank. For ε2 carriage, magnitudes of effect 
were generally larger in childhood and early adulthood, and attenuated in older adulthood (UK Biobank) but 
with similar magnitudes in each of the age tertiles.

Figure 6.   Forest plot showing the estimated effects of ε4 carriage (left panel; reference ε3 homozygotes) and ε2 
carriage (right panel; reference ε3 homozygotes) on fatty acid metabolites.
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Non‑lipids
Figure 7 and Supplementary Table 14 shows effects of APOE on non-lipid metabolites. There was very little 
consistent evidence that ε4 or ε2 affected non-lipid metabolites with most estimates varying around the null. 
Tyrosine was lower with ε4 carriage in UK Biobank. In the oldest tertile of UK Biobank only, ε4 and ε2 carriage 
appeared to have opposing effects on circulating valine. There was also some evidence to suggest ε4 carriage was 
associated with higher glycoprotein acetyls until ages 39–53 years, but this attenuated to the null in the middle 
and oldest age tertiles of UK Biobank.

Figure 7.   Forest plot showing the estimated effects of ε4 carriage (left panel; reference ε3 homozygotes) and ε2 
carriage (right panel; reference ε3 homozygotes) on non-lipid metabolites.
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Discussion
This study estimated the effects of genetic liability to AD on the circulating metabolome measured across early 
life and into adulthood, revealing potential early stages of AD pathophysiology. Our most striking finding is the 
pronounced and enduring influence of the ε4 and ε2 isoforms on pro- and anti-atherogenic lipid and fatty acid 
traits, respectively, which was evident from childhood and persistent into later adulthood. Excluding APOE vari-
ants, the remaining AD genetic liability modelled here had little impact on the circulating metabolome across 
life. Many effects of ε4 and ε2 carriage on metabolites appeared to attenuate in older age groups (particularly 
in those aged 61–73 years). There was also very little evidence to suggest AD liability affects glycolysis- and 
inflammatory-related traits, suggesting that AD liability is more specifically reflected in lipid metabolism due to 
the impact of ApoE on a wide range of lipid fractions.

It has been hypothesised that higher genetic liability to AD (including APOE ε4 variants) may impact AD 
risk via its effect on atherosclerosis. This is supported by both comparable enrichment of plasma lipid subtypes 
for AD and CVD31 and demonstration here of the strongest positive associations being for the proatherogenic 
traits LDL cholesterol, apolipoprotein B and ratio of apolipoprotein B to apolipoprotein A1. It has also been 
shown that elevated LDL cholesterol is associated with increased cerebral amyloid deposition32. We found evi-
dence that associations of HDL cholesterol and its major constituent apolipoprotein A1 with higher AD liability 
were weakly negative. These results complement the findings of an MR study suggesting a protective effect of 
HDL cholesterol and apolipoprotein A1 with respect to AD risk33. That said, other MR studies have found little 
evidence of an effect of lipid-related traits on AD risk34.

We found evidence of a positive association between higher AD liability and sphingomyelins levels that was 
consistent across all age groups, and appears to be specific to carriage of AD risk variants in APOE. Sphingolipids 
are a class of lipids, of which sphingomyelins are members35. They are often found in neuronal myelin & may be 
linked to neurodegeneration; a study of post-mortem brains, CSF and plasma implicated sphingomyelin pertur-
bations in AD pathophysiology36, and a targeted metabolomics study of blood and brain found that increased 
sphingomyelin levels correlated with AD severity, tracking disease progression from prodromal to preclinical 
stages37. Their use as a potential early AD biomarker should be further explored.

We show that the effect of higher AD liability on triglyceride levels in VLDL, HDL and total triglycerides 
weakens with age. This could reflect increased lipid-lowering medication use with age (e.g., statins), which would 
be expected to be highest among ε4 carriers due to higher dyslipidaemia incurred by the variant. It could also 
reflect, at least in part, survival bias, whereby individuals with higher dyslipidaemia and associated sequalae are 
at increased risk of premature mortality. Disease pathogenesis leading to dietary changes (an established part of 
the AD prodrome) may also explain some of the changes to metabolites heavily influenced by dietary intake at 
later ages, and this is perhaps most relevant for fatty acids and proteins. The magnitude of effect is considerably 
less than what was observed for a recent untargeted lipid profiling study by Bernath et al. which concluded, as we 
did here, that AD-mediated effects on triglycerides were specific to carriers of APOE ε438, apart from triglycerides 
in HDL which were, on average, higher for ε2 carriers.

When including APOE variants, strong positive associations were observed between AD genetic liability 
and total FAs, linoleic acid, omega-6 FAs and polyunsaturated FAs. Corresponding FA ratios, which may better 
reflect FA biology22, demonstrated an attenuated, yet still positive associations with higher AD liability. Aside 
from functioning as membrane constituents and energy sources, FAs mediate inflammation39, a process central 
to the pathogenesis of both CVD and AD40. Linoleic acid has previously been associated with the extent of AD 
neuropathology in a nontargeted metabolomics study41, though small sample size and confounding limit causal 
inference.

Except for fatty acid traits, there was very little evidence that higher AD liability affects non-lipid (e.g. glyco-
lysis and amino acid) metabolites in our study. Type 2 diabetes, defined as elevated plasma glucose, is hypoth-
esised to be a risk factor for AD, although MR studies to date have not supported a causal association42,43. 
Diabetes mechanisms may mediate the pathological effects of the ε4 genotype44 and influence cerebral glucose 
metabolism45. Results from a prospective cohort study with several decades of follow-up suggested that plasma 
glucose dysregulation is only evident in ε4 carriers from midlife onwards46. Despite this, even in the oldest UK 
Biobank tertile, we observed little evidence of effect of AD liability on glucose. The effect of AD liability on lactate 
was positive at older ages in ALSPAC, but inverse or null in UK Biobank age tertiles. Increased lactate in the 
CSF and brain has been associated with higher AD risk, the degree of perturbation correlating with extent of 
neurodegeneration47. In vitro evidence suggests that this trend may be ε4-mediated48. The lack of consistency of 
effect of AD liability on lactate levels across different life-stages suggests limits to its clinical utility as a biomarker 
of early disease. Evidence for the role of BCAAs in AD is inconclusive. Observationally, increased BCAA levels 
appear to protect against AD49, supported by our inverse effect estimates for AD liability on BCAAs observed 
in UK Biobank. Increased BCAAs have, however, been robustly associated with increased diabetes risk in MR 
analysis50. The absence of association between increased BCAAs and higher AD liability in this study perhaps 
suggests that the link between BCAAs and AD is mechanistically distinct from pathways of glucose and insulin 
metabolism. This, however, contradicts results from a recent MR analysis that concluded those predisposed to 
raised plasma isoleucine levels are at an increased rather than decreased risk of AD51.

Strengths and limitations
Prior studies have been limited in their ability to determine whether metabolic perturbations were a cause or 
consequence of disease activity. However, given the use of genetic instruments for AD, and the young age of 
ALSPAC participants, observed effects in this cohort are likely to precede clinical AD and are therefore not 
consequences of AD pathophysiology. Moreover, although it is known that APOE variants are associated with 
differences in lipid metabolism, this is the first study to compare the magnitude of these effects to other non-lipid 
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metabolites, elucidate the protective effects of ε2 carriage in greater detail, and conduct temporal profiling of 
these perturbations across the life course to identify the earliest ages at which they can be observed.

Our analyses are underpinned by three core instrumental variable (IV) assumptions that must be satisfied 
for results to be valid. The first assumption of robust association between the IV and trait of interest was fulfilled 
given the large GWAS sample size and inclusion of SNPs relating to genes with known a priori biological function 
in relation to AD (APOE). The second assumption is that of no confounders of the IV and the outcome. This 
was addressed to the extent possible here by using a largely ancestrally homogenous population (> 96% white 
ethnicity). The final assumption is that there is no association of genetic instruments with the outcome, except 
via the exposure of interest. Our UK Biobank results largely demonstrated consistency across pleiotropy-robust 
models, indicating that horizontal pleiotropy is unlikely to be causing bias in our observed effects. There are 
several limitations to our study. The lack of ancestral diversity in ALSPAC (96% white) and UK Biobank (only 
Europeans analysed to avoid genetic confounding) limits the generalizability of results to diverse populations, 
though reduces the potential for confounding by population stratification. Given that ε4carriage affects AD 
risk more in those of European ancestry than those of African American or Hispanic ancestry52, future studies 
could investigate the extent to which ε4 carrier status influences the metabolome for other populations to help 
understand the reasons for ε4-AD risk differences across ancestral groups. Despite the central-peripheral flux of 
metabolites via the blood–brain barrier, previous studies have noted that the AD molecular profiles of plasma and 
CSF are divergent53. Therefore, the extent to which inferences regarding central AD pathophysiology can be made 
from this study should be considered. Future work should compare the effect of higher AD liability on plasma 
and CSF metabolites, although such data do not yet exist at scale. UK Biobank and the ALSPAC 8-year metabolite 
measurements were taken from non-fasted blood samples, whilst samples from all other timepoints were fasted, 
which potentially limits the comparability of UK Biobank and age 8 with the other ages. Another limitation is 
the targeted nature of the Nightingale metabolomics platform, which focuses on metabolites previously identi-
fied to be of clinical interest, most of which are lipids. An untargeted approach would allow for discovery of 
unknown biomarkers, including those beyond the lipid classes, of AD liability. The potential for selection bias is 
a plausible limitation to our study. However, for both ALSPAC and the UK Biobank, AD liability has been shown 
to be associated with non-participation54,55. Thus, selection bias would be anticipated to cause bias towards the 
null. Lastly, vertical pleiotropy could plausibly explain some of our findings. This is where perturbations in one 
metabolite causally influences another metabolite, but AD liability is not causally associated with the latter (the 
latter only changes as a result of changes in the former, which is the causal biomarker).

Conclusions
The results of this study support pronounced, and in many cases age-varying, effects of APOE ε4 and ε2 in 
producing early metabolic signatures of higher AD liability, many decades before the typical clinical presenta-
tion of late onset AD. Such metabolic characterisation of AD risk requires further examination within different 
cohorts and other study designs to strengthen evidence and improve understanding of AD pathophysiology, 
with implications for the prediction and prevention of the disease.

Data availability
Individual-level ALSPAC data are available following application. This process of managed access is detailed at 
www.​brist​ol.​ac.​uk/​alspac/​resea​rchers/​access. Summary-level GWAS results can be accessed through the IEU-
OpenGWAS platform, accessible at https://​gwas.​mrcieu.​ac.​uk/​datas​ets/?​gwas_​id__​icont​ains=​met-d. Summary 
statistics for the Kunkle et al. meta-analysis are available at: https://​www.​niaga​ds.​org/​datas​ets/​ng000​75.
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