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Plasma metabolomic differences 
in early‑onset compared 
to average‑onset colorectal cancer
Thejus Jayakrishnan 1, Arshiya Mariam 2,3,12, Nicole Farha 1,12, Daniel M. Rotroff 2,3, 
Federico Aucejo 4, Shimoli V. Barot 1,5, Madison Conces 5,6, Kanika G. Nair 1,5,7, 
Smitha S. Krishnamurthi 1,5,7, Stephanie L. Schmit 7,8,9, David Liska 5,7,10, 
Alok A. Khorana 1,5,7,12 & Suneel D. Kamath 1,5,7,11,12*

Deleterious effects of environmental exposures may contribute to the rising incidence of early‑onset 
colorectal cancer (eoCRC). We assessed the metabolomic differences between patients with eoCRC, 
average‑onset CRC (aoCRC), and non‑CRC controls, to understand pathogenic mechanisms. Patients 
with stage I–IV CRC and non‑CRC controls were categorized based on age ≤ 50 years (eoCRC or young 
non‑CRC controls) or  ≥ 60 years (aoCRC or older non‑CRC controls). Differential metabolite abundance 
and metabolic pathway analyses were performed on plasma samples. Multivariate Cox proportional 
hazards modeling was used for survival analyses. All P values were adjusted for multiple testing (false 
discovery rate, FDR P < 0.15 considered significant). The study population comprised 170 patients 
with CRC (66 eoCRC and 104 aoCRC) and 49 non‑CRC controls (34 young and 15 older). Citrate was 
differentially abundant in aoCRC vs. eoCRC in adjusted analysis (Odds Ratio = 21.8, FDR P = 0.04). 
Metabolic pathways altered in patients with aoCRC versus eoCRC included arginine biosynthesis, FDR 
P = 0.02; glyoxylate and dicarboxylate metabolism, FDR P = 0.005; citrate cycle, FDR P = 0.04; alanine, 
aspartate, and glutamate metabolism, FDR P = 0.01; glycine, serine, and threonine metabolism, FDR 
P = 0.14; and amino‑acid t‑RNA biosynthesis, FDR P = 0.01. 4‑hydroxyhippuric acid was significantly 
associated with overall survival in all patients with CRC (Hazards ratio, HR = 0.4, 95% CI 0.3–0.7, FDR 
P = 0.05). We identified several unique metabolic alterations, particularly the significant differential 
abundance of citrate in aoCRC versus eoCRC. Arginine biosynthesis was the most enriched by the 
differentially altered metabolites. The findings hold promise in developing strategies for early 
detection and novel therapies.

Keywords Early onset colorectal cancer, Metabolomics, Pathway analysis, Citric acid cycle, Arginine 
biosynthesis pathway, Synthetic lethality, Translational research

The incidence of early-onset colorectal cancer (eoCRC), defined as CRC diagnosed at age less than 50 years, 
has been steadily increasing, leading to the median age of diagnosis shifting from 72 years in the early 2000s to 
66 years at  present1–4. The increasing incidence of eoCRC has recently prompted the American Cancer Society 
and US Preventive Services Task Force to recommend the initiation of screening earlier at age  452,5. Many of the 
environmental risk factors for average-onset CRC (aoCRC) are also relevant for eoCRC 2. These include lifestyle 
factors such as physical inactivity and high red meat  consumption6. However, the drivers of the increasing 
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trend, and potential novel risk factors or differential contributions of known/established risk factors, are not 
well understood.

Metabolomics involves global analysis of small molecule metabolites in body fluids or tissue  extracts7. Evolv-
ing clinical utility of metabolomics such as risk prediction in cardiovascular disease has been  demonstrated8,9. 
In cancer, metabolomics may reflect the alterations resulting from cancer, and can identify the pathophysiologic 
changes preceding cancer development related to one’s exposures. Therefore, it could serve to identify cancer risk 
factors, study cancer biology, and develop novel  therapeutics10,27. Studies have identified metabolic alterations 
associated with CRC but such data in the context of eoCRC are  limited10–12. In the present study, we aimed to 
identify metabolomic differences between patients with eoCRC and aoCRC in comparison to non-CRC controls.

Methods
Patient samples
Patient plasma samples were obtained from prospective colorectal and liver tumor biobanks at the Cleveland 
Clinic from 01/2004 to 03/2021. Blood samples were obtained from patients on the day of their procedures, 
logged, and immediately stored at − 80 °C until processed. The prospective biobanks and studies on banked 
specimens were approved by the Institutional Review Board (IRB) at the Cleveland Clinic. All the patients were 
treated at Cleveland Clinic. None of them were participating in clinical trials involving metabolic interventions 
such as arginine synthesis modulators or tricarboxylic acid (TCA) cycle inhibitors at the time of the study.

The samples were divided into cases and non-CRC controls. The cases included patients with stages I–IV CRC. 
For patients with early-stage cancers (stages I–III), the samples were obtained at the time of surgical resection 
of the primary disease, and for the stage IV group, the samples were obtained during liver metastasis resection. 
The cases were excluded if they were nonmalignant, or non-adenocarcinoma. The non-CRC controls included 
those who underwent liver resections or biopsies for benign causes or liver transplant donors and were selected 
based on the availability of bio-banked plasma samples for comparison. Of note, individuals with CRC who 
underwent surgical resection received colon cleansing preparation. Since the stage of cancer (and therefore the 
type of surgery including the need for cleansing preparation) was incorporated as a covariate in the modeling, 
any resulting impact would be accounted for, in the present analysis. Additionally, the use of plasma instead of 
tissue may mitigate any effect that colon preparation might have on the  metabolome13.

The samples were categorized based on the age at the time of sample collection as ≤ 50 years (patients with 
eoCRC or young non-CRC controls) or ≥ 60 years (patients with CRC or older non-CRC controls). Retrospective 
chart reviews of the included patients were conducted to obtain clinical information.

Metabolomic analyses
Samples were submitted for metabolomic analyses by gas chromatography time-of-flight mass spectrometry 
(GC–TOF–MS) using the Primary Metabolism panel from West Coast Metabolomics at UC  Davis14. This is a 
non-targeted plasma GC-TOF mass spectrometry assay of approximately 200 known and > 200 unknown metabo-
lites including amino acid, carbohydrate and fatty acid metabolites. The list of known metabolites included in 
the analyses is available at https:// metab olomi cs. ucdav is. edu/ core- servi ces/ metab olites15.

The details of the technique including the validity of the methods, plasma extraction, and plasma metabo-
lomics have been described  previously16–19. To begin, the samples were subjected to extraction using a solution 
consisting of acetonitrile, isopropanol, and water in a ratio of 3:3:2, which was chilled to − 20 °C and degassed. 
A volume of 1 mL of this solution was utilized for extraction. Subsequently, 500 μL of the resulting supernatant 
was evaporated to dryness using a CentriVap (Labconco, Kansas, MO). For metabolite derivatization, a two-step 
process previously described was  employed16. First, methoximation was employed to protect carbonyl groups, 
followed by the exchange of acidic protons with trimethylsilyl groups to enhance volatility. An injection of 0.5 
μL sample volume was made into an Agilent 6890 GC (Agilent Technologies, Santa Clara, CA, USA), equipped 
with a Restek Rtx-5Sil MS column (30 m × 0.25 mm, 0.25 μm) and operated with a splitless time of 25 s and a 
helium gas flow rate of 1 mL/min. The oven temperature was initially held at 50 °C for 1 min and then increased 
to 330 °C at a rate of 20 °C/min, where it was maintained for 5 min.

Data acquisition was performed using a Leco Pegasus IV time-of-flight mass spectrometer (Leco Corpora-
tion, St. Joseph, MI) with electron ionization at − 70 eV. The mass spectra were recorded from 85 to 500 Da at 
a rate of 17 spectra/s and a detector voltage of 1850 V. The transfer line temperature was maintained at 280 °C, 
and the ion source temperature was set to 250 °C.

To ensure quality control, standard metabolite mixtures, and blank samples were injected at the beginning of 
the run and every ten samples throughout the analysis. Raw data were preprocessed using ChromaTOF version 
4.50, which encompassed baseline subtraction, deconvolution, and peak detection. Metabolite annotation and 
reporting were performed using  Binbase20. The results were further analyzed using the bioinformatics workflow 
described below.

Association analyses
The associations between individual metabolites (N = 449) and disease status were investigated using logistic 
regression using the stats package in open-source statistical software R version 4.2.1 (R Foundation for Statistical 
Computing, Vienna, Austria)21. These associations were used to investigate the associations of log-normalized 
metabolites with (1) patients with CRC vs. non-CRC controls, (2) patients with eoCRC vs. non-CRC controls 
aged ≤ 50 years, (3) patients with aoCRC vs. non-CRC controls aged ≥ 60 years, (4) patients with eoCRC versus 
aoCRC, and (5) non-CRC controls aged ≤ 50 versus ≥ 60 years. These associations were adjusted for sex, race, 
hyperlipidemia, obesity, cancer stage, and primary tumor location (left-sided vs. right-sided, rectal vs. non-
rectal). Results are presented as odds ratios (OR) and 95% CI. For the comparison between aoCRC and eoCRC, 
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an OR > 1 indicated a higher abundance of metabolites associated with aoCRC. All P values were adjusted for 
multiple testing using the Benjamini–Hochberg false discovery rate  approach22. FDR P < 0.15, previously used 
in other hypothesis-generating metabolomic studies, was used as the threshold for  significance23–25.

Pathway analyses
Metaboanalyst 5.0 was used for pathway analyses of the significantly altered metabolites (P < 0.05) using KEGG as 
the pathway reference. The enrichment method and topology analysis used hypergeometric tests and out-degree 
centralities, respectively. Pathways were considered enriched if the FDR P < 0.15.

Survival analyses
Overall survival (OS) was measured in months (m) from the day of cancer diagnosis to the day of death or censor-
ing (last follow-up). Multivariate Cox proportional hazards modeling was performed to associate any metabolite 
with survival in patients with CRC (eoCRC and aoCRC). The model was adjusted for relevant demographic 
and clinical characteristics (race, sex, hyperlipidemia, obesity, stage, tumor-sidedness, and rectal cancer status). 
Statistical analyses were performed using the R survival package version 3.5-526.

Ethical approval
This study was performed under the oversight of the Cleveland Clinic institutional review board and the ethical 
approval process (IRB# 4134 and IRB# 10-347).

Conference presentation
This study was presented at the 2023 American Society of Clinical Oncology Gastrointestinal Cancers Sympo-
sium, and updated results were presented at the 2023 American Society of Clinical Oncology annual meeting as 
a podium presentation (Clinical cancer Symposium on the molecular basis of young-onset colorectal cancer). 
The first author (T.J.) received an ASCO Conquer Cancer Merit Award.

Results
Baseline characteristics
The study population comprised 170 patients with CRC (66 eoCRC and 104 aoCRC) and 49 non-CRC controls 
(34 with age < 50 years and 15 with age > 60 years). The majority of non-CRC controls were subjects with hepatic 
adenomas (n = 15, 31.3%), followed by healthy liver donors (n = 11, 22.9%), and those with other benign condi-
tions of the liver, including cysts (n = 10, 20.8%), hemangiomas (n = 7, 14.6%), and focal nodular hyperplasia 
(n = 5, 10.4%).

The baseline characteristics of the patients are summarized in Table 1. The majority of the subjects were male 
(59.4%) for CRC and female (83.7%) for non-CRC controls, P < 0.0001. The race distribution was similar with 
the majority of both groups identifying as White—CRC (91.8%) and control (83.7%). The median age of patients 
with CRC (median = 62.95, IQR = 45.10–70.73) was greater than that of the non-CRC controls (median = 43.36, 
IQR = 32.83–64.35). There was no significant difference in the family history of CRC and personal or family his-
tory of colon polyps between patients with CRC and non-CRC controls. The majority had no significant family 
history of CRC (84.7% in CRC vs. 85.7% in control) or colon polyps (91.8 vs. 93.9%). There were no significant 
differences in smoking or alcohol consumption (P > 0.05). The differences in microsatellite instability (MSI) 
status and somatic mutations for patients that underwent testing are outlined in Supplementary Table 1. There 
was only 1 patient with MSI-H status in eoCRC (1.5%) and 4 patients (3.8%) in aoCRC.

Table 1.  Baseline characteristics of patients selected for the analysis—n (%) for categorical variables and mean 
(standard deviation—SD) for continuous variables. p-value aFor eoCRC vs aoCRC groups comparison. p-value 
bFor CRC control groups comparison. CRC, colorectal cancer; eoCRC, early-onset colorectal cancer; aoCRC, 
average-onset colorectal cancer; NA, not applicable.

Characteristics All CRC (n = 170) eoCRC (n = 66) aoCRC (n = 104) p-valuea Non-CRC Control (n = 49) p-valueb

Age (SD) 59.4 (16.0) 41.8 (6.1) 70.6 (8.5) < 0.001 47.4 (18.2) NA

Sex: Male 101 (59.4%) 34 (51.5%) 67 (64.4%) 0.131 8 (16.3%) < 0.001

Sex: Female 69 (40.6%) 32 (48.5%) 37 (35.6%) 41 (83.7%)

Race: White 156 (91.8%) 62 (93.9%) 94 (90.4%) 0.592 41 (83.7%) 0.164

Race: Black 12 (7.1%) 2 (3.0%) 10 (9.6%) 7 (14.3%)

Race: Other 2 (1.2%) 2 (3.0%) 0 1 (2.0%)

Diabetes 35 (20.6%) 5 (7.6%) 30 (28.8%) 0.002 5 (10.2%) 0.148

Hyperlipidemia 52 (30.6%) 12 (18.2%) 40 (38.5%) 0.009 26 (53.1%) 0.006

Obesity 41 (24.1%) 22 (33.3%) 19 (18.3%) 0.04 25 (51.0%) 0.001

Sidedness:
Left sided 128 (75.3%) 59 (89.4%) 69 (66.3%) 0.003 - NA

Rectal Primary 72 (42.4%) 35 (53.0%) 37 (35.6%) 0.035 - NA

Stage IV cancer 77 (45.3%) 41 (62.1%) 36 (34.6%) 0.001 - NA
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The mean BMI for patients with CRC and non-CRC controls were 28.71 (SD = 5.81) and 30.33 (SD = 6.34), 
respectively. Among the comorbidities assessed, the prevalence of the following was significantly different 
between patients with CRC and non-CRC controls—hyperlipidemia (30.6% in CRC group vs. 53.1% in the 
control group, P = 0.006) and obesity (24.1 vs. 51.0%, P < 0.001), while that of diabetes mellitus (20.6 vs. 10.2%, 
P = 0.148) was similar. Inflammatory bowel disease (IBD) was reported in 4.1% of CRC patients.

A higher proportion of patients with eoCRC than with aoCRC had the left-sided disease (89.4 vs. 66.3%, 
P = 0.003), rectal primary cancer (53.0 vs. 35.6%, P = 0.037), and stage IV disease (62.1 vs. 34.6%, P = 0.001). The 
prevalence of IBD was similar between the groups – 6.1% among patients with eoCRC vs 2.9% among patients 
with aoCRC (P = 0.535).

Hyperlipidemia and obesity were included as covariates because the proportions of these diseases varied 
significantly between patients with CRC and non-CRC controls at baseline (P < 0.05). The complete metabolic 
profiles of all the patients are shown in Supplementary Fig. 1.

Metabolomic analyses
Association analyses revealed four differentially abundant metabolites in the eoCRC versus aoCRC comparison: 
citrate (FDR P = 0.04), cholesterol (FDR P = 0.14), and two unidentified metabolites, UM118961 (FDR P = 0.11) 
and UM210714 (FDR P = 0.11), in unadjusted analyses (Fig. 1). The corresponding odds ratios were (OR > 1 
indicating the association of higher abundance with aoCRC vs. eoCRC – citrate 14.54 (95% CI 4.26–56.35), 
cholesterol 0.01 (0.001–0.10), UM118961 0.52 (0.37–0.72), UM210714 3.67 (1.93–7.33) (Table 2). The differ-
ential abundance in citrate level remained significant on adjusted analysis—OR = 21.8 (95% CI 5.0–110.9, FDR 
P = 0.04). (Fig. 1).

No significant differentially abundant metabolites were found between the following cohorts: patients with 
eoCRC vs. young non-CRC controls, patients with aoCRC vs. older non-CRC controls, and control subgroups 
(age < 50 vs. age > 60) (FDR P > 0.20 all).

The following differentially abundant metabolites were observed in the unadjusted comparison between 
patients with CRC and non-CRC controls (OR > 1 indicates greater abundance in CRC): UM41873 (OR 0.60, 
95% CI 0.45–0.75, FDR P = 0.06) and 4-hydroxyhippuric acid (OR 0.45, 95% CI 0.30–0.67, FDR P = 0.09) in the 
unadjusted analyses. These differences were not significant after adjustment for the following covariates—sex, 
race, hyperlipidemia, obesity, cancer stage, and primary tumor location (FDR P = 0.71 and 0.49, respectively).

The heatmap of all metabolites analyzed (including those not statistically significant) is shown in Supple-
mentary Fig. 1 and individual profiles of metabolites with P < 0.05 are shown in Supplementary Fig. 2. Only nine 
metabolites were differentially abundant in both eoCRC vs. aoCRC and age < 50 non-CRC controls vs. age > 60 
non-CRC controls.

Figure 1.  Volcano plot representing results of unadjusted and adjusted metabolomic analyses in comparing 
eoCRC and aoCRC. FDR, false discovery rate; corresponding values are described in Table 1.
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Pathway analysis results
Metabolic pathways impacted by the differentially abundant metabolites included: carbohydrate metabolism 
(citrate/TCA cycle, FDR P = 0.04, impact factor = 0.14), carbohydrate biosynthesis (glyoxylate and dicarboxylate 
metabolism, FDR P = 0.005, impact factor = 0.23), amino acid metabolism (alanine, aspartate, and glutamate 
metabolism, FDR P = 0.01, impact factor = 0.28; glycine, serine, and threonine metabolism, FDR P = 0.14, impact 
factor = 0.28; arginine biosynthesis, FDR P = 0.02, impact factor = 0.13, and amino-acid t-RNA biosynthesis, 
FDR P = 0.01, impact factor = 0.17). The results are summarized in Table 2 and graphically represented in Fig. 2. 
There were no significant metabolomic differences between the young and older non-CRC controls. The argi-
nine biosynthesis pathway, followed by the glyoxylate and dicarboxylate metabolism and TCA cycle pathways, 
were the most enriched with differentially expressed metabolites (Fig. 3). The Fig. 4 heatmap demonstrates the 
individual metabolite alterations in the pairwise comparison of patients with eoCRC and aoCRC reflected in the 
pathway analyses. The metabolic pathways with upregulated metabolites in eoCRC included: alanine, aspartate, 
and glutamate metabolism; aminoacyl-tRNA biosynthesis; arginine biosynthesis; glycine, serine, and threonine 
metabolism. The metabolites upregulated in multiple pathways included aspartic acid, alanine, glycine, and 
threonine. The pathways with upregulated metabolites in aoCRC (citric acid, isocitric acid, acotinic acid) were 

Table 2.  Results of metabolomic analyses assessing differential abundance of metabolites between patients 
with aoCRC versus eoCRC and pathways impacted. a Odds ratio > 1 indicates association of higher abundance 
of metabolites with aoCRC versus yoCRC. The results are graphically represented in Figs. 1 and 2. FDR, false 
discovery rate.

Differentially abundant metabolite OR (95% CI)a FDR P

Citrate 14.54 (4.26–56.35) 0.04

Cholesterol 0.01 (0.001–0.10) 0.14

UM118961 0.52 (0.37–0.72) 0.11

UM210714 3.67 (1.93–7.33) 0.11

 Pathway Pathway impact factor Hits  FDR P 

Arginine biosynthesis 0.13 3 0.02

Glyoxylate and dicarboxylate metabolism 0.23 5 0.005

Citrate (TCA) cycle 0.14 3 0.04

Alanine, aspartate and glutamate metabolism 0.28 4 0.01

Aminoacyl-tRNA biosynthesis 0.17 5 0.01

Glycine, serine and threonine metabolism 0.28 3 0.14

Figure 2.  Bubble plot of pathway impact analyses. The impact factor topology analysis measures the impact of 
each metabolite in a pathway on a set of other metabolites in a pathway. Topology analysis was performed on the 
differentially expressed metabolites to estimate their cumulative impact on the pathways, corresponding values 
are described in Table 1.
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the TCA cycle and glyoxylate and dicarboxylate metabolism. These metabolite level changes were mapped to 
the interlinked metabolic pathways as represented in Fig. 5.

Survival analyses
Overall survival (OS) analysis was performed in patients with CRC. The median follow-up period was 42 months 
(IQR = 26–64 months) for patients with eoCRC and 44 months (IQR = 29–84 months) for patients with aoCRC. 
During follow-up, 85 patients died (34.8% with eoCRC and 59.6% with aoCRC, P = 0.003).

Supplementary Fig. 3 summarizes the results of adjusted and unadjusted Cox regression analyses outlining 
both significant and non-significant results. In adjusted analyses, 4-hydroxyhippuric acid was significantly associ-
ated with OS in patients with CRC (HR = 0.4, 95% CI 0.3–0.7, FDR P = 0.05). As shown in Supplementary Fig. 4, 
the 25th percentile of 4-hydroxyhippuric acid abundance was associated with worse OS vs. the 75th percentile 
(45.98% vs. 62.16%). It was not associated with OS in patients with either eoCRC or aoCRC separately.

Adipic acid was statistically significantly associated with OS in patients with aoCRC in the unadjusted analysis 
(HR = 3.1, 95% CI 1.7–5.6, FDR P = 0.13). Compared with the 25th percentile of adipic acid abundance, the 75th 
percentile was associated with a lower 60-month OS in patients with aoCRC (47.15 vs. 62.91%) (Supplementary 
Fig. 5). However, this association was no longer significant in the adjusted analysis (HR = 2.6, 95% CI 1.2–5.5, 
FDR P = 1). Adipic acid was not associated with survival in patients with eoCRC or when eoCRC and aoCRC 
were combined.

Discussion
We identified significant differences in metabolites and associated pathways in comparing patients with eoCRC 
and aoCRC along with age-appropriate non-CRC controls. In particular, higher citrate levels were associated 
with aoCRC compared to eoCRC with an odds ratio of 21.8 (95% CI 5.0–110.9.35, FDR P = 0.04) on adjusted 
analyses. The arginine biosynthesis pathway, followed by the glyoxylate and dicarboxylate metabolism pathways 
and TCA cycle, were the most enriched, based on the relative abundance of metabolites in this study. Other 
pathway alterations reflected in metabolite levels and captured by metabolomics included the aminoacyl t-RNA 
biosynthesis; alanine, aspartate, and glutamate metabolism; and glycine, serine, and threonine metabolism. 
Similar studies comparing patients with colorectal cancer to those without cancer have identified additional 
pathway differences, such as lipid metabolism, which may be associated with variations in technique or patient 
 selection11,12. Interestingly, two unidentified metabolites (UM118961 and UM210714) were observed and will 
require further exploration in future  studies27,28. Association of higher levels of 4-hydroxyhippuric acid with 
improved overall survival was observed in the whole cohort.

Recent research has demonstrated the ability of metabolomics to identify metabolic pathway alterations 
associated with CRC 11,29–37. These include TCA cycle-related metabolites reflecting impaired mitochondrial res-
piration and oxidative  stress10,11,32. The Warburg effect, which involves increased aerobic glycolysis in cancer cells, 
also impacts the levels of the related TCA cycle  metabolites7,29–31,38,39. It is noteworthy that the alterations in these 
pathways are variable depending on the age of onset for CRC. In the present study, the TCA cycle metabolites 
including the key metabolite citrate were more abundant in aoCRC. As citrate has been proposed as a biomarker 

Figure 3.  Results for pathway enrichment analyses. Enrichment analyses test whether more significant 
metabolites are involved in a pathway than expected by chance. The metabolites involved in the pathways are 
shown in the next figure (Fig. 4). FDR, false discovery rate.
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Figure 4.  Heatmap outlining the metabolites significantly upregulated or downregulated in patients with 
eoCRC and aoCRC impacting the corresponding pathways. The heatmap was generated using R package 
 ggplot249, *Indicate significantly altered metabolites. The numbers within parenthesis indicates the fraction of 
samples that exhibit the specific altered metabolite. eoCRC, early-onset colorectal cancer; aoCRC, average-onset 
colorectal cancer.
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in gastrointestinal cancers, further investigations are necessary to understand the differences between eoCRC 
and aoCRC and their clinical  significance39,40. These findings are relevant from a therapeutic perspective, as there 
are ongoing efforts to explore options for targeting the TCA cycle in GI  cancers41,42.

In the present study, patients with eoCRC exhibited enrichment with differentially expressed metabolites in 
the arginine biosynthesis pathway. Arginine serves a crucial function in tumor metabolism, including the syn-
thesis of nitric oxide, polyamines, proline, and  glutamate43. Dietary correlations have also been made between 
red meat consumption and polyamine synthesis impacting colorectal cancer  risk43. Various strategies are being 
explored to target this pathway, including arginine deprivation, arginine uptake inhibition, and micro RNA-
mediated modulation of the enzymes  involved43. Investigations are also ongoing to inhibit Arginosuccinate 
synthetase 1(ASS1), a key enzyme involved in the arginine biosynthesis pathway that is upregulated in colon 
 cancer44. Upregulation of ASS1 enhances the ability of cells to recycle arginine and be less vulnerable to arginine 
deprivation, and inhibition of ASS1 has been shown to successfully impair the pathogenicity of colon cancer 
 cells44,43. Further enhancement of this synthetic lethality is possible by arginine deprivation and inhibition of any 
escape pathways utilized by the cells for  survival45,46. The mapping of the metabolic pathway for arginine cycle 
metabolites in eoCRC is comparable to the effects observed with ASS1 inhibition and arginine deficiency. This 
results in high levels of aspartic acid, asparagine, and ornithine, as well as lower levels of TCA cycle metabo-
lites and increased levels of serine biosynthesis cycle  metabolites46,47. These unique metabolic characteristics 
in arginine biosynthesis, as opposed to aoCRC, provide potential avenues for innovative therapeutic targeting.

Unique associations between metabolites and overall survival were noted when stratified by age. Hippuric 
acid is an important energy metabolism precursor, and lower levels of hippuric acid are noted in cancer subjects, 
likely due to increased consumption by cancer  cells48. However, definite conclusions cannot be drawn from these 
results, particularly due to the sample size of patients in our study.

A few limitations of the study are worth noting. Firstly, the small sample size of the non-CRC control group 
may have prevented us from identifying key metabolic differences between patients with CRC and non-CRC 
controls. However, we had sufficient patients with CRC to observe statistically significant differences in metabo-
lites with an exploratory threshold, and the limitations of the control group did not restrict our ability to detect 
meaningful differences between early and average onset CRC. Moreover, if we assume that the effect sizes are due 
to age only and remain within the 95% confidence interval regardless of CRC status, we had at least 80% power 
to be able to detect the differences between healthy older adults and healthy younger adults for the metabolites 
that were significantly altered in patients with CRC (citrate and cholesterol). . While the point estimate of 

Figure 5.  Illustration mapping the metabolic alterations in eoCRC and aoCRC to the interlinked arginine 
biosynthesis and TCA cycles. Arginine biosynthesis: ADI, arginine deiminase; ASL, argininosuccinate lyase, 
ASS, argininosuccinate synthetase; NOS, nitric oxide synthase, NO, nitric oxide, ODC, ornithine decarboxylase, 
OTC, ornithine transcarbamylase. Citrate (TCA) Cycle: CS, citrate synthase, ACLY, adenosine triphosphate 
citrate lyase, AH, aconitase, IDH, isocitrate dehydrogenase, KGDHC, α-ketoglutarate dehydrogenase 
complex, SCS, succinyl-CoA synthase; SDH, succinate dehydrogenase; FH, fumarate hydratase; MDH, malate 
dehydrogenase; GLS, glutaminase; GLUD, glutamate dehydrogenase. eoCRC, Early-Onset Colorectal Cancer; 
aoCRC, average-onset colorectal cancer.
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21.8 associated with the odds ratio (OR) for citrate suggests a strong association, the wide confidence interval 
could reflect some uncertainty surrounding the estimate, likely due to the small sample size. This highlights the 
importance of further validation of these findings in a larger study. Secondly, selection bias may have influenced 
baseline differences in comorbidities between patients with CRC and non-CRC controls. To address this, we 
included comorbidities as covariates in our regression models. Thirdly, given that an individual’s exposure is 
variable and dynamic throughout their lifetime, confounding factors such as dietary and medication exposures 
could certainly influence the results. Chemotherapy administration could also affect the metabolome. In our 
study, only those with stage IV colorectal cancer were receiving chemotherapy near the time of sample collection. 
While we did not directly adjust for chemotherapy administration, we did adjust for the stage of disease, which 
is a proxy for the effect of chemotherapy administration. The adjustment of stage is also expected to address the 
differences in the proportions of patients with stage IV cancer including colorectal liver metastases that may 
impact the metabolome. We ensured uniformity in the sample collection timing as all blood samples were col-
lected on the day of the procedure and after overnight fasting. Finally, we adjusted for primary tumor sidedness 
to address the confounding effect of different molecular alterations in left versus right-sided CRC, but residual 
confounding is still possible. Since all stage IV patients in this study had resectable liver metastases, it is also 
unclear if these results can be generalized to other metastatic sites such as lung or peritoneum.

Accounting for the heterogeneous molecular alterations presents inherent challenges from a combination of 
factors. First, the majority of the patient cohort under investigation had early-stage disease, rendering molecular 
profiling data unavailable as it is not a routine standard of care in such cases. Consequently, stratifying the cohort 
based on diverse molecular characteristics would have resulted in the creation of numerous subgroups and 
compromised the statistical power of the study in discerning metabolomic differences, which was the primary 
research aim. Moreover, the observed molecular differences did not exhibit substantial numerical differences 
between eoCRC aoCRC.

Key findings of the study include the significant differential abundance of citrate in aoCRC compared to 
eoCRC with an odds ratio of 21.8 in adjusted analysis. Further investigations related to mechanisms underlying 
metabolomic differences in arginine biosynthesis and potential relationships with environmental exposures may 
elucidate the pathogenesis of eoCRC and offer opportunities for therapeutic targeting. We observed the associa-
tion of 4-hydroxy Hippuric acid with overall survival, which could serve as a prognostic biomarker. In addition 
to further validation with targeted metabolomics, future efforts should include correlation with metagenomics 
and mechanistic studies.

Data and materials availability
TJ and SK had full access to all data in the study. We take full responsibility for the integrity of our data. The data 
generated in this study are not publicly available because the information could compromise patient privacy and 
consent, but are available upon reasonable request from the corresponding author.
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