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Qubit gate operations in elliptically 
trapped polariton condensates
Luciano S. Ricco 1*, Ivan A. Shelykh 1,2,3 & Alexey Kavokin 4,5,6*

We consider bosonic condensates of exciton-polaritons optically confined in elliptical traps. A 
superposition of two non-degenerated p-type states of the condensate oriented along the two main 
axes of the trap is represented by a point on a Bloch sphere, being considered as an optically tunable 
qubit. We describe a set of universal single-qubit gates resulting in a controllable shift of the Bloch 
vector by means of an auxiliary laser beam. Moreover, we consider interaction mechanisms between 
two neighboring traps that enable designing two-qubit operations such as CPHASE and CNOT gates. 
Both the single- and two-qubit gates are analyzed in the presence of error sources in the context of 
polariton traps, such as pure dephasing and spontaneous relaxation mechanisms, leading to a fidelity 
reduction of the final qubit states and quantum concurrence, as well as the increase of Von Neumann 
entropy. We also discuss the applicability of our qubit proposal in the context of DiVincenzo’s criteria 
for the realization of local quantum computing processes. Altogether, the developed set of quantum 
operations would pave the way to the realization of a variety of quantum algorithms in a planar 
microcavity with a set of optically induced elliptical traps.

The placement of solid-state exciton-polariton systems, here on just polaritons, in the quantum computing race 
remains questionable to  date1,2 despite the growing quality of patterned optical cavities and available active 
materials  therein3,4 and steadily advancing techniques in potential landscape  engineering5, and optical control 
to minimize decoherence  processes6. In inorganic III–V semiconductor microcavities, significant cross-phase 
 modulation7,  squeezing8, blockade  effect9,10 and  interactions11 at the single polariton level have already been 
demonstrated due to the large interaction strengths between polaritons, owing to the generous size of their 
underlying Wannier–Mott exciton component. Nowadays, quantum computing proposals using polaritons can 
be divided into two categories: single-particle12–15 and macroscopic  field16–19 strategies. Here, we are concerned 
with the latter based on nonequilibrium polariton Bose–Einstein condensates.

Polaritons are hybrid particles arising in the strong coupling regime between matter (excitons) and light 
(confined photons)20. They possess extremely light effective mass, large inter-particle interaction strengths, and 
can be reversibly adjusted through all-optical techniques. Importantly, information about the polariton state is 
encoded in the emitted cavity light which can be measured through standard optical techniques. Being bosonic 
quasiparticles, polaritons can be stimulated into a macroscopically coherent state which lies at the interface 
between nonequilibrium Bose–Einstein condensates and polariton  lasers21. In the mean-field picture, a conden-
sate of polaritons can be conveniently described by a single macroscopic wavefunction �(r, t)20.

Because polariton condensates are driven-dissipative objects, with particles being generated from an exter-
nal laser excitation and losses naturally occurring through the cavity mirrors, they can possess equilibrium 
points that do not coincide with the many-body system ground state in thermodynamic equilibrium. In par-
ticular, they can populate and stabilize into the excited state manifolds of their transverse trapping configuration 
which includes  micropillars22–26, patterned  mesas27,28, cavities with metallic  deposition29, and optically generated 
 potentials30–36. In particular, these optically induced potentials can be flexibly designed with the use of spatial 
light modulators (SLMs). Their shape may be varied on demand from one experiment to another, permitting 
the realization of polariton XY37,38 or Ising  simulators39,40.

The concept of using polaritons as macroscopic quantum states for continuous-variable quantum 
 computation41 was recently visited by Xue et al.19 using the superposition of co-localized and non-degenerate 
ring-shaped polariton condensates of opposite circulation. These polariton qubits are similar to their supercon-
ducting counterpart, the flux qubits. However, instead of circulating basis states, polariton condensates might be 
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more conveniently described in terms of p-states, corresponding to their spatial dipolar distribution along the two 
main axes of the transverse trap, i.e., px and py . In the context of optical traps, the equal linear combination of px 
and py states corresponds to polariton condensates with an integer orbital angular momenta (OAM), whose the 
p-states wavefunctions are real and characterized by odd parity. In an ideal round trap potential, these px and py 
modes are degenerate, however, any small geometric ellipticity induces an energy splitting between  them30,42,43.

For the purpose of the realization of digital quantum computers based on polariton  qubits1, one should aim at 
maximizing the coherence times of each individual qubit and coupled arrays of qubits. Interestingly, the dynamics 
of polariton condensates are characterized by a range of time scales, and it is a non-trivial question of which of 
them would be responsible for the decoherence of polariton qubits. The shortest timescale is given by the single 
polariton lifetime that is dependent on the quality factor of the cavity and can reach hundreds of ps in planar 
 cavities44 and grated waveguides utilizing photonic states protected from the  continuum45. The coherence time 
of a polariton laser condensate, measured by the time-resolved interferometry measurements, can be two orders 
of magnitude longer, (i.e., several ns), because of the stimulated scattering of polaritons that stabilizes their final 
 state46–48. Moreover, the spatial coherence of an optically trapped continuous wave (CW)-driven polariton con-
densate has been measured to be practically uniform within the  trap34,48 underlining the condensate’s quality as 
a macroscopic spatially coherent object. The ultimate upper bound is the duration of the laser excitation which 
sustains the condensates which can be in the range of milliseconds before sample heating becomes a problem.

Here, we consider a macroscopic polariton-based qubit composed of non-degenerate |px,y�-states confined 
within an optically induced two-dimensional trap, as illustrated in Fig. 1a. Specifically, these basis states comprise 
the |px� - and |py�-modes, corresponding to the spatial dipolar distribution along the two principal axes of the trap, 
cf. Fig. 1b. The energy difference between these states is determined by the ellipticity of the trap, which can be 
adjusted using an SLM to shape the laser responsible for the generation of the trap  potential34,49. By manipulating 
the trapped polariton condensate with an auxiliary off-resonant laser beam, we establish a theoretical framework 
for a universal set of single-qubit operations. These operations allow for precise control over the qubit state vector 
within the Bloch sphere using purely optical means. Additionally, we explore a set of two-qubit gates, enabled by 
distinct coupling mechanisms between the |px� - and |py�-states of neighboring traps. These interactions can be 
selectively blocked through nonresonant laser control pulses that create an effective potential barrier between 
the  traps50. In particular, by tuning the parameters of the auxiliary laser beams, their operational duration, and 
the interaction between the traps, we define essential two-qubit operations for quantum computing processes. 
These include fundamental gates such as the CPHASE and CNOT operations, which fall into the category of 
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Figure 1.  (a) Sketch of the proposed polariton condensate qubit system. Two polariton condensates are formed 
at distinct regions of a microcavity plane, within an elliptical trap in the presence of a nonresonant continuous 
wave (CW) laser pump with a hexagonal shape. These trapped condensates host superfluid circularly current 
states whose direction is defined by opposite OAM, as represented by the red circled arrows in each trap. The 
linear combination of clockwise and anticlockwise OAM states defines the orthogonal |px� - and |py�-modes 
in the optically generated trap and are the basis states for a two-level qubit in each polariton condensate. 
Both the initial qubit states and qubit gates for an individual trap can be tuned by the corresponding auxiliary 
off-resonant laser beams. Moreover, the coupling between two qubits can be switched on and off by a control 
laser pulse that creates a potential barrier between the two traps (not shown). (b) Spatial representation of the 
p-modes, corresponding to the qubit basis states. The right panel illustrates the energy splitting �ε between the 
modes, which can be tuned by stretching out the hexagonal trap.
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entangling gates51. Furthermore, we assess the fidelity of the output state for representative quantum gates, e.g., 
Hadamard and CPHASE, along with key metrics such as Von Neumann entropy and quantum concurrence. 
These analyses take into account the presence of intrinsic error sources, namely pure dephasing and spontane-
ous relaxation, which can affect the performance of polariton-based qubits. Lastly, we briefly examine how our 
proposal of qubits based on optically trapped polariton condensates aligns with each of the five DiVincenzo’s 
 criteria52,53 for the practical implementation of local quantum computing processes.

The polariton condensate qubit system hereby explored presents some notable advantages when compared to 
qubits based on split-ring polariton condensates proposed in Ref.19. One key advantage is the ability to achieve 
direct optical control over the energy splitting between the two polariton states in the system by reprogram-
ming the SLM to adjust the eccentricity of the optical  trap49. This control directly impacts the period of Rabi 
oscillations and, consequently, the characteristic time required to execute a single-qubit quantum  operation36. 
It should be noticed that our proposal is similar to the one recently introduced by Barrat et al.36, once both sys-
tems are based on optically trapped polariton condensates with qubit states corresponding to superpositions of 
clockwise and anticlockwise currents defining dipolar states. However, our setup allows direct control over the 
coupling between two adjacent qubits, without the need for an acousto-optic modulator for frequency-shifting 
the photoluminescence between the qubits, as proposed in Ref.36. We also highlight that the present scheme dif-
fers significantly from the proposal by Ref.18, which relies on a single-polariton nonlinearity and the polariton 
blockade effect giving rise to a qubit basis built upon quantum fluctuations on top of polariton condensates 
within semiconductor micropillars. Moreover, the macroscopic polariton qubit explored here offers the unique 
capability to optically switch on/off the interaction between neighboring traps, or equivalently, between the two 
qubits. This feature provides a natural advantage compared to superconducting-based qubits, where interaction 
cannot be completely excluded. In contrast, one main concern present is error correction for polaritons which 
would need at least some form of active feedback mechanism that fixes errors on GHz polariton rates whereas 
most SLM technologies are operating at kHz frequencies with few exotic solutions pushing the GHz  limit54. Still, 
the unprecedented rapid development of polariton computing might enable one to circumvent this shortcoming 
by repeating the computation for a sufficient amount of time to accumulate the statistics of results, allowing one 
to filter out the correct solution.

Model Hamiltonian and quantum gate operations
Single-qubit gate operations
We start by defining canonical single qubit  operations51 on a single trapped condensate and later move onto defin-
ing quantum gate operations between two trapped polariton condensates (i.e., a two-qubit system). Single qubit 
gates are mathematically defined as unitary rotations of the qubit state around a given axis of the Bloch  sphere53 
which necessitates a suitable basis of quantum states to work with. A good basis might rely on the symmetric and 
antisymmetric polariton  levels16, the natural two-component spin structure of  polaritons17, or counterrotating 
superfluid  currents19,36,55. Instead, we define our basis using the orthogonal |px� and |py� states of an optically 
generated  trap33,56 whose energy levels can be continuously split, �ε = Ex − Ey (Fig. 1b), by simply adjusting 
the nonresonant excitation beam profile into an elliptical annular shape. Our choice of basis is motivated by the 
recent demonstrations of spatially coupled polariton condensate  vortices40,57 whose coherent superposition of 
clockwise | �� and anticlockwise | �� OAM defines the trap’s dipolar states,

which are used as building blocks to define a qubit basis, i.e., |px� ≡ |0� and |py� ≡ |1� . We assume that the system 
is pumped only slightly above the condensation threshold in order to avoid fragmentation of the condensate 
across multiple trap modes and power-induced collapse into the |s� ground  state34. The convenient feature of this 
basis is the spatial structure of the basis states which permits resonant excitation of different kinds of superposi-
tions of |px� and |py�27,42,57,58. Within the two-level qubit subspace {|0�, |1�} , setting � = 1 , the effective single-qubit 
Hamiltonian can be written:

The operators σ̂x,y,z are the standard Pauli matrices, and can be written in terms of the qubit basis as 
σ̂z = |0��0| − |1��1| , σ̂x = |0��1| + |1��0| and σ̂y = −ı(|0��1| − |1��0|) , with |0� =

(

1 0
)T and |1� =

(

0 1
)T . 

Thus, the Px ,Py parameters are responsible for changing the coupling between |0� ( |px� ) and |1� ( |py� ) states, 
while �ε is the energy splitting.

Control over the parameters (Px ,Py ,�ε) comes from a suite of SLM techniques that change the shape and 
form of the nonresonant pump inducing the optical trap, and subsequently the coupling between the |px� and 
|py� states as demonstrated in Ref.36. The last term is proportional to the eccentricity of the trap which affects the 
splitting along the minor and major  axis30,34. The second term comes from adjusting the in-plane orientation of 
the  trap49; e.g. a 45◦ degree rotation couples |px� and |py� to form their diagonal and antidiagonal counterparts. 
The first term couples the |px� and |py� states to form circulating currents which can be achieved by setting the 
trap into rotational  motion59,60.

It is crucial to clarify that our proposal utilizes two distinct optical beams, as illustrated in Fig. 1a. The first 
one is a hexagonal-shaped non-resonant CW pump employed for both trapping and sustaining the polariton 

(1)
|px� =

1√
2
(| �� + | ��),

|py� =
1√
2
(| �� − | ��),

(2)Ĥ = Px σ̂x + Py σ̂y +
�ε

2
σ̂z .
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condensate. The tunability inherent in this non-resonant pumping mechanism provides precise control over 
both the size and shape of the optical trap. This allows for the selective excitation of specific superpositions 
involving |px� and |py� modes, as demonstrated in previous  works42,57,61. Moreover, it also allows control over the 
corresponding energy splitting �ε30.

The second type of beam is a laser beam operating at a frequency significantly above the excitonic resonance, 
i.e., off-resonant. Hereafter, we will refer to these control inputs as non-resonant auxiliary laser inputs. Both the 
pump power and spatial location of this auxiliary laser spot are experimentally tunable parameters, enabling 
the realization of desired quantum operations described throughout this proposal. For example, an off-centered 
non-resonant laser pulse with a Gaussian shape can be employed for changing the direction of the already formed 
 OAM57. It also allows manipulation of the coupling between |px� and |py� modes belonging to the same  trap36.

Following the definition expressed in Eq. (1), the single qubit Hamiltonian of Eq. (2) can be written in its 
corresponding OAM basis {| ��, | ��} as follows:

In the OAM subspace, we can notice that the x-component of the auxiliary laser shifts the energy splitting of 
the clockwise and anticlockwise OAM states. Simultaneously, both the z-component and y-component modulate 
the coupling between OAM states with opposing directions when confined within the same trap. In particular, 
Barrat et al.36 achieved this manipulation of the interactions between counter-circulating polariton trap states 
by using an auxiliary laser in the form of an off-centered Gaussian “bump”.

For an operational time τ of the auxiliary laser beam, the temporal evolution of the single qubit Hamilto-
nian expressed in Eq. (2) is given by the unitary operator Û(τ ) = e−ıĤτ62, so that the final qubit state becomes 
|ψ� = Û(τ )|ψ0� , for a given initial qubit state |ψ0� . To explore the effect of such unitary time evolution, the 
single qubit Hamiltonian is expressed in a Bloch sphere  representation51,53, by considering a parameterized unit 
vector n̂ in spherical coordinates, in which n̂ ∈ R

3 is called Bloch vector, where the phase θ of the laser beam is 
the polar angle of the Bloch sphere ( 0 ≤ θ ≤ π ), with a parameterized azimuthal angle φ ( 0 ≤ φ < 2π ). In this 
way, n̂ = (cos θ sinφ, sin θ sin φ, cosφ) , so that

where P =
(

P0 cos θ ,P0 sin θ ,
�ε
2

)

 , with the norm |P | ≡ P =
√

P2
0 + �ε2

4  . From this parameterization, 
φ = arccos ( �ε

2P ) . The single-qubit Hamiltonian can then be rewritten as,

with the corresponding unitary operator given  by18:

The unitary operator in Eq. (6) represents distinct single-qubit gates by tuning the auxiliary laser beam 
parameters during a time interval τ.

In the context of quantum computing operations, a crucial single-qubit gate is the so-called Hadamard gate 
Ĥ51,53. The Hadamard gate is responsible for generating an equal superposition of states, forming the foundation 
of qubit basis manipulation. In the framework of our proposal, we can derive this gate from the unitary operator 
defined in Eq. (6), as follows:

which represents the standard Hadamard gate, accompanied by an overall phase gate Ph− π
2
= e−ı

π
2 1 acting on 

the qubit state. From the unitary operator defined in Eq. (6), it is also possible to obtain the so-called Pauli gates, 
as shown in the Supplementary Information.

To illustrate the practical effect of the Hadamard gate as defined in Eq. (7), let us assume that the elliptical 
trap is initially set to favor the state |px� ≡ |0� . Consequently, we have:

It is evident that the Hadamard gate operation on the initial state |0� results in a clockwise OAM state (see 
Eq. 1). Similarly, if the trap’s initial state is set to |py� ≡ |1� , after applying Eq. (7), the final single-qubit state 
will be the anticlockwise OAM state | �� . This demonstrates that the Hadamard gate operation manipulates the 
direction of OAM states within the trap, depending on the qubit initial state.

Two-qubit gate operations
We next introduce a two-qubit Hamiltonian, given by:

(3)
Ĥ =Px(| ���� | − | ���� |)

+
[(

�ε

2
+ ıPy

)

| ���� | + h.c.

]

.

(4)n̂ = P

|P | ,

(5)Ĥ = Pσ · n̂,

(6)Û(Pτ) =
[

cos(Pτ)− ı cosφ sin(|P |τ) −ıe−ıθ sin φ sin(Pτ)

−ıeıθ sin φ sin(Pτ) cos(Pτ)+ ı cosφ sin(Pτ)

]

.

(7)Û

(

τ = π

2P
, θ = 0,φ = π

4

)

= −ı√
2

[

1 1
1 − 1

]

≡ e−ı
π
2 Ĥ ,

(8)e−ı
π
2 Ĥ|0� = e−ı

π
2

√
2
(|0� + |1�) ≡ Ph− π

2
| ��.
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where Ĥint accounts for the interaction between the two qubits, or equivalently, between the macroscopic dipolar 
modes of distinct traps. The operators for each qubit are expanded within their respective subspaces, denoted as 
σ̂
(1)
x,y,z = σ̂x,y,z ⊗ 1 and σ̂ (2)

x,y,z = 1⊗ σ̂x,y,z , where 1 represents a 2× 2 identity matrix.
The Hamiltonian (9) indicates that in addition to the parameters of the auxiliary laser beam, two-qubit gate 

operations are influenced by the interaction between the individual qubits. Typically, this interaction is repre-
sented as Ĥint = Jk(σ̂k ⊗ σ̂k) , where k = x, y, z , and Jk represents the strength of the qubit-qubit interaction, i.e., 
the interaction between polariton condensates of neighboring traps. This interaction is of a few µeVµm2 order 
for typical GaAs-based high-Q microcavity systems. Moreover, this interaction strength is influenced by the 
detuning between the exciton resonance and cavity photon energy, which in turn defines the exciton (photon) 
fraction of the polariton quasiparticles. Estrecho et al.63, have reported higher values of polariton-polariton 
interaction strength for bigger values of exciton fraction, or equivalently, higher values of exciton-photon energy 
detuning. Within our proposal, the coupling between adjacent qubits also can be adjusted using a control laser 
pulse, which creates an all-optical potential barrier between the elliptical  traps40.

In the proximity of the condensation threshold, specifically within the dissipative coupling regime, the inter-
action among polariton condensates residing in neighboring traps is primarily governed by interference mecha-
nisms involving two phase-locked stable p-orbitals, as demonstrated by Cherotchenko et al.56. These interference 
processes affect the population condensate, depending on the distance between the neighboring traps. However, 
our proposal takes a different perspective by considering the coupling between superpositions of two conden-
sates, c.f., Eq. (1), leading to more degrees of freedom for each qubit and hence, distinct occupation numbers 
and phases, in general. Consequently, while the interaction between polariton condensates in distinct traps (or 
equivalently, between qubits) is influenced by their relative distance in our case, the specific behavior depends 
on the system’s specific parameters, and it deserves a separate study.

Let us consider an Ising-type interaction in the qubit basis, Jx = Jy = 0 and Jz = J12 , which leads to the fol-
lowing interacting Hamiltonian:

By considering this interaction into Eq. (9), and tuning the system parameters so that �ε1 = �ε2 = −2J12 
and P(j)

x ,P
(j)
y ≪ J12 (weak auxiliary laser beam), the two-qubit Hamiltonian is reduced to:

The unitary operator that describes the time-evolution of Eq. (11) for a given time duration τ of the auxiliary 
laser beams reads:

By setting J1,2τ = π
4  in the neighboring traps, such a unitary operator simplifies to:

where the term CPHASE represents a two-qubit gate operation. This operation applies a σ̂z operation to the 
target qubit exclusively when the control qubit is in the state |1�53. The CPHASE gate falls under the category of 
entangling gates, as well as the CNOT gate. This categorization arises from their capability to transform separate 
input states into entangled output states. Moreover, the application of a CPHASE gate in conjunction with two 
Hadamard gates (Eq. 7) generates a CNOT gate, i.e, CNOT = (I⊗H)CPHASE(I⊗H)51.

As an illustrative example of applying a CPHASE gate to generate an entangled two-qubit state, let 
us begin with the initial state |ψ0� , where the optical traps are prepared with opposite OAM states, i.e., 
|ψ0� = | ��C ⊗ | ��T = | ��C| ��T , with the subscripts C and T denoting the control and target qubits, respec-
tively. Upon applying the CPHASE operation defined in Eq. (13) to |ψ0� , we obtain the following result:

in which the inequality indicates that the final two-qubit state cannot be factored into individual qubit subspaces, 
indicating the presence of entanglement between the  qubits53,62. We will see later that this entangled state leads 
to a maximal value of quantum concurrence. Our proposal also allows to obtain the so-called iSWAP two-qubit 
 gate51, c.f. Supplementary Information for details.

The CNOT gate, which plays a role in entangling distinct qubit  states51,53, also can be implemented within 
our proposal using a direct route. Unlike the previously defined CPHASE gate, the CNOT operation requires 
individual control over the laser beam parameters for each trap. To demonstrate the CNOT gate implementation 

(9)Ĥ12 =
∑

j=1,2

(

P
(j)
x σ̂

(j)
x + P

(j)
y σ̂

(j)
y + �εj

2
σ̂
(j)
z

)

+ Ĥint,

(10)Ĥint = J12(σ̂
(1)
z · σ̂ (2)

z ) = J12(σ̂z ⊗ σ̂z).

(11)Ĥ12 = J12
(

σ̂z ⊗ σ̂z − σ̂z ⊗ 1− 1⊗ σ̂z
)

.

(12)Û12(J1,2, τ) = eı J12τ







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−ı4J12τ






.

(13)Û12

(π

4

)

= eı
π
4 CPHASE,

(14)
Û12

(π

4

)

|ψ0� =
eı

π
4

2

(

|0�C|0�T − |0�C|1�T + |1�C|0�T

+ |1�C|1�T
)

�= (. . .)C(. . .)T,
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in the proposed device, we first initialize the two-qubit system with a CPHASE gate, allowing us to establish a 
two-qubit state basis comprising {|0�C|0�T, |0�C|1�T, |1�C|0�T, |1�C|1�T} . Subsequently, considering this basis, the 
unitary operator responsible for performing individual unitary operations Û j(P j, τj) on the jth-qubit, as defined 
by Eq. (6), is expressed as follows:

where P1,2 and τ1,2 are the parameterized norm (Eq. 4) and time duration of the auxiliary laser beam in trap 1 
and 2, respectively. Setting θ = 0 and using distinct laser operational times P1τ1 = π and P2τ2 = π

2  , the opera-
tor of Eq. (15) is reduced to:

which is equivalent to a −CNOT gate for φ2 = π
2  , with a phase of π2  in the second qubit, i.e:

A standard CNOT operation flips the target qubit if and only if the control bit is in the |1�  state53. To illustrate 
this in our system, consider that the first trap (C-qubit) is configured to be in the | �� state, while the second trap 
(T-qubit) is appropriately excited to be in the |py� ≡ |1� state. This sets up an initial state of |ψ0� = | ��C|1�T . 
When we apply the CPHASE operation, as defined in Eq. (13), to this two-qubit state, it transforms into the 
following state:

Notice that this final composite state of two qubits comprises separable states, thereby indicating an absence 
of entanglement. Now, by applying a CNOT gate (Eq. 17) on |ψ� , one gets:

which therefore leads to an entangled final state due to its nonseparability.

Qubit error mechanisms and quantum measurements
A critical milestone in achieving large-scale quantum computing is the successful experimental implementation 
of fault-tolerant quantum logical  operations51,64. When dealing with a two-level system as a qubit, it becomes 
imperative to execute a series of gate operations while preserving the coherence between the qubit’s basis states. 
In this context, the primary sources of quantum errors leading to qubit decoherence are pure dephasing and 
spontaneous relaxation from the excited  state19,53,64. Both these mechanisms compromise the operational fidelity 
of quantum computing  processes64 and reduce the entanglement between qubit  states65.

To quantify the detrimental effects of spontaneous relaxation and pure dephasing, we numerically solve the 
Lindblad master equation (LME) for the density matrix operator, denoted as ρ̂ = |ψ��ψ | , or simply the density 
operator, with |ψ� representing the quantum state of the system. The LME is expressed as  follows66:

where Ĥ is either the single-qubit (Eq. 5) or two-qubit Hamiltonian (Eq. 9), L[Â]ρ̂ = Âρ̂Â† − 1
2 {Â†Â, ρ̂} and 

σ̂− = σ̂x − ı σ̂y is the standard lowering operator. Notice that the operators σ̂− and σ̂z will be expanded in a 
4× 4 subspace for the two-qubit system, following the definition of “Two-qubit gate operations”. The first term 
in the right-hand-side of Eq. (20) accounts for the coherent dynamics of the density operator, while the last two 
govern the spontaneous relaxation and pure dephasing, with rates γr and γd , respectively. As a result of the LME 
approach, we obtain the final density matrix operator after evolving over a given time interval �t : 0 → τ , i.e., 
the laser operational time defined in the unitary operator of Eq. (6) in either the presence or absence of dephas-
ing and relaxation mechanisms.

The phenomenon of spontaneous relaxation corresponds to the transition of the qubit’s upper energy state to 
its lowest state. This type of error primarily impacts the populations of each qubit state, thus manifesting itself 
in the diagonal elements of the density operator. Conversely, the pure dephasing mechanism is responsible for 
the degradation of coherent information between the qubit states, resulting in a reduction of the off-diagonal 
elements of the density operator. In the context of polariton condensates, both relaxation and pure dephasing 

(15)Û1|2(P1, τ1;P2, τ2) =
[

Û1(P1, τ1) 0

0 Û2(P2, τ2)

]

,
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,
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.

(18)|ψ� = eı
π
4

√
2
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π
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π
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√
2
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�= − eı
π
4 (. . .)C(. . .)T,
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dρ̂

dτ
= [Ĥ, ρ̂] + γrL[σ̂−]ρ̂ + γdL[σ̂z]ρ̂,
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effects emerge from the interplay between polaritons within the condensate state and their surrounding envi-
ronment of noncondensed  particles47,48, such as the scattering of polaritons with the reservoir of hot excitons.

For experimental setups of optically trapped polariton condensates, the spontaneous relaxation mechanism 
quantified by γr is less relevant due to the dynamical balance between the gain of the CW pump and the single 
polariton dissipation rate. The spontaneous relaxation due to interaction between the condensate and the acoustic 
phonons also can be neglected, owing to faster dynamics and higher size of the  condensate19.

The influence of pure dephasing, as quantified by the ratio γd , is primarily associated with polariton scattering 
mechanisms and quantum fluctuations in the condensate  density19,67. In the context of optically trapped polariton 
condensates, the magnitude of γd typically falls within the range of a few hundred ps−1 for a single-polariton 
 condensate68. This duration is contingent upon factors such as the quality factor of the cavity and the detuning 
between the cavity photon energy and the exciton  resonance63. Notably, advancements in prolonging this lifetime 
have been achieved by spatially isolating the condensate from the excitonic  reservoir47, yielding an extended 
lifetime on the order of ns−1 . Moreover, Sedov et al.24 have experimentally reported no traces of any loss due to 
decoherence mechanisms were detected throughout the entire duration of the optical experiment, indicating a 
γd ∼ ms−1 . Most recently, an experiment conducted by Yao et al.69 revealed a persistent superfluid current of a 
polariton condensate “with no observable change in time”. These findings open up the possibility of employing 
the proposed polariton qubits with a coherence time on the order of milliseconds or greater.

Decoherence mechanisms due to interaction with the system environment impact all quantum operations 
within a universal quantum  computer51, i.e., initialization, quantum gate operation, measurement, and memory, 
which is realized through the integration of numerous qubits and distinct quantum gates. While tackling the LME 
for the many-body scenario remains  complicated64,70,71, it is worth noting that every quantum operation can be 
decomposed into a series of single and two-qubit gates. This allows us to simplify the analysis of quantum errors 
in gate operations introduced by decoherence phenomena into a single or two-body problem.

For a single-qubit gate, cf. “Single-qubit gate operations”, a final unit Bloch vector û = (x, y, z) can be directly 
extracted from the resulting density  matrix53, so that x = 2Re(ρ̂01) , y = 2Im(ρ̂10) and z = ρ̂00 − ρ̂11 , where ρ̂ij 
are the elements (i, j) of the density matrix operator given by Eq. (20). In this way, we can compare the initial and 
final qubit states projected onto the Bloch sphere after its dynamical evolution for a given single qubit gate, both 
in the presence and absence of quantum errors introduced by the interaction with the surrounding environment 
and described by Eq. (20).

Also, in the context of single-qubit operations, a valuable metric for quantifying the impact of decoherence 
processes within the trap’s environment on the final qubit state, as described by Eq. (20), is the Von-Neumann 
 entropy53,65. This entropy is defined as:

When the qubit system is in a perfectly pure state, the Von-Neumann entropy equals zero. The maximum 
value of the Von-Neumann entropy, denoted as S(ρ̂) = log2(d) , is reached when the qubit is in a completely 
mixed state, with d representing the system’s  dimensionality53. For the single-qubit operations defined in “Single-
qubit gate operations”, the maximum Von-Neumann entropy is Smax(ρ̂) = log2(2) = 1.

Another figure-of-merit, due to the presence of quantum error sources, is the so-called fidelity F ∈ [0, 1] 
of a decoherent quantum system compared with its corresponding ideal coherent case ( γr = γd = 0 ), being 
computed as  follows12,64:

Here, ρ̂ideal is the density matrix for the pure qubit state and ρ̂ is from (20) in presence of decoherent terms 
γr and γd . A perfect fidelity, F(ρ̂ideal, ρ̂(t)) = 1 , is only achieved when ρ̂(t) = ρ̂ideal.

In cases where a two-qubit gate operation results in an entangled state, such as with CNOT and CPHASE 
 operations51, it is essential to assess the degree of entanglement in the output state and how it is influenced by 
dephasing and relaxation mechanisms. This can be achieved by examining the quantum concurrence of the 
density  operator11,65,72, defined as follows:

where �i are the eigenvalues of a matrix R̂ =
√

√

ρ̂ ˜̂ρ
√

ρ̂ arranged in a decreasing order, with ˜̂ρ = �̂ρ̂∗�̂ being 
the “spin-flipped” density operator and �̂ = σ̂y ⊗ σ̂y . The concurrence metric ranges between 0 and 1, with a 
value of 1 indicating the highest degree of entanglement, meaning a complete mixture of states. Oppositely, a con-
currence value of 0 characterizes separated states, indicating a complete lack of entanglement between the qubits.

Results and discussion
We start our analysis by addressing the impacts of both pure dephasing and spontaneous relaxation in the 
dynamics of a single-qubit Hadamard gate operation, as defined in Eq. (7). Both the solution of the LME (Eq. 20), 
calculation of fidelity (Eq. 22), Von-Neumann entropy (Eq. 21) and subsequent quantum concurrence (Eq. 23) 
were numerically calculated employing the QuTiP © package, a Quantum Toolbox in Python, version 4.7.173,74.

As stated by the unitary operator of Eq. (7), to perform a Hadamard gate, the phase of the auxiliary laser 
beam θ = 0 , with an operating time τ = π

2P and φ = π
4  . This last condition implies a non-zero laser beam-qubit 

detuning, once cosφ = �ε/2P . As it can be noticed, the parameters are in units of P , which may vary from 
one experimental system to another depending on the parameters of the microcavity, photon-exciton detuning, 
and exciton oscillator strength.

(21)S(ρ̂) = −Tr(ρ̂ log2 ρ̂).

(22)F(ρ̂ideal, ρ̂(t)) = Tr

(
√

√

ρ̂idealρ̂(t)
√

ρ̂ideal

)

.

(23)C(ρ̂) = max(0, �1 − �2 − �3 − �4),
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Figure 2a shows the evolution of the initial qubit state |ψ� = |0� , or equivalently |px� , projected onto a Bloch 
sphere when submitted to a Hadamard operation, as defined in Eq. (7), in the absence of any quantum error 
source ( γr = γd = 0 ). It can be noticed that the action of the Hadamard gate in the qubit basis state |0� creates 
an equal symmetric superposition of the two-basis states (|0� + |1�)/

√
2 ≡ | �� , despite the presence of a phase 

of −π
2  , as shown in Eq. (8). The resulting qubit state is represented by a unit vector ( |û| = 1 ) residing within the 

equatorial plane of the Bloch sphere, thereby defining a pure state.
The contrasting case of Fig. 2a is depicted in the corresponding panel b, where the pure dephasing mecha-

nism as an error source is considered, specifically for γd = 0.2P . A direct comparison between Fig. 2a,b reveals 
the effects of pure dephasing on the final qubit state following the application of the Hadamard gate. Upon the 
completion of the laser beam operation within the time interval τ , the final state diverges from the vortex mode 
| �� and is now characterized by a vector state û located within the Bloch sphere, with |û| ≈ 0.70 . This reduction 
in the norm of the Bloch vector indicates that the final qubit state is in a mixed state. This mixing is a conse-
quence of the presence of the pure dephasing mechanism, which introduces non-zero values in the off-diagonal 
elements of the density operator.

The application of the Hadamard gate in the single-qubit state |1� ≡ |py� is depicted in Fig. 2c, in which we 
can verify that the final state is | �� , i,e., an anticlockwise current mode, as expected for the Hadamard opera-
tion. By considering now the pure relaxation of the qubit initial state, with γr = 0.2P , Fig. 2d points out that the 
qubit final state vector after τ is not in the same position of | �� , also with a small reduction of its vector state 
( |û| ≈ 0.96 ), indicating some degree of mixture.

To enhance our comprehension of the impacts stemming from pure relaxation and dephasing, as depicted 
in the Bloch sphere (Fig. 2) for the Hadamard gate, in Fig. 3 we explore the fidelity and Von-Neumann entropy 
for the resulting single-qubit state, as outlined in Eqs. (22) and (21). In Fig. 3a, we observe a notable exponential 
reduction in fidelity as the pure dephasing rate γd increases. Simultaneously, the Von-Neumann entropy exhibits 
a corresponding increase, beginning at the value of 0 when γd = 0 , indicating a completely pure state. As γd 
progresses to 0.4P , the Von-Neumann entropy approaches 1, indicating the formation of an almost entirely 
mixed state. This strong enhancement of the Von-Neumann entropy is in agreement with the pure dephasing 
mechanism, which mixes the basis states of the qubit.

Figure 3c,d exhibit a similar pattern to their counterparts in panels a, b regarding fidelity and Von-Neumann 
entropy, but as functions of the pure spontaneous relaxation rate γr . It is worth noting that while the impact of 
pure relaxation on the final qubit state appears to be less severe when compared to pure dephasing, it is crucial 
to emphasize that in the case of pure relaxation, the qubit exchanges energy with its surrounding environment, 
leading to a complete loss of information, characterizing an irreversible  process64.

Figure 4 summarizes the behavior of the single-qubit state fidelity for the Hadamard gate in the presence of 
both pure dephasing γd and spontaneous relaxation γr , for the same qubit initial state |1� , as adopted in Fig. 3. 

(a)

Ideal

(c)

Ideal

(b)

(d)

Figure 2.  Evolution of the initial single-qubit state projected as a unit vector onto the Bloch sphere, under the 
application of the Hadamard gate defined in Eq. (7), considering that the auxiliary laser beam was applied for 
a period of time τ = π

2P
 . Panels (a,b) depict the dynamics of the initial qubit state |0� ≡ |px� for a Hadamard 

gate, in the absence and presence of pure dephasing, respectively. The same is shown in panels (c,d), but with 
|1� ≡ |py� as the single-qubit initial state, now considering the presence and absence of spontaneous relaxation 
rate, respectively. The lateral color bar indicates the corresponding timescale for each Bloch vector, from the 
initial time τ = 0 to the final time π

2P
.
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It can be noticed that F(ρ̂ideal , ρ̂) ≈ 1.0 for γd ≤ 0.02P and γr ≤ 0.14P , c.f. region within the first dashed line, 
indicating that the purity of the quantum state is nearly preserved for these parameter intervals.

Our analysis now shifts towards the operation of a two-qubit gate, specifically examining the impact of pure 
dephasing and spontaneous relaxation in the CPHASE operation, as defined by Eq. (13). As previously men-
tioned, the CPHASE gate falls into the category of entangling gates, as its application leads to a final state that 
cannot be decomposed into individual single-qubit states. This characteristic makes the CPHASE gate particularly 
suitable for investigating quantum concurrence (see Eq. 23).

Figure 3.  Single-qubit state fidelity (Eq. 22) and Von-Neumann entropy (Eq. 21) for a Hadamard gate operation 
(Eq. 7) as a function of either pure dephasing [panels (a,b)] or spontaneous relaxation [panels (c,d)] rates γd and 
γr , respectively, considering the qubit initial state |1� , with x-axis on the logarithmic scale. Both the rates vary 
between 0 and 0.4P.
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Figure 4.  Single-qubit state fidelity (Eq. 22) for the Hadamard gate (Eq. 7) applied to the initial single-qubit 
state |1� , as a function of both pure dephasing γd and spontaneous relaxation γr. Both x and y axes are on 
logarithmic scale.
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In Fig. 5, we explore how the two-qubit state fidelity and concurrence changes under the application of a 
CPHASE gate when both the spontaneous relaxation and dephasing mechanisms are accounted equally in both 
neighboring traps. The two-qubit initial state is prepared in the same state employed in Eq. (14), which leads 
to an entangled state after the application of the CPHASE gate as defined in Eq. (13). Figure 5a,b show both 
the fidelity of the final qubit state and quantum concurrence as a function of pure dephasing. In addition to the 
expected reduction of the fidelity in Fig. 5a when compared to the ideal case ( γd = γr = 0 ), in Fig. 5b we observe 
a progressive degradation of the entangled output state, indicated by the exponential decline in concurrence. It is 
worth noting that when γd = 0 , the entanglement between the qubit states reaches its maximum, with C(ρ̂) = 1 . 
However, as the pure dephasing rate increases, the off-diagonal (coherence) elements of the density operators 
undergo significant reduction, leading to a nearly complete loss of entanglement in the system. This is evident 

Figure 5.  Two-qubit state fidelity (Eq. 22) and quantum concurrence (Eq. 23) for a CPHASE gate operation as 
a function of pure dephasing [panels (a,b)] or spontaneous relaxation [panels (c,d)] rates γd and γr , respectively, 
with the x-axis on the logarithmic scale. The two-qubit initial state is set up as |ψ0� = | ��C| ��T , resulting in 
an entangled final state, as shown in Eq. (14). Panel (e) maps the behavior of the concurrence as a function of 
both γd and γr for the same CPHASE gate applied in |ψ0� , with both the x and y axes on logarithmic scale.
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in the upper limit case of γd = 0.4J12 , where C(ρ̂) ≈ 0.16 , corresponding to a final state fidelity of approximately 
0.76, as depicted in Fig. 5a.

Figure 5c,d also shows the fidelity and concurrence of the final entangled two-qubit state, but for the case 
in which the CPHASE gate operation is subjected to a spontaneous relaxation mechanism. We can verify the 
reduction of both quantities as the spontaneous relaxation rate γr increases. However, it is noteworthy that for 
the higher value of γr considered, both the output state fidelity and concurrence surpass those observed in the 
case of pure dephasing, as depicted in Fig. 5a,b. Specifically, for γr = 0.4J12 , the fidelity reaches approximately 
0.90, while C(ρ̂) ≈ 0.66 . This significant difference between the effects of pure dephasing (Fig. 5a,b) and spon-
taneous relaxation (Fig. 5c,d) arises from the distinct impact that each mechanism has on the density operator. 
Pure dephasing primarily reduces the off-diagonal elements of the density operator, which encode information 
about quantum coherence between distinct qubits. In contrast, spontaneous relaxation predominantly affects the 
diagonal elements (populations) of the density operator, leaving the off-diagonal elements relatively unchanged.

To provide a comprehensive overview of the concurrence behavior in the presence of both pure dephasing 
and spontaneous relaxation during the application of the CPHASE gate, we present a concurrence colormap in 
Fig. 5e. This panel reveals an optimal range for both rates where entanglement between the two qubits is almost 
entirely preserved, specifically 0.90 ≤ C(ρ̂) ≤ 1 , for γd ≤ 0.03J12 and γr ≤ 0.1J12 . This region is enclosed by the 
first white dashed line in Fig. 5e.

Conclusions and outlook
In this work, we explore the possibility of employing elliptically trapped polariton condensates as quantum 
logic gates. The single-qubit basis states |0� and |1� in each condensate are defined as being the |px� and |py� states, 
respectively. These states are associated with the spatial dipolar distributions of the polariton density along the 
orthogonal axes of the trap, while their energy splitting can be adjusted through the geometrical ellipticity of the 
trap via SLMs. Distinct linear combinations between these p-states describe polariton condensates with integer 
OAM, which carry clockwise and anticlockwise superfluid current modes.

By introducing an auxiliary laser beam in each trap, we demonstrate the feasibility of implementing a versatile 
set of universal single-qubit operations, including Pauli and Hadamard gates. Furthermore, by exploring different 
types of interaction between the two traps, we unveil the potential for executing two-qubit gate operations such 
as CPHASE and CNOT gates. These two-qubit gates fall into the crucial category of entangling gates, which are 
fundamental for quantum computation.

We also investigate how quantum error sources, common in polariton condensates such as pure dephas-
ing and spontaneous relaxation from the qubit’s excited state, impact the final state of the proposed two-qubit 
system, particularly for Hadamard and CPHASE gate operations. To address this, we numerically compute the 
corresponding density operator via the Lindblad Master Equation approach. Subsequently, we assess key per-
formance metrics, including the fidelity of the final state, Von-Neumann entropy, and quantum concurrence.

In the context of local quantum computing operations, it is important to ensure that any proposal of practi-
cal implementation of a quantum computer must satisfy the DiVincenzo’s  criteria52, which are, ipsis litteris, the 
following: (1) a scalable physical system with well-characterized qubits; (2) the ability to initialize the state of the 
qubits to a simple fiducial state, such as |000 . . .� ; (3) long relevant decoherence times, much longer than the gate 
operation time; (4) a universal set of quantum gates and (5) a qubit-specific measurement capability. Below, we 
briefly discuss each of these criteria within our proposal, with the exception of criterion (4), which constitutes 
the main finding of the current work. This concise discussion aims to outline potential avenues for realizing the 
proposed optically trapped polariton condensate qubits.

The criterion (1) means, at first, that a quantum computer must contain several quantum bits, which in the 
context of our system, implies an optical device with a collection of coupled traps of polariton condensates. 
Furthermore, each qubit (trap) must have its physical parameters well characterized, as the qubit Hamiltonian, 
the presence of couplings between distinct qubits and interaction with external fields which can be used for 
initializing the qubit state and performing quantum logic operations. Considering both these features, we drawn 
attention for the work of Alyatkin et al.40 which have experimentally explored a triangular lattice of all-optical 
driven trapped polariton condensates with integer OAM l = ±1 carrying vortex ( l = +1 ) and antivortex ( l = −1 ) 
states with a Ising-type interaction between them. This system could be extended to encompass several traps 
of polariton condensates, effectively creating a multiple-qubit setup, with optical tunability for each individual 
component, as described by Eq. (2). Moreover, the Ising-type interaction between trapped condensates at distinct 
lattice sites favors the implementation of a CPHASE gate, cf. Eq. (13).

The capability to set the initial qubit states, as indicated by criterion (2), arises from the obvious prerequisite 
that input states must be precisely defined before implementing any quantum computing operation. Furthermore, 
the specific need to initialize the system in the global ground state |000 . . .� , equivalent to |pxpxpx . . .� within our 
proposal, is required by an effective quantum error correction implementation, which demands a constant and 
pristine source of qubits in a low-entropy  state52. In the context of the device sketched in Fig. 1, the direction of 
a polariton vortex can be controlled by means of an ultra-short (120 fs) off-resonant optical control  pulse75, for 
instance, in which the final direction of the vortex depends on the power and duration of this pulse. Trapped 
polariton condensates also can be effectively controlled by external rotating potentials, as evidenced by recent 
experimental  findings59,60 and theoretically described by Yulin et al.76. Furthermore, we draw attention to the 
possibility of experimental tuning of the coupling between neighboring polariton traps within a two-dimensional 
network through all-optical methods, as detailed in Ref.50. This result holds significant implications for the 
realization of two-qubit quantum gates, as detailed in “Two-qubit gate operations”.

Regarding point (3), the decoherence time plays a pivotal role in the dynamics of any quantum system cou-
pled to its surrounding environment, once it indicates for how long the quantum behavior is preserved before 
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succumbing to the classical one. This means that the decoherence time τcoh for a quantum gate operation should 
be long enough to ensure that the quantum coherence of the system is preserved, which implies that it should 
be longer than the time to perform a quantum operation. In our analysis of single and double-qubit gates, the 
“clock-time” for each corresponding operation is given by τ . Specifically, for a single operation τ ∼ 10−5, 10−4τcoh
52, to preserve the quantum nature of the computing process and also ensure the performance of error correction 
mechanisms. In the scenario of polariton condensates, the decoherence time can reach several  ns46–48, which is 
related to the time-dependent fluctuations of the overall phase of the condensate wave function. However, the 
spatial coherence of an optically trapped polariton condensate driven by a CW pump has been reported as prac-
tically  uniform24,34,48. Notably, in an experiment conducted by Sedov et al.24, no traces of any loss due to spatial 
decoherence were detected throughout the entire duration of the optical experiment, suggesting a decoherence 
time on the order of milliseconds ( τcoh ∼ ms ). Moreover, Yao et al.69 have recently reported a persistent circula-
tion of polariton condensates, showing superfluid behavior with no traces of changing on time, revealing the 
possibility of a decoherence time greater than milliseconds.

Finally, as addressed by criterion (5), the outcomes of a quantum computing process must be read out. In other 
words, the probability outcomes associated with states of the system encoded by the density operator must be 
experimentally accessed. In the framework of our proposal, the information of the final two-qubit states can be 
detected by implementing a protocol inspired by the work of Mair et al.77, originally devised for characterizing 
photons with entangled OAM. As a first step, the light emitted by each of the traps of polariton condensates 
would pass through an SLM, where a predefined function is applied to manipulate the spatial phase distribu-
tion of the light. These preset functions would correspond to either the circular current states or the dipolar 
p-states, oriented along the main axis and short axis of the corresponding elliptical trap. Subsequently, once the 
light has passed through the SLM, it is directed into a single-mode optical fiber. This optical fiber operates as 
a filter, allowing only the Gaussian mode to propagate while suppressing all other modes. At the termination 
point of each optical fiber, a photodetector is positioned and calibrated to generate a binary signal. This binary 
signal is designed to indicate a value of 1 when the intensity of the Gaussian mode surpasses a predefined critical 
threshold, and it registers 0 when the intensity falls below this threshold. Then, a coincidence counter compares 
the signal coming from both photodetectors. If both record the value of 1, the counter computes the value of 1; 
conversely, it records 0. By considering the four possible preset functions for each of the two SLMs, we obtain 
16 independent measurements of the states of two qubits projected along the z or x axes of the corresponding 
Bloch spheres. By accumulating statistics over thousands of measurements, a high-fidelity measurement matrix 
of the system is  obtained53,78. This matrix can then be converted into the corresponding density operator, which 
encodes the probabilities of the system states.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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