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Genome‑wide epistasis analysis 
reveals gene–gene interaction 
network on an intermediate 
endophenotype P‑tau/Aβ42 ratio 
in ADNI cohort
Qiushi Zhang 1, Junfeng Liu 1, Hongwei Liu 3, Lang Ao 1, Yang Xi 1 & Dandan Chen 2,3*

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common 
cause of dementia in the elderly worldwide. The exact etiology of AD, particularly its genetic 
mechanisms, remains incompletely understood. Traditional genome-wide association studies 
(GWAS), which primarily focus on single-nucleotide polymorphisms (SNPs) with main effects, 
provide limited explanations for the “missing heritability” of AD, while there is growing evidence 
supporting the important role of epistasis. In this study, we performed a genome-wide SNP–SNP 
interaction detection using a linear regression model and employed multiple GPUs for parallel 
computing, significantly enhancing the speed of whole-genome analysis. The cerebrospinal fluid 
(CSF) phosphorylated tau (P-tau)/amyloid-β

42
 (Aβ

42
 ) ratio was used as a quantitative trait (QT) to 

enhance statistical power. Age, gender, and clinical diagnosis were included as covariates to control 
for potential non-genetic factors influencing AD. We identified 961 pairs of statistically significant 
SNP–SNP interactions, explaining a high-level variance of P-tau/Aβ

42
 level, all of which exhibited 

marginal main effects. Additionally, we replicated 432 previously reported AD-related genes and 
found 11 gene–gene interaction pairs overlapping with the protein-protein interaction (PPI) network. 
Our findings may contribute to partially explain the “missing heritability” of AD. The identified 
subnetwork may be associated with synaptic dysfunction, Wnt signaling pathway, oligodendrocytes, 
inflammation, hippocampus, and neuronal cells.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline involving 
memory loss, judgment, reasoning, and impaired daily functioning. It is the most common cause of dementia 
among the elderly worldwide. The exact etiology of AD is not fully understood, especially the genetic mechanisms 
of AD, but it is believed to result from complex interactions between genetic and environmental factors1–5. For the 
last two decades, genome-wide association studies (GWAS) have been a successful approach of AD for exploring 
the correlation between different gene variations and different phenotypic changes. However, the traditional 
GWAS is mainly based on the association study of single-nucleotide polymorphisms (SNPs) with main effects 
in the whole genome, and these results only explained part of the “missing heritability” in AD6,7.

The “missing heritability” refers to the phenomenon where the heritability of a trait or disease cannot 
be entirely explained by the genetic variants identified through traditional GWAS. It suggests that there are 
additional genetic factors contributing to the trait or disease that have not been discovered yet8–10.

Epistatic interactions, also known as gene–gene interactions, refer to the phenomenon in genetics where the 
effect of one gene mask or modifies the effect of another gene. These interactions can influence the expression, 
phenotype, or inheritance patterns of traits8,11–13. Epistasis detection has attracted much attention in recent 
years, because mounting evidence has shown that epistatic interactions might partially explain the “missing 
heritability” of AD and will help us to better understand the genetic architecture that underlies complex variation 
of phenotypes for complex diseases such as AD14,15.
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However, detecting epistatic interactions across the whole genome still remain twofold challenges of statistical 
and heavy computational burden. To combat these challenges, many machine learning methods and multifactor 
dimensionality reduction (MDR) methods were performed, but the results identified by which were challenged 
for “missing heritability”16,17. Furthermore, most of these methods are based on case-control designs, with limited 
research focusing on performing epistatic interactions detection for quantitative trait (QT)18,19.

Although the aforementioned methods have demonstrated their effectiveness on identifying epistasis from 
genome-wide data, the results identified by which were still challenged for “missing heritability”. One possible 
reason is that those methods typically used screening strategy, which were easy to missed some SNPs with 
marginal main effects. Another reason may be the advantages of QT over case–control. To our knowledge, QT 
analysis allows for the use of continuous measurements, providing more information and increasing statistical 
power compared to dichotomous outcomes used in case-control studies. In the capture of variation, QT capture 
the full spectrum of variation within a population, allowing for a more comprehensive understanding of genetic 
influences on complex traits. At the same time, QT analysis enables the examination of subtle differences in 
phenotype among individuals, facilitating the identification of marginal effect sizes and complex genetic 
interactions. Noteworthy, QT can represent intermediate phenotypes or endophenotypes, which may be closer 
to underlying biological mechanisms and provide insights into disease pathways8,20–22.

In recent years, the use of the cerebrospinal fluid (CSF) phosphorylated tau (P-tau)/amyloid-β42 (Aβ42 ) ratio 
was an important intermediate endophenotype in AD research, which enabling the understanding of disease 
progression, diagnosis, and differentiation from other neurodegenerative disorders. It’s worth noting that there 
are many more studies available on this topic, and further research continues to explore the significance of 
these biomarkers in AD. The researchers found that this ratio was significantly higher in AD compared to 
frontotemporal dementia (FTD), suggesting its potential utility as a diagnostic biomarker23–26.

Overall, this paper aims to detect the genome-wide SNP–SNP interaction by using P-tau/Aβ42 ratio as QT, 
without disregarding the possibility of SNP-SNP interactions between the marginal main effects, which may be 
the crucial way for explaining the “missing heritability” of AD. In addition, a muti-GPU method was used for 
parallel computing to enhance the detection power of SNP–SNP interaction.

Results
Two‑marker Interaction Study Results and Post Hoc Analysis
We used age, gender, and clinical diagnosis (Dx) as covariates in our two-marker interaction study. A total of 
1469 SNPs (961 pairs of SNP-SNP interaction) passed the p-value threshold at P-tau/Aβ42 ratio level. Linkage 
disequilibrium was assessed by querying the 961 pairs of SNP-SNP interaction using PLINK v1.90 and Haploview 
4.1 tool with R2 threshold of 0.8. The results indicated that these SNPs are considered to be largely independent 
(see Supplementary Table S1 online). Considering the technical complexities of pairwise scan of SNP-SNP 
interaction across the whole genome, we used a muti-GPU tool named GEEpiQt to combat with the heavy 
computational burden27. In addition, the genotype data and participants information of the corresponding loci 
were extracted according to the SNP-SNP interaction combination information with significant interaction. The 
main effect of each SNP site was obtained by GWAS, which was used to compare with two-marker interaction 
results. In this paper, the main effect and interaction effect of 961 SNP-SNP interaction pairs at P-tau/Aβ42 ratio 
level are statistically compared (Fig. 1a). The violin plot shows the numerical distribution and corresponding 
probability density of the main effect and interaction effect of SNP1 and SNP2 (Fig. 1b). As show in Fig. 1a, the 
blue and green areas respectively represent the main effects of SNP1 and SNP2 in the interaction combination, 
and the red part represents the interaction effect after the interaction of SNP1 and SNP2 . Moreover, from the 
overall distribution, the average distribution of interaction effect was much higher than the distribution level of 
main effect. It suggests that the statistical significance of the interaction effect was much higher than the main 
effect. The results also showed that there was a significant interaction between SNPs with marginal main effect 
in terms of statistical implications.

The top 10 R-squared values of SNP–SNP interaction pairs are shown in Table 1. The results of top 10 
two-marker interaction were: rs2223610(MROH9)–rs12684467, rs11082417(SETBP1)–rs1966778(PITPNM3), 
rs17810546( IL12A-AS1 )–rs17836920(LINC02074 ) ,  rs9493790(TBPL1 )–rs7955904(SSPN ) , 
rs17809756(IL12A-AS1)–rs17836920(LINC02074), rs9730519–rs12458881(NEDD4L), rs718222 
( P R I C K L E 2 ) – r s 4 3 7 2 0 2 ( C S M D 1 ) ,  r s 7 6 1 7 0 5 7 ( G X Y LT 2 ) – r s 1 7 0 5 1 9 2 5 ( P A R P 4 P 2 ) , 
rs3860070(KLB)–rs6912680(ANKRD6), rs1780555(RAP1A)–rs7074813(RAB18).

Furthermore, Table 1 also shows the SNP-SNP interaction results of post hoc analysis on P-tau/Aβ42 ratio 
level, and the additive term of SNP1 + SNP2 , the interaction term of SNP1 ×SNP2 and the explained variance of 
covariates are listed in detail. In this paper, IBM SPSS 24.0 was used to explain variance of SNP-SNP pair with 
significant interaction on P-tau/Aβ42 ratio. The R square of the additive terms (SNP1 + SNP2 ) and the interaction 
terms (SNP1 ×SNP2)are shown in Fig. 1c. The orange area and the green area represent the variance explained 
by interaction term and additive term at the P-tau/Aβ42 ratio level respectively. In order to further obtain the 
overall distribution of R-square, the distribution state and corresponding probability density of R-square with 
additive term and interactive term are shown in Fig. 1d.

As shown in Table 1, all covariates (include age, gender, and Dx) accounted for 13.3% of variance on the P-tau/
Aβ42 level. The variance related to interaction term is determined by running a hierarchical linear regression 
model, that is, adding genetic main effect first and then adding genetic interaction term. Intriguingly, the 
variance proportion of the interaction term is much higher than the main effects for each identified SNP-SNP 
interaction pair as seen from the Table 1. As shown by the top three SNP pairs in the Table 1, the main effects 
of SNPs accounted for 1.1% of variance, and the interaction term accounted for 5.8% of variance, that is, the 
combination of the two accounts for 6.9% for the first-ranked rs2223610(MROH9)–rs12684467. And for the 
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second-ranked rs11082417(SETBP1)–rs1966778(PITPNM3), the main effects accounted for 0.2% of variance, 
and the interaction term accounted for 5.4% of variance, that is, the combination of the two accounts for 5.6%. 
For the third-ranked rs17810546(IL12A-AS1)–rs17836920(LINC02074), the main effects accounted for 0.6% of 
variance, and the interaction term accounted for 5.3% of variance, that is, the combination of the two accounts 
for 5.9%. Our study revealed that the main effects of the identified interaction SNP pairs are all marginal, but 
they explained a relatively high-level of variance of P-tau/Aβ42 ratio. The gene marked in bold indicates that it 
is directly related to AD.

Gene set enrichment analysis results
For illustrating the correlation between the SNP-SNP interaction pairs and AD from different angles and using 
different databases, a total of 961 SNP-SNP interaction pairs were mapped onto 286 gene–gene pairs (include 
505 different genes) by Homo sapiens genome assembly GRCh37. First, by searching in two gene set libraries of 
Enrichr: PhenGenI Association 2021 and HDSigDB Human 2021, we found that 432 genes out of 505 genes were 
included in the items related to AD, and 85 genes were not included in the items related to AD, which indicated 
that 432 genes were reported as AD-related genes, and 85 genes were not yet reported as AD-related genes.

Given that two genes in a gene–gene interaction pair have three relationships with AD: both genes are related 
to AD, only one gene is related to AD, and neither gene of the two in a gene–gene pair is related to AD, so we 
divide these interaction pairs into three groups (G1, G2, and G3), as shown in Fig. 2. Specifically, G1 represents 
all gene pairs in this group that have entries containing the keyword “AD”. We consider these gene pairs to 
be reported as associated with AD. G2 represents gene pairs in this group where only one gene has an entry 
containing the keyword “AD”. G3 represents gene pairs in this group where neither gene has an entry containing 
the keyword “AD”, indicating that these genes have not been reported as associated with AD.

In addition, the biological significance of our results was analyzed further based on two well-known biological 
pathway databases including KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology)28–30. 
The top 20 biological processes based on the corresponding p-value of KEGG/GO are shown in Fig. 3.

The bar plot of KEGG pathway enrichment analysis showed that the significant biological processes include 
focal adhesion (FA), cell adhesion molecules, axon guidance, Wnt signaling pathway, and calcium signaling 

Figure 1.   The main effect and interaction effect of 961 SNP-SNP interaction pairs at P-tau/Aβ42 ratio level, and 
R square of the additive terms and the interaction terms. (a) The waterfall comparison plot of interaction effects 
and main effects of single SNP with −log10 adjusted p-value. The bule waterfall represents main effects of SNP1 , 
the green waterfall represents main effects of SNP2 , the orange waterfall represents the interaction effects of 
SNP1 ×SNP2 . (b) The violin distribution of interaction effects (SNP1 ×SNP2 ) data and main effects (SNP1 , SNP2 ) 
data. (c) The waterfall comparison plot of the R square of SNP1 ×SNP2 term (orange waterfall) and the R square 
of SNP1 + SNP2 term (green waterfall). (d) The violin distribution of R square: interaction (SNP1 ×SNP2 ) and 
additive terms (SNP1 + SNP2).
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pathway, etc31–34. Foremost among these, As shown in Fig. 3a the most significant biological process was FA, 
which may be an important participator in the AD process. Moreover, FA signaling might regulate neuronal 
viability and synaptic loss during AD35,36.

Using GO functional enrichment analysis, we found that the significant pathway enrichments were related 
to AD, such as cell junction organization, synapse organization, cell junction assembly, neuron projection 
morphogenesis, neuron projectionc development, and cell–cell adhesion37–41. As aforementioned, the analysis 
of function and pathway enrichments improve the biological interpretability of our results.

Network analysis results
It is noticeable that protein–protein interaction (PPI) networks provide valuable information for predicting 
genotype-phenotype associations. They aid in understanding the relationship between genetic variations and 

Table 1.   Top 10 R square of SNP–SNP interaction pairs of the P-tau/Aβ42 ratio. a Age+gender+Dx: the percent 
of variance in P-tau/Aβ42 ratio level explained by age, gender, and Dx. b SNP1+SNP2 : in addition to accounting 
for three covariates of age, gender, and Dx, the percent of additional variance P-tau/Aβ42 ratio level explained 
by the combined main effect of SNP1 and SNP2. cSNP1 ×SNP2 : In addition to accounting for age, gender, and 
Dx, SNP1 and SNP2 , the percent of additional variance in P-tau/Aβ42 ratio level explained by the interaction 
effect of SNP1 and SNP2.

No SNP–SNP CHR Gene

p-value Explained variance (R square)

GWAS Interaction Age+gender+Dxa SNP1+SNP2 b SNP1 ×SNP2 c

1 rs2223610
rs12684467

1
9

MROH9
–

0.496
0.281 1.20E−11 0.133 0.011 0.058

2 rs11082417
rs1966778

18
17

SETBP1
PITPNM3

0.025
0.061 3.08E−10 0.133 0.002 0.054

3 rs17810546
rs17836920

3
17

IL12A-AS1
LINC02074

0.087
0.169 1.25E−12 0.133 0.006 0.053

4 rs9493790
rs7955904

6
12

TBPL1
SSPN

0.188
0.082 1.09E−9 0.133 0.003 0.053

5 rs17809756
rs17836920

3
17

IL12A-AS1
LINC02074

0.259
0.169 1.75E−12 0.133 0.006 0.052

6 rs9730519
rs12458881

1
18

–
NEDD4L

0.272
0.482 8.59E−11 0.133 0.009 0.051

7 rs718222
rs4372022

3
8

PRICKLE2
CSMD1

0.708
0.096 2.50E−09 0.133 0.006 0.051

8 rs7617057
rs17051925

3
13

GXYLT2
PARP4P2

0.117
0.004 2.12E−12 0.133 0.001 0.050

9 rs3860070
rs6912680

4
6

KLB
ANKRD6

0.981
0.082 2.33E−11 0.133 0.018 0.050

10 rs1780555
rs7074813

1
10

RAP1A
RAB18

0.072
0.378 3.57E−10 0.133 0.005 0.050
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Figure 2.   The circle diagram of gene–gene interaction pairs based on the Enrichr database: shows three 
relationships between genes and AD. All genes related to AD are shown in red dots. The genes that not yet been 
reported as AD-related are shown in bule dots. G1 include 122 pairs of gene–gene interaction (221 different 
genes); G2 include 117 pairs of gene–gene interaction (225 different genes); G3 include 47 pairs of gene–gene 
interaction (85 different genes).
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phenotypic traits. Therefore, we used 286 pairs of gene–gene interaction from G1, G2 and G3 data sets for 
PPI network analysis to further interpret biological significance of our results. As shown in Fig. 4, 11 pairs of 
gene–gene interaction were identified to be overlapping with the PPI network by using the STRING tool (https://​
string-​db.​org/, Version 12, accessed on 31 July 2023). Nodes and edges in the PPI network represent the genes and 
interactions between two genes, respectively. The 22 nodes respectively represent 22 genes, which are: CSNK1A1, 
PTK7, HNRNPU, NEDD4, CD80, PLCG2, IGFBP7, VWF, ERBB4, ETV6, DNM3, USP25 and MYT1L, NYAP2, 
TESPA1, OPCML, SCD5, SORBS1, LBR, PRPF4B, PKP1, and SPOCK1. The interactions between them warrant 
further discussion in terms of biological implications.

Discussion
This is a first genome-wide SNP-SNP interaction study using P-tau/Aβ42 ratio as an AD imaging QT based on 
linear regression framework. Our study found 961 SNP–SNP interaction pairs to be statistically significant. 
Additionally, all these interaction pairs had marginal main effects and explained a relatively high-level variance 
at the P-tau/Aβ42 ratio level. Two gene set libraries of Enrichr: HDSigDB Human 2021 and PhenGenI Association 
2021 showed that 320 genes were reported as AD-related genes after mapping the identified SNPs onto the 
genome. Further gene set enrichment analyses showed that the significant pathway enrichments are associated 
with AD. These findings are in line with AD pathology and maybe contributes to partially explain the “missing 
heritability” of AD. Importantly, our results overlapped 11 pairs of gene–gene interaction with the PPI network, 
which are CSNK1A1–PTK7, HNRNPU–NEDD4, CD80–PLCG2, IGFBP7–VWF, ERBB4–ETV6, DNM3–USP25, 
MYT1L–NYAP2, TESPA1–OPCML, SCD5–SORBS1, LBR–PRPF4B, and PKP1–SPOCK1, as shown in Fig. 4. 
Further analysis of the biological significance was as follows.

Casein kinase I isoform alpha (CSNK1A1) can phosphorylate many proteins and participates in Wnt 
signaling. PTK7 is a versatile receptor and interact with Wnt signaling pathways. To our knowledge, synapse 
loss is the prominent event in early stages of AD, and the pathology of AD is amyloid-β42 (Aβ42 ), and total and 
phosphorylated tau (T-tau and P-tau). Intriguingly, disrupted Wnt signaling may be a direct link between A β
-toxicity and tau hyperphosphorylation. In parallel, A β may trigger the deregulation of Wnt signaling, which 
could contribute to impaired synaptic plasticity and synapse dysfunction. It suggests that the deregulation of Wnt 

Figure 3.   Results of KEGG pathway enrichment analysis and GO functional enrichment analysis. (a) Enriched 
KEGG terms ranked top 20 based on −log10 adjusted p-values. (b) Enriched GO terms ranked top 20 based on 
−log10 adjusted p-values. Numbers of genes contributing to each term is displayed as bars.

https://string-db.org/
https://string-db.org/
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pathway is associated with AD, and a sustained loss of Wnt signaling function might control AD pathogenesis. 
Therefore, the CSNK1A1–PTK7 interaction may be related to Wnt signaling pathways and synaptic pathology 
in AD, ultimately promoting the progression of AD42–46.

As the largest among the HNRNP proteins, HNRNPU has been identified as an RNA binding protein to 
promote RNA stability and regulate gene transcription. Researchers have noted that MiR-132-3p may alleviates 
the impairment of learning and memory abilities of AD patients by negatively regulating HNRNPU stabilized 
BACE147,48.

LncRNA nuclear enriched abundant transcript 1 (NEAT1) interacts with NEDD4L and promote PTEN-
induced putative kinase 1 (PINK1)’s degradation, thereby the interaction between them is assumed to be 
responsible for mitochondria dysfunction and cognitive impairment. Furthermore, mitochondrial dysfunctions 
are extremely important for the onset and development of AD pathology49. Therefore, HNRNPU–NEDD4L 
interaction might has effects on the impairment of cognitive and memory abilities in AD.

Although the role of phospholipase C-gamma-2 (PLCG2) in the pathogenesis of AD is only poorly 
understood, many genetic studies have shown PLCG2 plays an important role in late-onset AD pathophysiology 
and in the neural immune response. An increasing body of evidence suggest that due to the driving effect of 
microglia, PLCG2 has higher expression levels in brain regions of late-onset AD patients, and is expressed in 
human and mouse brain microglia. Moreover, the expression of PLCG2 is maintained in microglia near plaques 
in the cerebral tissue of an APP mouse model, and is significantly positively correlated with the density of 
amyloid plaques. These findings suggest that PLCG2 is associated with the inflammatory response and is induced 
by amyloid plaques in AD50–52. Human immunomodulatory ligand B7-1 (CD80) is a canonical costimulatory 
molecule, and might mediates synaptic remodeling. Microglia or macrophages lead to the upregulation of 
CD80, which is related to aging, central nervous system inflammation, injury, and neurodegenerative diseases53. 
Therefore, the interaction between CD80 and PLCG2 maybe associated with both microglia and inflammatory.

USP25 gene is a critical regulator of AD pathology, and genetic deletion of USP25 reduced amyloid 
deposition54. DNM3 is in neuronal tissues, and mostly expressed in the brain. DNM3 gene has been previously 
associated with AD pathology based on an independent proteomic study55,56. Therefore, the interaction between 
DNM3 and USP25 maybe associated with AD pathology indirectly.

MYT1L is a critical mediator of induced neuron cell reprogramming, which can convert into cholinergic 
neuronal cells. The cholinergic deficit in the brain is involved in the pathological process of cognitive dysfunction, 
and may be related to cognitive decline in AD57. As a phosphoprotein family, NYAP is composed of NYAP1, 
NYAP2, and Myosin16/NYAP3. The NYAPs are expressed predominantly in developing neurons, and controlled 
remodeling of the actin cytoskeleton58. Previous reports have shown an impairment in actin cytoskeleton 
dynamics can contribute to AD pathology and underlie the synaptic failure in AD. Indeed, synapse loss is 
an early event in the process of AD and is associated with cognitive decline59. Therefore, the MYT1L–NYAP2 

Figure 4.   Plot of PPI network with 22 nodes and 11 edges construct by Cytoscape software. The nodes 
represent the identified genes (protein), and the pink edges represent the overlapped gene–gene interactions.
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interaction maybe related to the pathogenesis of AD indirectly, and might associate with both neuronal cells 
and cognitive decline in AD.

IGFBP7 is a critical regulator of AD-like memory consolidation60. Von Willebrand antigen 2 (VWF) is the 
von Willebrand factor. It suggests that VWF may contribute to A β cerebrovascular deposition, thus associated 
with pathogenesis of AD indirectly61. Therefore, both IGFBP7 and VWF genes have been implicated in AD.

ERBB4 gene mediates A β-induced neuropathology through pathway associated with tau62. ETV6 gene is a 
regulator of AD, which maybe involved in cellular senescence63.

The stearoylCoA desaturase-5 (SCD5) gene participates in the regulation of neuronal cell growth and 
differentiation, and may be a molecular link signaling and those neurodegenerative conditions64. The SORBS1 
gene is a common gene for cognition changing and has potential function in cognitive impairment. SORBS1 
expression has been found to be upregulated in the hippocampus of AD patients65.

OPCML gene associated with specific hippocampal cell types, which including subtypes of neurons and glial 
cells, and plays an important role in the development of AD-related pathology66. TESPA1 is involved in the Ca2+ 
transfer and genetic variation in TESPA1 might influence the aging process. Mounting evidence has shown that 
the accumulation of mitochondrial Ca2+ is significantly related to neuronal apoptosis and other pathways, and 
enhanced neuronal apoptosis can lead to the neurodegeneration in AD67,68.

The oligomeric tau (oTau) is the key toxic species in tauopathy and can elicit disruption of the 
nucleocytoplasmic interface which is greatly disrupted in AD. Noteworthy, LaminB2 and lamin B Receptor (LBR) 
is co-localized with oTau. Thus, it suggests that LBR gene may be related to AD69. The pre-mRNA processing 
factor 4 homolog B (PRPF4B) is a kinase involved in mRNA splicing. The current findings suggest that Loss 
of function of homeodomain-interacting protein kinase 2 (HIPK2) has been linked to the development of 
Alzheimer’s disease, and the homeodomain-interacting protein kinases (HIPKs) reside on a branch together 
with PRPF4B. However, PRPF4B has not yet been reported as AD-related gene70.

The Kazal-like domains proteoglycan 1 (SPOCK1) endocytic pathway modulates by A β precursor protein 
APP may be related to the accumulation of A β40 and A β42 in the cerebrospinal fluid and brain tissue in 
patients with AD71. Mitochondrial autophagy or mitophagy is a quality control mechanism that culls defective 
mitochondria to prevent cellular damage and dysfunction. Mitochondrial dysfunction underlies many age-related 
human pathologies, such as AD, Parkinson’s disease (PD) and type II diabetes. Although the knockout of both 
mitochondrial kinases PKP1 gene and PKP2 gene (encoding plakophilin 1 and 2) were found to be related with 
the mitophagy trafficking, the correlation between PKP1 and AD has not yet been reported72.

Taken together, five pairs of gene–gene interactions showed strong association with AD: CSNK1A1–PTK7, 
HNRNPU–NEDD4, CD80–PLCG2, IGFBP7–VWF, and ERBB4–ETV6. Among them the CSNK1A1–PTK7 
interaction maybe related to the synapse dysfunction and Wnt signaling pathways, the HNRNPU–NEDD4L 
interaction might has an impact on the impairment of cognitive and memory abilities in AD, and the 
CD80–PLCG2 interaction maybe associated with both microglia and inflammatory. Two pairs of gene–gene 
interactions maybe related to the pathogenesis of AD indirectly: DNM3–USP25 and MYT1L–NYAP2. And 
the other two pairs of gene–gene interactions may be related to hippocampus, neuronal cells and cognitive 
impairment: TESPA1–OPCML and SCD5–SORBS1. Noteworthy, the possible mechanisms behind LBR–PRPF4B 
and PKP1–SPOCK1 interactions warrant further investigation.

Materials and methods
Subjects
The phenotyping data and genotyping data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The genotyping data were collected using 
two arrays of the Illumina 2.5M array and the Illumina OmniQuad array from the ADNI-1, ADNI-GO, and 
ADNI-2 cohorts. It should be noted that ADNI-1, ADNI-GO, and ADNI-2 are the first three of the four stages 
contained in ADNI, and the last stage is ADNI-3. The subjects included 1178 individuals, including 639 males 
and 539 females, and obtained 687,414 SNP after genotyping. In this study, stringent Quality control (QC) was 
performed using the PLINK v.1.9 software, and SNPs that do not satisfy the criteria of QC will be removed. The 
QC procedures for genotyping data is mainly composed of eight steps, including call rate check per SNPs, call 
rate check per subject, the minimum allele frequencies, gender check, pedigree samples identification, Hardy-
Weinberg equilibrium test, population stratification, and chromosome removal. Therefore, strict QC procedures 
were followed:

•	 call rate per SNP � 95%;
•	 call rate check per subject � 95%;
•	 minor allele frequency � 5%;
•	 gender check followed the F values: if the F value is less than 0.2, the sample is judged to be female, and if 

greater than 0.8, it is predicted to be male;
•	 individuals from the same descent were removed;
•	 Hardy–Weinberg equilibrium test of p � 10−6;
•	 population stratification analysis: excluded 89 subjects from the analysis that were non-Hispanic Caucasians;
•	 SNPs on chromosome 1–22.

After QC, 858 valid subjects of CSF P-tau/Aβ42 ratio remained, and 563,980 SNPs qualified for subsequent 
genome-wide SNP-SNP interaction analyses. The study cohort comprised 284 normal controls (NC), 459 
individuals with mild cognitive impairment (MCI), and 115 AD participants. Table 2 presents the demographic 
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Table 2.   Demographic and clinical characteristics of 858 ADNI participants at baseline analyzed in this 
study. Data are number (%) or mean (s.d.). AD Alzheimer’s disease, ADNI Alzheimer’s Disease Neuroimaging 
Initiative, CDR-SOB clinical dementia rating-sum of boxes, CSF cerebrospinal fluid, NC normal controls, MCI 
mild cognitive impairment, MMSE Mini-Mental Status Examination.

Diagnosis NC (N = 284, 33.1%) MCI (N = 459, 53.4%) AD (N = 115, 13.4%)

Age (years) 73.71 (5.80) 71.85 (7.40) 74.92 (8.30)

Women 145 (51.0%) 189 (41.1%) 43 (37.3%)

Education (years) 16.52 (2.61) 16.22 (2.76) 15.70 (2.72)

CDR-SOB 0.05 (0.21) 1.32 (1.00) 3.90 (2.14)

MMSE 27.07 (7.35) 24.88 (8.89) 20.23 (8.11)

CSF A β42 199.42 (51.75) 173.82 (52.59) 137.27 (35.72)

CSF P-tau 32.8 (16.56) 39.69 (20.86) 53.03 (22.97)

P-tau/Aβ42 ratio 0.19 (0.13) 0.27 (0.19) 0.41 (0.21)

Figure 5.   The distribution plot of P-tau/Aβ42 ratio after quality control. (a) Quantile–quantile (Q–Q) plot of 
quantitative trait P-tau/Aβ42 ratio. (b) The bar plot displays the statistical distribution of the quantitative trait 
P-tau/Aβ42 ratio across the number of individuals. (c) The scatter plot shows the distribution of the quantitative 
trait P-tau/Aβ42 ratio across the ID of individuals. The red spots represent the ID of Alzheimer’s disease (AD). 
The blue spots represent the ID of mild cognitive impairment (MCI). The green spots represent the ID of 
normal controls (NC).
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and clinical characteristics of the selected participants at baseline, with detailed data provided in Supplementary 
Table S2 online. The distribution of the P-tau/Aβ42 ratio within our study population is shown in Fig. 5.

Linear detection model of SNP–SNP interaction
This article uses the multiple linear regression model, a statistical model, for interaction detection. Multiple 
linear regression is a classical statistical learning method widely applied in modeling and prediction of various 
real-world problems. The model establishes a linear relationship between multiple independent variables 
and a dependent variable, and estimates the model parameters using the least squares method (LSM). The 
multiple linear regression model has strong interpretability and predictive performance. Using a linear model 
to detect SNP interactions allows for intuitive interpretation of the impact of interactions on phenotypes, 
providing relevant statistics and significance detection results. Additionally, the linear model can handle issues 
like interaction and collinearity among multiple independent variables, effectively capturing the influence of 
SNP–SNP interactions on phenotypes.

Moreover, the parameter estimation methods of linear models are relatively simple, using classic optimization 
algorithms such as LSM, which are computationally efficient and capable of handling large-scale genetic data. 
Furthermore, these methods facilitate the interpretation of model parameters and statistics. Taking into account 
the factors mentioned above, this article utilizes multiple linear regression to detect SNP–SNP interactions.

In this model, the dependent variable is predicted based on a linear combination of the independent variables, 
each multiplied by its respective coefficient. The data in this article consists of m subjects, each having n SNPs and 
one quantitative trait phenotype. Let S be the genotype matrix of the SNP array, expressed as:S = (S1, S2, . . . , Sn) , 
where any SNP genotype vector expressed as: Si = (S1i , S2i , . . . , Smi) , where Sij = 0, 1, 2 represents the genotype 
data of the ith individual at the jth SNP locus. Let Y be the measured quantitative trait, represented by an M × 1 
phenotype matrix. The essence of interaction detection is to consider interaction factors based on the main effects 
of SNPs and calculate the p-values of these interaction factors.

It is worth noting that the SNP×SNP model consisted of the same SNP and covariate terms (include age, 
gender, Dx) as the additive model, while with an additional multiplicative interaction term for the SNP×SNP 
model. Finally, the p-value of the interaction is calculated according to the F statistic.

Functional enrichment analysis and functional annotation
Functional enrichment analysis is a computational method that determines if a group of genes (proteins) is 
associated with specific biological functions. Annotation analysis assigns functional information to genes 
(proteins) based on available databases. When combined, these analyses help researchers understand the 
biological implications of gene or protein sets by identifying related functions and providing detailed annotations. 
This approach is widely used in biological studies to gain insights into underlying mechanisms and pathways. In 
this study, genome annotations and analyses were conducted utilizing two distinct annotation tools: Ensembl 
(http://​www.​ensem​bl.​org/) and ANNOVAR (https://​annov​ar.​openb​ioinf​ormat​ics.​org/). The results demonstrated 
a high level of concordance between the findings obtained from both tools, accompanied by comprehensive 
gene annotation information presented in Supplementary Table S3 online. For SNPs that could not be directly 
mapped to genes, we performed gene annotation using Homo sapiens genome assembly GRCh37 (hg19) with 
a distance threshold of 100 kb. This approach enabled the identification of potential regulatory elements and 
functional associations in close genomic proximity to the SNPs of interest, facilitating the exploration of their 
potential biological significance. PhenGenI Association 2021 and HDSigDB Human 2021 of Enrichr libraries 
were used to discuss the correlation between the identified genes and AD. Our intention was to preliminarily 
assess the association of two genes in a pair of gene–gene interactions with AD at the genetic level using these 
two databases. We achieved this by searching for whether these genes contained items related to AD. Specifically, 
if a gene contained items related to AD, we included it in the group of genes reported as being associated with 
AD. Genes that did not contain items related to AD were placed in the group of genes not yet reported as being 
associated with AD. In addition, pathway analyses for KEGG and GO were performed on all results with-log10 
adjusted p-values. The PPI network plays a crucial role in the prediction of genotype–phenotype associations. 
As one key role of PPI network, functional annotation can infer the functions of genes and their associated 
phenotypic features. Therefore, PPI network enrichment analysis was also performed on gene–gene interaction 
pairs to analyze further their biological implications.

Conclusion
In this paper, we conducted a genome-wide SNP–SNP interaction analysis based on P-tau/Aβ42 ratio. We used 
a linear regression model with age, gender, and Dx as covariates. To expedite the search speed for SNP–SNP 
interactions at the whole-genome level, we employed a parallel computing approach based on multiple GPUs. 
By using P-tau/Aβ42 ratio as QT, we increased statistical power and facilitated the identification of SNP–SNP 
interactions with marginal main effects. We identified 961 SNP–SNP interaction pairs with marginal main effects 
that contribute to explained a relatively high-level variance of P-tau/Aβ42 ratio. Notably, a total of 432 previously 
reported AD-related genes were replicated, and 11 gene–gene interaction pairs were found to overlap with the 
PPI network. Nine of these gene–gene interaction pairs were potentially related to synaptic dysfunction, Wnt 
signaling pathway, oligodendrocytes, inflammation, hippocampus, and neuronal cells, which may ultimately 
lead to cognitive decline in AD. The potential mechanisms underlying the interactions of LBR-PRPF4B and 
PKP1-SPOCK1 warrant further investigation. Our findings contribute to the partial elucidation of the “missing 
heritability” of AD. Future research should involve various methods and datasets to validate and further elucidate 
the biological significance of our results.

http://www.ensembl.org/
https://annovar.openbioinformatics.org/
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Data availability
The data used in this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The 
database is the (http://​adni.​loni.​usc.​edu/, accessed on 1 September 2023) of the Alzheimer’s disease neuroimaging 
database.

Received: 22 October 2023; Accepted: 14 February 2024

References
	 1.	 Pang, C. et al. Identification and analysis of Alzheimer’s candidate genes by an amplitude deviation algorithm. J. Alzheimer’s Dis. 

Parkinson. 9 (2019).
	 2.	 Abdullah, M. N., Wah, Y. B., Majeed, A. B. A., Zakaria, Y. & Shaadan, N. Identification of blood-based transcriptomics biomarkers 

for Alzheimer’s disease using statistical and machine learning classifier. Inform. Med. Unlock. 33, 101083 (2022).
	 3.	 Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 256, 184–185 (1992).
	 4.	 Selkoe, D. J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. (2001).
	 5.	 Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 120, 545–555 

(2005).
	 6.	 Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. 

Nat. Genet. 51, 404–413 (2019).
	 7.	 Pasqualetti, G., Thayanandan, T. & Edison, P. Influence of genetic and cardiometabolic risk factors in Alzheimer’s disease. Ageing 

Res. Rev. 101723 (2022).
	 8.	 Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
	 9.	 Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom 

heritability. Proc. Natl. Acad. Sci. 109, 1193–1198 (2012).
	10.	 Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
	11.	 Cordell, H. J. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11, 

2463–2468 (2002).
	12.	 Phillips, P. C. Epistasis—The essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 

9, 855–867 (2008).
	13.	 Moore, J. H. & Williams, S. M. New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002).
	14.	 Moore, J. H. A global view of epistasis. Nat. Genet. 37, 13–14 (2005).
	15.	 Cordell, H. J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 10, 392–404 (2009).
	16.	 Wang, Q., Zhang, Q., Meng, F. & Li, B. Objective-hierarchy based large-scale evolutionary algorithm for improving joint sparsity-

compression of neural network. Inf. Sci. 640, 119095 (2023).
	17.	 Abd El Hamid, M. M., Shaheen, M., Omar, Y. M. & Mabrouk, M. S. Discovering epistasis interactions in Alzheimer’s disease using 

integrated framework of ensemble learning and multifactor dimensionality reduction (MDR). Ain Shams Eng. J. 14, 101986 (2023).
	18.	 Mackay, T. F. Epistasis and quantitative traits: Using model organisms to study gene–gene interactions. Nat. Rev. Genet. 15, 22–33 

(2014).
	19.	 Li, J. et al. Genome-wide association and interaction studies of CSF T-tau/Aβ 42 ratio in ADNI cohort. Neurobiol. Aging 57, 247e1 

(2017).
	20.	 Li, J. et al. Genetic interactions explain variance in cingulate amyloid burden: An AV-45 pet genome-wide association and 

interaction study in the ADNI cohort. BioMed Res. Int. 2015 (2015).
	21.	 Visscher, P. M. et al. 10 years of GWAS discovery: Biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
	22.	 Wray, N. R. et al. Research review: Polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry 55, 

1068–1087 (2014).
	23.	 Clark, C. M. et al. Cerebrospinal fluid tau and β-amyloid: How well do these biomarkers reflect autopsy-confirmed dementia 

diagnoses?. Arch. Neurol. 60, 1696–1702 (2003).
	24.	 Kang, J.-H. et al. Association of cerebrospinal fluid β-amyloid 1–42, t-tau, p-tau181, and α-synuclein levels with clinical features 

of drug-naive patients with early parkinson disease. JAMA Neurol. 70, 1277–1287 (2013).
	25.	 Korolev, I. O., Symonds, L. L., Bozoki, A. C. & Initiative, A. D. N. Predicting progression from mild cognitive impairment to 

Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PloS one 11, e0138866 
(2016).

	26.	 Grossman, M. et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann. Neurol. 57, 721–729 
(2005).

	27.	 Zhang, Q., Liu, H., Ao, L., Liang, H. & Chen, D. A GPU-based approach for detecting genome-wide SNP–SNP interactions of 
quantitative trait in ADNI cohorts. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2564–2570 
(IEEE, 2022).

	28.	 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
	29.	 Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
	30.	 Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways 

and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
	31.	 Liu, G. et al. Cell adhesion molecules contribute to Alzheimer’s disease: Multiple pathway analyses of two genome-wide association 

studies. J. Neurochem. 120, 190–198 (2012).
	32.	 Zhang, L. et al. Roles and mechanisms of axon-guidance molecules in Alzheimer’s disease. Mol. Neurobiol. 58, 3290–3307 (2021).
	33.	 Inestrosa, N. C. & Toledo, E. M. The role of wnt signaling in neuronal dysfunction in Alzheimer’s disease. Mol. Neurodegener. 3, 

1–13 (2008).
	34.	 Popugaeva, E., Pchitskaya, E. & Bezprozvanny, I. Dysregulation of intracellular calcium signaling in Alzheimer’s disease. Antioxid. 

Redox Signal. 29, 1176–1188 (2018).
	35.	 Caltagarone, J., Jing, Z. & Bowser, R. Focal adhesions regulate a β signaling and cell death in Alzheimer’s disease. Biochim. Biophys. 

Acta (BBA)-Mol. Basis Dis. 1772, 438–445 (2007).
	36.	 Dourlen, P., Kilinc, D., Malmanche, N., Chapuis, J. & Lambert, J.-C. The new genetic landscape of Alzheimer’s disease: From 

amyloid cascade to genetically driven synaptic failure hypothesis?. Acta Neuropathol. 138, 221–236 (2019).
	37.	 Patel, P. J., Ren, Y. & Yan, Z. Epigenomic analysis of Alzheimer’s disease brains reveals diminished CTCF binding on genes involved 

in synaptic organization. Neurobiol. Dis. 106192 (2023).
	38.	 Doglio, L. E. et al. Retracted: γ-cleavage-independent functions of presenilin, nicastrin, and aph-1 regulate cell-junction 

organization and prevent tau toxicity in vivo. Neuron 50, 359–375 (2006).
	39.	 Lee, A. K., Khaled, H., Chofflet, N. & Takahashi, H. Synaptic organizers in Alzheimer’s disease: A classification based on amyloid-β 

sensitivity. Front. Cell. Neurosci. 14, 281 (2020).

http://adni.loni.usc.edu/


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3984  | https://doi.org/10.1038/s41598-024-54541-8

www.nature.com/scientificreports/

	40.	 Sokol, D., Maloney, B., Long, J., Ray, B. & Lahiri, D. Autism, Alzheimer disease, and fragile x: app, fmrp, and mglur5 are molecular 
links. Neurology 76, 1344–1352 (2011).

	41.	 Soba, P. et al. Homo-and heterodimerization of app family members promotes intercellular adhesion. EMBO J. 24, 3624–3634 
(2005).

	42.	 Cheng, Y. et al. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J. Cell. Physiol. 
234, 14377–14388 (2019).

	43.	 Berger, H., Wodarz, A. & Borchers, A. Ptk7 faces the wnt in development and disease. Front. Cell Dev. Biol. 5, 31 (2017).
	44.	 Palomer, E., Buechler, J. & Salinas, P. C. Wnt signaling deregulation in the aging and Alzheimer’s brain. Front. Cell. Neurosci. 13, 

227 (2019).
	45.	 Inestrosa, N. C. & Varela-Nallar, L. Wnt signaling in the nervous system and in Alzheimer’s disease. J. Mol. Cell Biol. 6, 64–74 

(2014).
	46.	 Inestrosa, N. C., Montecinos-Oliva, C. & Fuenzalida, M. Wnt signaling: Role in Alzheimer disease and schizophrenia. J. 

Neuroimmune Pharmacol. 7, 788–807 (2012).
	47.	 Rooney, K. et al. DNA methylation episignature and comparative epigenomic profiling of HNRNPU-related neurodevelopmental 

disorder. Genet. Med. 25, 100871 (2023).
	48.	 Qu, J. et al. MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer’s 

disease by downregulation of hnrnpu stabilized bace1. Cell Cycle 20, 2309–2320 (2021).
	49.	 Huang, Z., Zhao, J., Wang, W., Zhou, J. & Zhang, J. Depletion of lncRNA neat1 rescues mitochondrial dysfunction through nedd4l-

dependent pink1 degradation in animal models of Alzheimer’s disease. Front. Cell. Neurosci. 14, 28 (2020).
	50.	 Magno, L. et al. Alzheimer’s disease phospholipase c-gamma-2 (plcg2) protective variant is a functional hypermorph. Alzheimer’s 

Res. Ther. 11, 1–11 (2019).
	51.	 Van Der Lee, S. J. et al. A nonsynonymous mutation in plcg2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies 

and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 138, 237–250 (2019).
	52.	 Tsai, A. P. et al. Plcg2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer’s disease. 

Genome Med. 14, 17 (2022).
	53.	 Morano, N. C. et al. Human immunomodulatory ligand b7-1 mediates synaptic remodeling via the p75 neurotrophin receptor. J. 

Clin. Invest. 132 (2022).
	54.	 Zheng, Q. et al. Usp25 inhibition ameliorates Alzheimer’s pathology through the regulation of app processing and a β generation. 

J. Clin. Invest. 132 (2022).
	55.	 Puri, C. & Rubinsztein, D. C. A location, location, location mutation impairs dnm2-mediated release of nascent autophagosomes 

from recycling endosomes. Autophagy 16, 1353–1354 (2020).
	56.	 Patel, H., Dobson, R. J. & Newhouse, S. J. A meta-analysis of Alzheimer’s disease brain transcriptomic data. J. Alzheimer’s Dis. 68, 

1635–1656 (2019).
	57.	 Liang, X.-G. et al. Myt1l induced direct reprogramming of pericytes into cholinergic neurons. CNS Neurosci. Ther. 24, 801–809 

(2018).
	58.	 Yokoyama, K. et al. NYAP: A phosphoprotein family that links pi3k to wave1 signalling in neurons. EMBO J. 30, 4739–4754 (2011).
	59.	 Pelucchi, S., Stringhi, R. & Marcello, E. Dendritic spines in Alzheimer’s disease: How the actin cytoskeleton contributes to synaptic 

failure. Int. J. Mol. Sci. 21, 908 (2020).
	60.	 Agbemenyah, H. Y., Agis-Balboa, R. C., Burkhardt, S., Delalle, I. & Fischer, A. Insulin growth factor binding protein 7 is a novel 

target to treat dementia. Neurobiol. Dis. 62, 135–143 (2014).
	61.	 Ziliotto, N., Bernardi, F. & Piazza, F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer’s disease. Neurol. Sci. 

42, 3177–3188 (2021).
	62.	 Zhang, H., Zhang, L., Zhou, D., Li, H. & Xu, Y. Erbb4 mediates amyloid β-induced neurotoxicity through jnk/tau pathway 

activation: Implications for alzheimer’s disease. J. Comp. Neurol. 529, 3497–3512 (2021).
	63.	 Latorre, E., Ostler, E. L., Faragher, R. G. & Harries, L. W. Foxo1 and etv6 genes may represent novel regulators of splicing factor 

expression in cellular senescence. FASEB J. 33, 1086–1097 (2019).
	64.	 Sinner, D. I., Kim, G. J., Henderson, G. C. & Igal, R. A. Stearoylcoa desaturase-5: A novel regulator of neuronal cell proliferation 

and differentiation. PloS one 7, e39787 (2012).
	65.	 Starnawska, A. et al. Epigenome-wide association study of cognitive functioning in middle-aged monozygotic twins. Front. Aging 

Neurosci. 9, 413 (2017).
	66.	 Weller, A. E. et al. Single nucleus transcriptome data from Alzheimer’s disease mouse models yield new insight into pathophysiology. 

J. Alzheimer’s Dis. 1–15 (2022).
	67.	 Jung, J. et al. Alcohol use disorder is associated with DNA methylation-based shortening of telomere length and regulated by 

tespa1: Implications for aging. Mol. Psychiatry 27, 3875–3884 (2022).
	68.	 Matsuzaki, H., Fujimoto, T., Tanaka, M. & Shirasawa, S. Tespa1 is a novel component of mitochondria-associated endoplasmic 

reticulum membranes and affects mitochondrial calcium flux. Biochem. Biophys. Res. Commun. 433, 322–326 (2013).
	69.	 Jiang, L. & Wolozin, B. Oligomeric tau disrupts nuclear envelope via binding to lamin proteins and lamin b receptor. Alzheimer’s 

Dement. 17, e054521 (2021).
	70.	 Agnew, C. et al. The crystal structure of the protein kinase hipk2 reveals a unique architecture of its cmgc-insert region. J. Biol. 

Chem. 294, 13545–13559 (2019).
	71.	 Ye, Z. et al. Spock1: A multi-domain proteoglycan at the crossroads of extracellular matrix remodeling and cancer development. 

Am. J. Cancer Res. 10, 3127 (2020).
	72.	 Kolitsida, P. et al. Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation. Proc. Natl. 

Acad. Sci. 116, 20517–20527 (2019).

Acknowledgements
The authors acknowledge the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

Author contributions
Q.Z.: Conceptualization, Writing-Original Draf, Formal analysis. J.L.: Software, Methodology. H.L.: Validation, 
Software. L.A.: Validation. Y.X.: Validation. D.C.: Writing-Review & Editing. All authors revised the manuscript.

Funding
This project was supported by the National Natural Science Foundation of China (grant number: 62206044).

Competing interests 
The authors declare no competing interests.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3984  | https://doi.org/10.1038/s41598-024-54541-8

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​54541-8.

Correspondence and requests for materials should be addressed to D.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-54541-8
https://doi.org/10.1038/s41598-024-54541-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Genome-wide epistasis analysis reveals gene–gene interaction network on an intermediate endophenotype P-tauAβ42 ratio in ADNI cohort
	Results
	Two-marker Interaction Study Results and Post Hoc Analysis
	Gene set enrichment analysis results
	Network analysis results

	Discussion
	Materials and methods
	Subjects
	Linear detection model of SNP–SNP interaction
	Functional enrichment analysis and functional annotation

	Conclusion
	References
	Acknowledgements


