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Vegetable disease detection 
using an improved YOLOv8 
algorithm in the greenhouse plant 
environment
Xuewei Wang  & Jun Liu *

This study introduces YOLOv8n-vegetable, a model designed to address challenges related to 
imprecise detection of vegetable diseases in greenhouse plant environment using existing network 
models. The model incorporates several improvements and optimizations to enhance its effectiveness. 
Firstly, a novel C2fGhost module replaces partial C2f. with GhostConv based on Ghost lightweight 
convolution, reducing the model’s parameters and improving detection performance. Second, the 
Occlusion Perception Attention Module (OAM) is integrated into the Neck section to better preserve 
feature information after fusion, enhancing vegetable disease detection in greenhouse settings. 
To address challenges associated with detecting small-sized objects and the depletion of semantic 
knowledge due to varying scales, an additional layer for detecting small-sized objects is included. This 
layer improves the amalgamation of extensive and basic semantic knowledge, thereby enhancing 
overall detection accuracy. Finally, the HIoU boundary loss function is introduced, leading to improved 
convergence speed and regression accuracy. These improvement strategies were validated through 
experiments using a self-built vegetable disease detection dataset in a greenhouse environment. 
Multiple experimental comparisons have demonstrated the model’s effectiveness, achieving 
the objectives of improving detection speed while maintaining accuracy and real-time detection 
capability. According to experimental findings, the enhanced model exhibited a 6.46% rise in mean 
average precision (mAP) over the original model on the self-built vegetable disease detection dataset 
under greenhouse conditions. Additionally, the parameter quantity and model size decreased by 
0.16G and 0.21 MB, respectively. The proposed model demonstrates significant advancements over 
the original algorithm and exhibits strong competitiveness when compared with other advanced 
object detection models. The lightweight and fast detection of vegetable diseases offered by the 
proposed model presents promising applications in vegetable disease detection tasks.

Keywords Greenhouse plant environment, Vegetable diseases, YOLOv8n, Object detection, Attention 
mechanism

The detection of plant disease objects plays an essential role within the realm of plant protection, as it directly 
influences the effectiveness of disease prevention and control. Detecting plant disease objects poses unique 
challenges compared to general object detection tasks. Environmental factors such as scale, angle, and lighting, 
as well as issues such as background interference, noise interference, low imaging resolution, and significant 
variations in target morphology and distribution, require the use of advanced  models1–3. Unlike conventional 
techniques that depend on manual feature design and extraction for detection, the rapid advancement of deep 
neural networks offers a more promising approach. Intelligent algorithms capable of self-sensing, adaptivity, 
self-organization, and self-coding represent the future research direction in this field.

Object detection algorithms fall into two main categories: vision transformer methods based on self-attention 
mechanism neural network models and CNN-based methods. Vision transformer methods, such as  DETR4, 
deformable  DETR5, and DAB-DETR6, utilize the self-attention mechanism to capture global dependencies within 
images, leading to dense object detection predictions. However, a notable drawback is the high computational 
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complexity associated with these algorithms, demanding substantial computational resources and time. Conse-
quently, researchers in this domain focus on expediting convergence and reducing weight.

In the realm of CNN-based methods for object detection, a fundamental classification involves two-stage 
and one-stage detection algorithms. Two-stage detection algorithms, typified by the RCNN series and its deriva-
tives, prioritize detection accuracy by sacrificing speed and increasing model  complexity7,8. In addition to these, 
noteworthy alternatives such as  Detic9,  DiffusionDet10, and  EfficientDet11 have emerged.

On the contrary, the second category comprises one-stage detection algorithms, exemplified by the YOLO 
series and its derivatives. These algorithms aim for a balance between precision and speed, emphasizing an 
optimal equilibrium. Single-stage object detection algorithms, like the YOLO series, contribute significantly 
to research in object detection algorithms. Recent iterations such as  YOLOX12,  YOLOV613,  YOLOV714 and 
 YOLOV815 have showcased superior performance across various aspects of object detection. This includes 
advancements in backbone extraction networks, fusion modules, data augmentation processing, detection head 
modules, anchor frame design, loss function optimization, training strategies, and deployment methods.

However, given the intricate nature of the environment for detecting plant diseases, including drastic changes 
in object scale, strong background interference such as light, and low resolution, many algorithms still face limi-
tations within the domain of plant disease detection despite the high cost of manually annotated training data. 
Hence, there exists potential for enhancing detection  performance16.

The importance of accurate and timely plant disease detection cannot be  overstated17. Early disease identi-
fication is essential for implementing effective control measures, thereby minimizing crop losses and reducing 
the need for chemical  interventions18. Over the years, researchers have explored a range of methodologies and 
technologies to enhance the precision, speed, and scalability of plant disease  diagnosis19,20.

Researchers have focused their attention on different crop varieties, including staple cereals, fruits, vegetables, 
and cash crops, tailoring their approaches to the specific requirements of each plant type. Moreover, they have 
investigated various disease types, from bacterial and fungal infections to viral and nematode-induced  diseases21. 
This diverse array of studies has enriched our understanding of plant-pathogen interactions and paved the way 
for the development of targeted disease management strategies.

In the domain of vegetable disease recognition, Ullah et al22. introduced a fusion approach that combines 
two pre-trained models to improve the performance of detecting diseases in the context of small and medium-
sized cases. They achieved an impressive precision of 99.92% on a simple background tomato disease dataset. 
On the other hand, Albahli et al23. proposed the CornerNet algorithm based on DenseNet-77, which achieved 
a maximum accuracy of 99.98%. However, this algorithm has a complex network design, and due to the abun-
dance of parameters, it is impractical to deploy it on portable gadgets. Consequently, these methods may not be 
suitable for the detection of vegetable disease in greenhouse environments where mobile deployment is desired.

Saleem et al24. developed a vegetable dataset called NZDLPlantDisease-v2 and reached a mean average pre-
cision (mAP) value of 91.33% using the Faster RCNN Inception ResNet-v2 model. Furthermore, Zhao et al25. 
collected a dataset consisting of images depicting tomato diseases and cucumber diseases under challenging 
background conditions. They used transfer learning techniques to build a DTL-SE-ResNet50 model for iden-
tification purposes of vegetable diseases. This approach leverages the knowledge from pre-trained models and 
fine-tunes them for detecting vegetable diseases. The studies mentioned above contribute to the advancement 
of vegetable disease detection by providing specialized datasets and proposing effective models for the accurate 
detection of vegetable diseases.

The application of attention mechanisms has brought significant improvements to the precision of vegetable 
disease detection. Qi et al26. proposed the use of the squeeze and excitation module to improve YOLOv5 detection 
performance on small disease objects affected by tomato virus disease. Jing et al27. introduced the CBAM atten-
tion  mechanism28. to improve the tomato disease detection method based on YOLOv5. However, this mechanism 
operates sequentially on channel and spatial attention, neglecting the interrelation between channel and spatial 
dimensions, which may result in the potential loss of information across multiple dimensions. To address this 
limitation, Li et al29. employed the coordinate attention (CA) mechanism to develop the MTC-YOLOv5n model. 
This model achieved an mAP of 84.9% on a dataset specifically constructed for cucumber diseases. The CA 
mechanism allows for better integration of spatial and channel information, enhancing detection performance. 
Sun et al30. constructed a dataset consisting of Chinese feature description statements corresponding to 10 disease 
images of two vegetables. They introduced the Veg DenseCap model, which employed the Convolutional Block 
Attention Module (CBAM) to address the issue of sample imbalance and achieved a mAP of 88.0%.

In greenhouse planting environments, various types of diseases affect different vegetables, and the occur-
rence time, types, and symptoms of the diseases can vary even within a specific type of  vegetable31. Although 
several intelligent methods and tools have been developed for the detection of vegetable  diseases32, achieving 
accurate detection results in greenhouse environments remains a formidable task due to the intricate nature of 
the diseases.

Based on previous research experiments and theoretical considerations, we aim to improve the efficiency of 
object detection algorithms specifically designed for identifying vegetable diseases. To achieve this, we built upon 
the foundation provided by the YOLO series of one-stage detection algorithms. Our developed vegetable disease 
detection model, known as YOLOv8n-vegetable, aims to tackle the prevalent problems of reduced precision and 
overly large model dimensions encountered in traditional network detection methods for vegetable diseases. 
To improve the overall efficacy of the proposed model, we have incorporated ideas from several algorithms, 
including YOLOV5, YOLOV6, YOLOV7 and YOLOV8. The integration of these ideas is specifically targeted at 
enhancing the global context information extraction proficiency. Additionally, we introduced the concept of the 
occlusion perception attention module, which further improves the detection accuracy. Within our feature fusion 
module, our focus has been on strengthening attention toward occluded objects while effectively suppressing 
background features. By doing so, we aim to improve the capability of the model to precisely detect vegetable 
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diseases, even when objects are partially obscured. The main contributions of our research are succinctly outlined 
in the following manner.

(1) The introduction of the Ghostconv module and the newly designed C2fGhost module has resulted in 
a lightweight network, significantly diminishing the parameter quantity while enhancing the detection 
performance.

(2) Through the incorporation of the occlusion perception attention module into the feature fusion net-
work (Neck), the network can place a greater emphasis on the attributes of occluded disease objects. This 
strengthens the capability of the model to extract and merge features, as well as increasing its interest in 
occluded objects.

(3) The inclusion of a small-sized object detection layer at the 160 × 160 scale elevates the combination of deep 
and shallow semantic information, leading to improved accuracy in detecting small-sized objects.

(4) Utilization of the HIoU empowers the network to dynamically fine-tune the contribution of individual 
components within the loss function during various stages. This effectively improves the boundary-box 
regression performance of the model.

Materials and methods
Materials
Self‑built dataset
This study used video collection equipment integrated into the online detection system of vegetable diseases 
developed by the research group. The purpose was to collect disease samples and create a dataset specific to 
the detection of vegetable diseases within a greenhouse planting environment. In practical planting scenarios, 
vegetable diseases can manifest in various parts of different plants. Therefore, the positioning of the monitoring 
camera equipment significantly influences the results of disease detection. To address this, six sampling cameras 
were installed in different locations within vegetable greenhouses. This approach ensured the collection of videos 
that capture vegetable diseases from diverse perspectives. Figure 1 illustrates the sample of images collected. 
Given the relatively low rate of occurrence of vegetable diseases in a short period, it was necessary to optimize 
the efficiency of sample collection. As a result, vegetable disease samples were continuously collected at different 
times, resulting in a collection of 800 video sequences. From these sequences, a total of 40,000 keyframe images 
were extracted.

Based on the provided figure, it is evident that the proportion of vegetable disease objects within the monitor-
ing image is relatively small, typically less than 10%. Consequently, direct detection of vegetable disease based on 
the original image proves to be challenging. To emphasize disease characteristics, the construction of the dataset 
involved grouping and cropping of the original images according to different types of disease and infection loca-
tions. The cropped area is centered around the disease infection region, with efforts made to include only the 
complete disease infection area as much as possible. The dimensions of the cropped images are approximately 
640 × 640 pixels. Additionally, a manual screening was conducted to eliminate low-quality images, ensuring a 
balanced sample size between different types of disease. This process yielded 28,000 images. From the images 
obtained, a subset containing various types of disease was selected, and the disease objects in the cropped images 
were annotated following the construction standards of the PASCAL VOC dataset. In each image, there are 1 or 
more annotation boxes for the area infected with diseases.

After evaluating the quantity and quality of annotations in each category, it was determined that the number 
of annotations about sudden tomato fall, tomato vertical blight, tomato blight, cucumber black rot, cucumber 
soft rot, cucumber sudden cucumber fall, eggplant black rot, eggplant soft rot, and the associated targets of these 
eight disease categories was significantly hindered by plant obstruction in certain situations. Therefore, compre-
hensively considering these factors, the decision was made to remove these eight categories.

After manual confirmation, the compiled dataset included 20 diseases affecting three different vegetables, 
as detailed in Table 1. To facilitate training, testing, and validation, the dataset was divided into sets using an 
8:1:1 ratio.

Data enhancement
Under meteorological circumstances like cloudy and rainy days, along with environments with overlapping and 
obstructed plants, the limited light intensity poses challenges in obtaining clear monitoring images. Insufficient 

Figure 1.  Collected images.
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detail in the object features of vegetable diseases leads to low accuracy in their detection, as depicted in Fig. 2a. 
To address this issue, this study employs a fast and effective histogram equalization algorithm for enhancing 
and preprocessing the input images captured under low illumination, as illustrated in Fig. 2b. The application 
of this technique significantly improves image clarity, thereby enhancing the capabilities for detecting vegetable 
disease objects more effectively.

Furthermore, to enrich the training dataset, we conducted the mosaic and mixup augmentation processes 
during training. The Mosaic method involves randomly selecting four images from the database, applying ran-
dom scaling, cropping, and layout operations to each image, and subsequently concatenating them into a new 
training data image, as illustrated in Row 2 of Fig. 3. On the other hand, the Mixup method randomly selects 
two images from the training samples and creates a new image through a simple weighted sum operation. The 
sample labels are also weighted accordingly during this process. This fusion technique helps expand the training 
data, as illustrated in the third row of Fig. 3.

YOLOv8n
Glenn Jocher proposed YOLOv8 as an improvement to YOLOv5. This new model replaced the C3 module (which 
has a CSP bottleneck with three convolutions) with a more efficient C2f. module (a CSP bottleneck with two 
convolutions) and adjusted the number of channels. The Head section was also modified to separate classification 
and detection using the decoupling head technique. Furthermore, the loss function utilized positive and nega-
tive matching of samples instead of IOU matching. The YOLOv8 network structure is streamlined, resulting in 

Table 1.  Number of samples collected for different types of vegetable and disease categories.

No Vegetable type Disease category Number of images Annotation box quantity

A1 Tomato Healthy 1000 4654

A2 Tomato Early blight 1000 3280

A3 Tomato Late blight 1000 5026

A4 Tomato Gray mold 1000 4154

A5 Tomato Leaf mildew 1000 3441

A6 Tomato Leaf spot 1000 3135

A7 Tomato Ulcer disease 1000 3899

A8 Tomato Anthracnose 1000 3937

A9 Tomato Leaf curl 1000 4286

A10 Tomato Viral disease 1000 3075

B1 Cucumber Healthy 1000 4593

B2 Cucumber Powdery mildew 1000 3094

B3 Cucumber Downy mildew 1000 4129

B4 Cucumber Brown spot 1000 5063

B5 Cucumber Anthracnose 1000 3410

B6 Cucumber Viral disease 1000 4665

C1 Eggplant Healthy 1000 3439

C2 Eggplant Verticillium wilt 1000 4794

C3 Eggplant Brown spot 1000 4017

C4 Eggplant Viral disease 1000 3411

Figure 2.  Preprocessing results of low-brightness images enhanced by histogram equalization.
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faster detection speeds and higher detection accuracy. To balance model size and detection accuracy, this study 
optimized the YOLOv8n version, which has a smaller volume and high accuracy, as shown in Fig. 4.

YOLOv8n-vegetable
To tackle issues associated with inaccurate detection of vegetable diseases in conventional networks, excessive 
model parameters, and large model sizes, this study introduces a novel vegetable disease detection model termed 
YOLOv8n-vegetable, illustrated in Fig. 5. The model integrates four key enhancements. Firstly, to address the 
challenge of large model size, GhostConv from the GhostNet network and a newly designed module, denoted 
as C2fGhost, are introduced to reduce the count of model parameters. Secondly, to enhance the detection 
of occluded disease objects, an Occlusion Perception Attention Module (OAM) is integrated into the model. 
Additionally, to cater to the prevalent occurrence of distant objects in the vegetable disease image dataset, often 
comprising numerous small-sized objects, a specialized layer for small-sized object detection is introduced. 
Lastly, for optimizing the model’s performance in bounding box regression, an HIoU loss function is introduced.

GhostNet
GhostNet, developed by Huawei Noah Ark Laboratory in  202033, is a lightweight network, aiming to compress 
the network and streamline the model while ensuring a certain level of model accuracy. As shown in Fig. 6, the 
GhostNet model preserves channel dimensions while reducing the computational and parameter load of the 
network. It initially uses a limited amount of ordinary convolution for feature extraction. Following this, linear 
transformation operations are carried out on the feature map, proving more computationally efficient than regular 
convolutions. The final feature map is then generated through the Concat operation.

In Fig. 7, Ghostconv emerges as a convolutional module within the GhostNet network, offering a viable 
substitute for conventional convolutions. The "Cheap operation" embedded therein constitutes an economical 
linear operation. Diverging from traditional convolutions, Ghostconv orchestrates the parallel execution of 
feature extraction and cost-effective linear operations, followed by the concatenation of two sets of resultant 
feature maps. This orchestration serves to further abate computational burdens. Consequently, Ghostconv is 
purposefully architected as a phased convolutional computing module, yielding an abundance of feature maps 
through the parallel execution of feature extraction and cost-effective linear operations, thereby exemplifying its 
computational efficiency. The process begins with GhostConv generating half of the feature map using a convolu-
tion with half the size of the original convolution. It then proceeds to pass through a 5 × 5 convolutional kernel 
and a cost-effective cheap operation with a stride size of 1 to acquire the remaining half. Finally, the two feature 
maps are concatenated using the Concat operation, resulting in a complete feature map.

Figure 8 illustrates the GhostBottleneck operation. Initially, the quantity of channels is augmented by lever-
aging the initial GhostConv layer as an extension layer. Subsequently, regularization and Sigmoid Linear Unit 
(SiLU) are applied to the feature map. Next, the channel count in the output feature map is reduced to match 
input channels using the second GhostConv layer. Finally, the feature map obtained in the previous stage is added 
to the residual edge for feature fusion.

Figure 9 illustrates the newly designed C2fGhost module, which replaces all Bottleneck components in 
the original network’s C2f. module with GhostBottleneck units. This structure integrates a cross-stage feature 

Figure 3.  Processing Results of Mosaic and Mixup Data Enhancement Methods.
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fusion strategy and truncated gradient flow technology to enhance the diversity of learned features across dif-
ferent network layers, reducing the impact of redundant gradient information and improving learning capacity. 
The incorporation of GhostConv and C2fGhost modules effectively diminishes the reliance on numerous 3 × 3 
ordinary convolutions in the original structure. Consequently, it significantly compresses the network model’s 
size, decreases the parameter count and computational load, and facilitates deployment on mobile devices. This 
simplifies the implementation of edge computing for vegetable disease detection.
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Occlusion perception attention module (OAM)
The attention mechanism plays a crucial role in capturing focal points within the entire image, proving advanta-
geous for extracting small-scale occluded features related to vegetable diseases. However, it is essential to note 
that utilizing the attention mechanism also entails the drawback of increased computational workload, leading 
to higher computational costs.

To improve the capability to extract features related to vegetable diseases within the presence of occlusions, 
a lighter occlusion perception attention mechanism was developed, drawing inspiration from SE (Squeeze and 
Excitation)34, GAM (Global Attention Mechanism)35, and  Biformer36. This design aims to optimize the efficiency 
of attention mechanisms and improve the network’s performance in occluded scenarios.

The Occlusion Perception Attention Module (OAM), illustrated in Fig. 10, improves crucial features related 
to vegetable diseases by adjusting the weight coefficients for each channel to diminish background information. 
It employs two pooling operations: Global Average Pooling (GAP) for smoothing out details and preserving the 
overall distribution, and Global Maximum Pooling (GMP) for capturing local extremum values, especially for 
small-scale and occluded disease features. By integrating both pooling operations, the mechanism comprehen-
sively considers feature information at various scales, boosting the perception and representation capacity of 
small-scale occluded disease features. This approach alleviates potential information loss from a single pooling 
operation. Subsequently, the output undergoes a one-dimensional convolution layer, and the sigmoid activa-
tion function is utilized to multiply the matrix with the original feature map, resulting in the ultimate output. In 
summary, the OAM combines global average pooling, global maximum pooling, one-dimensional convolution, 
and the sigmoid activation function to effectively capture and enhance critical vegetable disease features while 
addressing occlusion challenges. The definition of Occlusion Perception Attention is as follows:

In the above-mentioned formula, F denotes the input feature, φ (∙) denotes a one-dimensional convolutional 
function, and σ refers to the sigmoid activation function.

(1)Atten(F) = σ
(

ϕ
(

AvgPool(F)+MaxPool(F)
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· F
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Small‑sized object detection layer
Challenges arise in detecting small-sized objects due to the limited feature information obtained from deep 
feature maps, which is influenced by both the small size of these samples and the extensive downsampling factor 
employed by YOLOv8n. Consequently, the original YOLOv8n model exhibits limited detection capability for 
small-sized objects. In the original model, the dimension of the input image is set at 640 × 640, and the mini-
mum detection scale is 80 × 80. This implies that each grid has a receptive field of 8 × 8. When the vertical and 
horizontal measurements of an object in the original image are less than 8 pixels, the original network struggles 
to effectively recognize and extract the object’s feature information within that specific grid.

Therefore, this study incorporates a layer specifically designed for detecting small-sized objects to address 
these limitations. This layer consists of a 160 × 160 scale small-sized detection layer. It includes supplementary 
fusion feature layers and additional detection heads to enhance the semantic information and feature expres-
sion capability specifically for small-sized objects. The process begins by stacking the 80 × 80 scale feature layer 
acquired from the fifth layer of the backbone with the upward upsampling feature layer in the Neck section. 
This combination is subjected to C2 and upsampling operations to generate a deep semantic feature layer that 
contains essential feature information related to small-sized objects. Next, the shallow position feature layer from 
the third layer of the backbone is stacked along with the previously obtained deep semantic feature layer. This 
stacking process improves the expression capability of the resulting 160 × 160 scale fusion feature layer, enabling 
it to capture both small-sized object semantic features and position information effectively. Finally, this fusion 
feature layer is passed through an additional decoupling head in the head section of the network, facilitated by 
C2f. This step further refines the procedure for detecting small-sized objects.

The inclusion of the Head section enables the continuous transmission of feature information associated 
with small-sized objects along the downsampling path to the other three scale feature layers. This process occurs 
through the Head structure, thereby enhancing feature fusion and improving the precision of detecting small-
sized objects. Moreover, the introduction of additional decoupling heads expands the detection range for veg-
etable diseases. By incorporating these decoupling heads, the network becomes capable of detecting a wider 
range of diseases affecting vegetables. Overall, these enhancements result in improved detection accuracy and 
an expanded detection range, enabling the network to more accurately detect small-scale targets related to veg-
etable diseases. By incorporating this small-sized object detection layer, the capacity of the model to detect and 
recognize small-sized objects is significantly enhanced.

HIoU loss function
Within the dataset, the presence of subpar instances is unavoidable. Geometric parameters like distance and 
aspect proportion tend to impose harsh penalties on these low-quality examples, which can negatively impact the 
model’s generalization performance. To address this issue, an effective loss function must alleviate the penalty for 
geometric measurements while anticipating substantial overlap between the candidate box and the target box.

Therefore, this study incorporates the concept from Wise  loU37, which utilizes dynamic methods to calculate 
IoU losses in category prediction losses. Building upon this idea, a new IoU loss function named HIoU is intro-
duced to optimize the model’s convergence ability and achieve enhanced bounding box prediction regression 
performance.

Among them, Wise loU addresses the potential bias problem of traditional IoU evaluation and constructs a 
loss function that employs attention for bounding box refinement. It achieves this by weighting IoU based on 
the area between the forecasted box and the actual reference box. Let’s assume the predicted box is denoted as 
B = [x, y, w, h], and the ground truth box is denoted as Bgt =

[

xgt , ygt ,wgt , hgt
]

 . Additionally, let Wg and Hg depict 
the dimensions of the smallest enclosing rectangle between the projected box and the actual reference box, and 
IoU represents the intersection-to-union ratio. The Wise loU loss can be defined as follows:

Among them, RWIoU ∈ [1 , e) significantly amplifies the LIoU of anchor boxes with ordinary quality. However, 
LIoU ∈ [0, 1] significantly reduces RWIoU for high-quality anchor boxes. This adjustment reduces the emphasis on 
center point distance when the anchor box overlaps well with the target box. To prevent RWIoU from the genera-
tion of gradients that obstruct the attainment of convergence, the calculation separates Wg and Hg , effectively 
eliminating factors that hinder convergence during training.

The definition of HIoU proposed in this study is as follows:

(2)LWIoU = RWIoU × LIoU

(3)RWIoU = exp
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Compared to CIoU and Wise-loU, the HIoU proposed in this study offers the advantage of dynamically 
adjusting the loss for bounding box regression, similar to Wise-loU. During the early stages of training, when the 
IoU between the predicted candidate box and the real object annotation box is relatively low, the model should 
prioritize improving this IoU. To achieve this, the first term RWIoU in the aforementioned RWIoU × LIoU effectively 
amplifies the model’s penalty for IoU. As the training progresses and the IoU between the predicted candidate 
box and the real object annotation box reaches a high degree of overlap, further significant changes are minimal. 
Consequently, in this later stage, the first term LIoU in the IoU formulation RWIoU × LIoU is deemphasized. As 
a result, the value of IoU decreases, allowing the model to automatically focus on regressing the candidate box 
towards the center point and adjusting the aspect ratio. This automatic adjustment facilitates the regression of the 
predicted candidate box towards the real object annotation box, ultimately enhancing the model’s performance.

HIoU incorporates improvements in the intersection and union operations of traditional IoU by dynamically 
adjusting the regression loss of bounding boxes. By doing so, it mitigates the penalties for geometric metrics like 
distance and aspect ratio. This approach enables a more comprehensive consideration of multiple factors includ-
ing IoU, position, size, shape, etc., relating to the anticipated box and the actual box. Consequently, it enhances 
the precision of object detection. In the HIoU formulation, interventions occur at a lower level by reducing the 
weight of the second and third terms in the loss function, which corresponds to penalizing geometric measure-
ments. Although this intervention increases during model training, it improves the generalizing capacity of the 
model, allowing it to perform better in varying scenarios.

In summary, HIoU demonstrates improved adaptability and robustness in specific scenarios compared to 
CIoU and Wise-loU. It offers enhanced evaluation capabilities for object detection tasks. By dynamically adjusting 
the regression loss and considering multiple factors, HIoU provides a more comprehensive and accurate assess-
ment of performance in these tasks. Its advantages contribute to its effectiveness in evaluating and enhancing 
object detection performance.

Results
Experimental environment
This research employed Python programming language and leveraged GPU acceleration to conduct the experi-
ments. Details of the experimental environment are provided in Table 2.

Evaluation indicators
The main evaluation metrics for object detection algorithms include detection accuracy, model complexity, and 
detection speed.

Detection accuracy is assessed primarily through precision (P), recall (R), and mean average precision (mAP). 
The subsequent equations can be utilized to compute these metrics.

In the aforementioned formulas, the meanings of each variable are as follows:
True Positive (TP): Signifies the algorithm’s accurate detection of the actual number of existing disease targets. 

In other words, the algorithm successfully and precisely labels real disease targets as such.
False Positive (FP): Represents the algorithm’s erroneous labeling of non-existent disease targets as disease 

instances. In essence, the algorithm incorrectly identifies non-disease areas as disease-infected.
False Negative (FN): Indicates the algorithm’s failure to accurately detect the actual number of existing disease 

targets. Specifically, the algorithm falls short in correctly identifying real disease targets as disease instances.
K: Denotes the total number of categories. The mAP (mean average precision) is the average value of preci-

sion for all categories, where the precision for each category is represented by its corresponding AP (average 
precision).

(6)γ =
4

π2

(

arctan
wgt

hgt
− arctan

w

h

)2

(7)P =
TP

TP + FP

(8)R =
TP

TP + FN

(9)mAP =

∑k
i=1 APi

K

Table 2.  Experimental environment.

No Category Model

1 Operating system Windows 10

2 Development environment CUDA 11.4.153

3 Graphics card (GPU) NVIDIA GeForce GTX 3090 Ti, 24 GB VRAM
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The complexity of an object detection algorithm is indicated by the volume of the model, the number of 
parameters, and the computational complexity. A higher value in these aspects signifies higher model complex-
ity. In this study, the evaluation indicators for model complexity include model computation and model size. 
Model computation represents the time complexity and is measured using Floating-Point Operations (FLOPs). 
A higher computational complexity indicates a greater requirement for computational resources.

Model size reflects the spatial complexity. It measures the amount of storage space needed to store the model 
parameters. By considering both computational and spatial complexities, we can gauge the resource requirements 
and efficiency of an object detection algorithm.

Frame per second (FPS) is an essential evaluation metric for measuring the detection speed of an algorithm. A 
higher FPS value indicates faster processing speed, enabling real-time or near-real-time object detection in video 
or image streams. Evaluating FPS helps assess the efficiency and effectiveness of an object detection algorithm 
in handling real-time applications where prompt and accurate detection is crucial.

Model training
When training the network model for vegetable disease object detection, the dimensions of the input image 
are uniformly modified to 640 × 640 × 3. To improve training efficiency and accelerate convergence, the model 
employs a freezing training method. The basic parameter settings used are provided in Table 3. The SGD opti-
mizer is utilized with a total of 300 epochs. During the initial 50 epochs, the backbone parameters are kept fixed 
and not updated. For the remaining 250 epochs of thawing training, the parameters are reduced. Furthermore, to 
enhance the detection capability, Mosaic and Mixup data augmentation techniques are turned off during the last 
100 training epochs. This adjustment aims to refine the performance of the model in detecting vegetable diseases.

As shown in Fig. 11, during the training process, the values of the loss functions exhibit a decreasing trend, 
indicating that the SGD optimizer continuously optimizes the model by updating the network weights and other 
parameters. Prior to 80 epochs, there is a rapid decrease in the values of the loss functions, accompanied by a 
swift improvement in precision, recall, mAP@0.5, and mAP@0.5:0.95. Around 120 epochs, the rate of decrease 
in the loss function values gradually slows down. Similarly, the improvements in precision, recall, mAP@0.5, 
and mAP@0.5:0.95 also show a deceleration. Upon reaching 250 epochs, the training loss curve exhibits almost 
no further decrease, and other metric values tend to stabilize, indicating that the network model has essentially 
converged. At the conclusion of training, the optimal network weights are obtained, thus demonstrating the 
effectiveness of the model.

Comparative experiments on multiple mainstream and lightweight object detection models
To demonstrate the superiority of the proposed YOLOv8n-vegetable algorithm over existing popular object 
detection models, we conducted comparative experiments. We selected both mainstream and lightweight object 
detection models, and introduced modifications to the YOLOv8 algorithm by incorporating lightweight backbone 
networks. The comparison results are presented in Table 4. Evaluation criteria included Precision, Recall, mAP, 

Table 3.  Training parameter settings.

Training stage Epoch Batch size Learning rate Optimizer

Freezing phase 50 32 0.001 SGD

Thawing phase 250 16 0.0001 SGD

Figure 11.  Training results of the proposed YOLOv8n-vegetable.
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Parameters, and Model size, with mAP assessed at an IoU (Intersection over Union) value of 0.5. All comparisons 
were conducted under identical conditions, utilizing unified configurations and the same dataset. The perfor-
mance of these models was evaluated alongside YOLOv8n-vegetable, considering the aforementioned metrics. 
This comparison aims to determine the superior capabilities of YOLOv8n-vegetable in vegetable disease object 
detection, providing insights into its performance relative to other widely adopted models.

Based on the findings presented in Table 4, the original YOLOv8n algorithm exhibits superior precision, 
recall, and mAP compared to Faster R-CNN, YOLOv3-tiny, YOLOv4-tiny, YOLOXs, YOLOv6, and YOLOv7-
tiny. In particular, YOLOv8n achieves these results while having a smaller parameter quantity and model size 
than the other six networks. Although YOLOv5s slightly outperforms YOLOv8n in terms of accuracy, it comes 
at the cost of nearly double the parameter quantity and model size compared to YOLOv8n.

YOLOv8n-FastNet and YOLOv8n-MobileNet are improved versions of the YOLOv8n network, with the 
backbone networks replaced by  FastNet3538 and  MobileNet39, respectively. It is evident that both exhibit a sig-
nificant reduction in parameters and model size. Despite the clear advantages in lightweight design, they result 
in respective performance decreases of 12.31% and 11.23% in mAP. Thus, it is apparent that solely modifying 
the backbone network is insufficient, necessitating further optimization. To meet the requirements of vegetable 
disease detection in greenhouse planting environments, the proposed model must effectively balance lightweight 
design and performance while surpassing some common algorithms.

In contrast, the proposed YOLOv8n-vegetable algorithm, which is based on the original YOLOv8n, maintains 
a similar FPS with even smaller parameter quantities and model sizes. Specifically, it reduces the parameter quan-
tity by 0.16G and the model size by 0.21 MB compared to the original model. Additionally, the precision of the 
YOLOv8n-vegetable exceeds that of the original YOLOv8n algorithm, with an increase of 6.46% in average accu-
racy (mAP). These improvements in various indicators demonstrate the superiority of the proposed algorithm.

Through comparative experiments, it is evident that the proposed YOLOv8n-vegetable performs exceptionally 
well. It achieves a reduction in both parameter count and model size while maintaining a high mAP, making it 
the most efficient among the compared models. The FPS also experiences a significant improvement, meeting the 
speed requirements for detection tasks. This accomplishes lightweight objectives under high precision conditions. 
The model’s enhancements include the introduction of GhostConv from the GhostNet network and the novel 
C2fGhost module, reducing computational and parameter loads. The integration of the Occlusion Perception 
Attention Module (OAM) ensures effective detection of occluded disease targets. The addition of a small target 
detection layer improves detection capability and accuracy for smaller targets. The introduction of the HIoU loss 
function contributes to enhanced speed and accuracy. Through various comparative experiments, this model 
emerges as a high-precision, fast, and lightweight solution, showcasing promising applications.

Comparative experiment on the detection effect of different categories of vegetable diseases
To evaluate the capability of the model to extract and distinguish features related to different categories of veg-
etable diseases, we compared the detection results (average precision − AP values) of YOLOv8n and the proposed 
model for each category. The comparison is presented in Table 5.

Referring to the results outlined in Table 5, the YOLOv8n-vegetable shows improved detection accuracy 
for 20 types of vegetable disease objects compared to the original YOLOv8n model. In particular, significant 
improvements are observed for small disease objects, such as tomato late blight, tomato gray mold, tomato leaf 
mold, tomato leaf spot, cucumber powdery mildew and cucumber downy mildew. The average precision for 
these disease objects is respectively 7.83%, 9.53%, 7.90%, 7.22%, 7.00%, and 8.61% higher than that of YOLOv8n. 
Furthermore, the proposed model demonstrates substantial accuracy improvements for disease objects that 
undergo notable changes in size and shape, such as cucumber anthracnose and eggplant brown spot. These find-
ings suggest that the network design of YOLOv8n-vegetable model is well suited for extracting crucial feature 
information from the feature layer, thus enhancing the accuracy of object detection.

Table 4.  Comparative experiments on multiple mainstream and lightweight object detection models.

Algorithm Precision/% Recall/% mAP (%) Parameters/G Model size/MB FPS

Faster R-CNN 87.44 81.39 84.46 30.46 112.71 97.10

YOLOv3-tiny 85.32 79.88 83.29 10.85 20.71 117.01

YOLOv4-tiny 87.80 82.13 85.37 11.23 28.00 126.04

YOLOXs 89.29 81.59 87.40 11.06 38.24 144.07

YOLOv5s 92.97 86.23 91.70 9.22 17.77 174.05

YOLOv6 92.96 86.29 91.75 9.14 17.76 174.02

Yolov7-tiny 67.84 63.44 58.07 8.16 15.57 134.07

Yolov8n 83.24 83.22 86.45 5.05 9.28 275.05

YOLOv8n-FastNet 76.11 72.96 74.14 4.25 8.66 283.32

YOLOv8n -MobileNet 75.98 73.87 75.22 4.69 8.92 276.13

YOLOv8n-vegetable 92.72 87.73 92.91 4.89 9.07 271.07
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Ablation study on each improved module
To assess the efficacy of the improvement strategies of the proposed YOLOv8n-vegetable, ablation experiments 
were conducted using the original YOLOv8n model as the baseline. The evaluation indicators used in these 
experiments included Precision, Recall, mAP, Parameters, and Model size. Different combinations of multiple 
improvement modules were tested, and the outcomes are presented in the table below.

Based on the findings presented in Table 6, several improvement modules were added to the YOLOv8n-
vegetable model, resulting in significant improvements in various indicators:

(1) After adding the lightweight GhostConv and the designed C2fGhost, the mAP increased by 4.16%. Addi-
tionally, there was a reduction in model parameters by 0.37G and model size by 1.17 MB.

(2) The incorporation of the OAM attention mechanism resulted in a 0.6% improvement in precision, 1.27% 
in recall, and 1.03% in mAP. This showcases that the proposed OAM enhances feature maps, allowing the 
network to concentrate more on extracting features from visible regions of vegetable diseases in the input 
image. Consequently, this diminishes occlusion impact on the model’s inference process, thereby enhancing 
robustness to occlusion in the greenhouse planting environment.

(3) Although the GAM attention mechanism resulted in a decrease in some indicators compared to the addi-
tion of OAM, the decision was made to choose OAM as it yielded a better overall performance.

(4) Incorporating a layer specifically designed for detecting small-sized objects resulted in a 1.93% rise in 
Precision, a 1.73% surge in Recall, and a 1.42% increase in mAP.s

(5) Integrating the HIoU loss function further improved precision, recall, and mAP by 0.1%, 1.66% and 0.88%, 
respectively.

Table 5.  Detection precision for different vegetable disease categories.

No Vegetable type Disease category

AP (%)

YOLOv8n YOLOv8n-vegetable

A1 Tomato Healthy 95.87 98.98

A2 Tomato Early blight 89.76 92.07

A3 Tomato Late blight 85.18 93.01

A4 Tomato Gray mold 81.53 91.06

A5 Tomato Leaf mildew 83.11 91.01

A6 Tomato Leaf spot 82.81 90.02

A7 Tomato Ulcer disease 84.22 90.08

A8 Tomato Anthracnose 79.58 86.06

A9 Tomato Leaf curl 82.03 88.09

A10 Tomato Viral disease 84.43 87.02

B1 Cucumber Healthy 95.26 98.66

B2 Cucumber Powdery mildew 83.01 90.02

B3 Cucumber Downy mildew 81.49 90.10

B4 Cucumber Brown spot 79.88 86.03

B5 Cucumber Anthracnose 82.92 88.01

B6 Cucumber Viral disease 84.70 86.00

C1 Eggplant Healthy 95.38 98.87

C2 Eggplant Verticillium wilt 85.64 91.05

C3 Eggplant Brown spot 81.38 85.06

C4 Eggplant Viral disease 85.07 89.04

Table 6.  Ablation experiment on each improved module.

GhostNet OAM GAM SDL HIoU Precision/% Recall/% mAP (%) Parameters/G Model size/MB FPS

No No No No No 83.24 83.22 86.45 5.05 9.28 275.05

Yes No No No No 90.69 84.34 90.61 4.68 8.01 216.06

Yes No Yes No No 90.82 84.89 91.25 4.72 8.32 187.02

Yes Yes No No No 91.29 85.61 91.64 4.79 8.36 195.08

Yes Yes No Yes No 92.62 86.07 92.03 4.83 8.98 245.08

Yes Yes No Yes Yes 92.72 87.73 92.91 4.89 9.07 271.07
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The experimental findings provide evidence that the improved YOLOv8n-vegetable, with the inclusion of 
these proposed improvement modules, achieved significant advances across all evaluation indicators in com-
parison to the original YOLOv8n model. This verifies the efficacy of the improvement modules.

Ablation study on attention mechanisms
In this section, we conduct ablative experiments on different attention mechanisms embedded in the network 
model to further validate the effectiveness of the proposed occlusion perception attention module. We choose 
YOLOv8n as the baseline model and conducted ablation experiments by adding SE, CBAM, GAM, Biformer, and 
the proposed OAM. We compare the increase in parameters and computational cost, as well as the final detection 
accuracy, resulting from different attention mechanisms. The results are presented in Table 7.

It can be observed that SE and CBAM achieved a slight improvement in accuracy with a small increase in 
parameters and computational cost. GAM exhibited a significant improvement in accuracy, but at the expense of 
a larger parameter count. On the other hand, Biformer introduced a substantial increase in computational cost 
while leading to a decrease in accuracy. In contrast, OAM showed a negligible increase in computational cost 
and resulted in a significant improvement in accuracy with minimal increase in parameters.

Ablation study on loss function
To validate the effectiveness of the optimized loss function, YOLOv8n is compared with the experimental results 
of only improving the loss function. To more intuitively demonstrate the enhancement of model convergence 
ability due to the optimization of the loss function, the regression loss during the training process is visualized, 
as shown in Fig. 12. It can be seen that the optimized loss function converges faster.

Results of the YOLOv8n-vegetable model on uncropped images
Since the images in the self-built dataset have been cropped, to evaluate the YOLOv8n-vegetable model’s perfor-
mance on the unedited images, this study tests the model on the full image. The results are presented in Table 8.

From Table 8, the accuracy of the YOLOv8n-vegetable model running on the unedited images is high for 
different categories of vegetable diseases, all exceeding 82%. The experimental results indicate that the proposed 
method achieves good performance on actual greenhouse vegetable disease image data. It can provide technical 
assistance and support for the intelligent management and prevention of vegetable diseases in the greenhouse 
planting environment.

Table 7.  Ablation experiment on attention mechanisms.

YOLOv8n Parameters/G FLOPs (B) mAP (%)

 + SE  + 0.009 7.1 88.68

 + CBAM  + 0.013 7.3 89.07

 + GAM  + 1.791 10.7 89.39

 + Biformer  + 0.265 19.2 87.32

 + OAM  + 0.001 7.2 90.01

Figure 12.  Comparison of training loss curves.
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Visual representation of detection outcomes
To clearly demonstrate the efficacy of the YOLOv8n-vegetable model, a set of different images of vegetable dis-
eases was used as input to showcase the algorithm’s capability in accurately extracting vegetable disease features 
within complex greenhouse planting environments. The detection results are visually presented in Fig. 13.

In Fig. 13, the original vegetable disease images are shown, with bounding boxes outlined around the identi-
fied regions of the disease. Each bounding box is labeled with the corresponding disease class for easy identifica-
tion. The accurate localization and identification of vegetable diseases in the images displayed demonstrate the 
effectiveness of the YOLOv8n-vegetable model in detecting various types of diseases in challenging agricultural 
settings.

The findings illustrate that the YOLOv8n-vegetable shows exceptional superiority in detecting diseases 
across various scales, particularly excelling in the detection of small-scale diseases without any instances of 

Table 8.  Statistical results of the proposed YOLOv8n-vegetable on uncropped images.

No Vegetable type Disease category AP (%)

A1 Tomato Healthy 97.01

A2 Tomato Early blight 88.86

A3 Tomato Late blight 88.60

A4 Tomato Gray mold 88.87

A5 Tomato Leaf mildew 89.64

A6 Tomato Leaf spot 88.89

A7 Tomato Ulcer disease 88.80

A8 Tomato Anthracnose 85.78

A9 Tomato Leaf curl 87.61

A10 Tomato Viral disease 84.25

B1 Cucumber Healthy 94.38

B2 Cucumber Powdery mildew 88.08

B3 Cucumber Downy mildew 86.79

B4 Cucumber Brown spot 84.53

B5 Cucumber Anthracnose 87.90

B6 Cucumber Viral disease 82.60

C1 Eggplant Healthy 97.91

C2 Eggplant Verticillium wilt 90.07

C3 Eggplant Brown spot 83.80

C4 Eggplant Viral disease 86.07

Figure 13.  Visualization of detection results.
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missed detection. Consequently, the proposed algorithm is highly suitable for vegetable disease detection tasks 
that involve scale variations. Furthermore, the enhancements in the YOLOv8n-vegetable model in handling 
occluded objects enable it to effectively extract features from occluded vegetable diseases. As a result, the pro-
posed YOLOv8n-vegetable model satisfies the detection requirements for vegetable diseases within complex 
greenhouse planting environments. These findings highlight the robustness and adaptability of the YOLOv8n-
vegetable model, demonstrating its potential for real-world application in the field of vegetable disease detection 
and management.

Discussion
Vegetable disease detection plays a crucial role in intelligent crop protection. In this study, we present an effi-
cient and lightweight YOLOv8n-vegetable model designed specifically for the detection of vegetable diseases. 
To decrease the size of the model, we incorporate the GhostConv module and the redesigned C2fGhost module. 
Furthermore, an occlusion perception attention module is incorporated to improve the model’s capability to 
enhance feature fusion and feature extraction. Additionally, a small-sized object detection layer is introduced 
to boost accuracy in detecting small-sized objects. By utilizing the HIoU loss function, the proposed model 
demonstrates improved performance in bounding box regression.

The experimental results of the proposed YOLOv8n-vegetable model on a self-built dataset for vegetable 
disease detection indicate advantages compared to some current mainstream object detection and lightweight 
methods. It excels in evaluation metrics such as Precision, Recall, mAP, Parameters, Model size, and FPS. The 
proposed approach achieves an mAP of 92.91% and a speed of 271.07 frames per second, demonstrating its 
competence in vegetable disease detection tasks within greenhouse planting environments.

Conclusion
The YOLOv8n-vegetable model proposed in this study employs an end-to-end prediction approach, which has 
several advantages such as high detection accuracy, fast processing speed, and easy deployment. It effectively 
generates marker boxes and corresponding disease category labels for the detected regions, facilitating the auto-
mated prevention and control of vegetable diseases. As a result, the workload of disease detection and control 
for farmers is significantly reduced. Subsequent work will concentrate on streamlining the proposed model and 
developing embedded hardware platforms. This will enable the model to perform video capture and intelligent 
detection functions locally, leading to faster disease alerts. The ultimate objective is to establish a control linkage 
with agricultural IoT devices, allowing for timely disease alerts when they occur.

Data availability
The data utilized in this paper is obtained through self-gathering and is made publicly available (a part of it) to 
make the study reproducible. It can be accessed at https:// github. com/ tyuio uio/ plant- disea se- detec tion- in- real- 
field. If you want to request the complete dataset and code, please email the corresponding author.
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