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Complex changes in serum protein 
levels in COVID‑19 convalescents
Smruti Pushalkar 1,5*, Shaohuan Wu 1,5, Shuvadeep Maity 1,2, Matthew Pressler 1, 
Justin Rendleman 1, Burcu Vitrinel 1, Lauren Jeffery 1, Ryah Abdelhadi 1, Mechi Chen 1, 
Ted Ross 3, Michael Carlock 3, Hyungwon Choi 4 & Christine Vogel 1*

The COVID‑19 pandemic, triggered by severe acute respiratory syndrome coronavirus 2, has affected 
millions of people worldwide. Much research has been dedicated to our understanding of COVID‑
19 disease heterogeneity and severity, but less is known about recovery associated changes. To 
address this gap in knowledge, we quantified the proteome from serum samples from 29 COVID‑19 
convalescents and 29 age‑, race‑, and sex‑matched healthy controls. Samples were acquired within 
the first months of the pandemic. Many proteins from pathways known to change during acute 
COVID‑19 illness, such as from the complement cascade, coagulation system, inflammation and 
adaptive immune system, had returned to levels seen in healthy controls. In comparison, we identified 
22 and 15 proteins with significantly elevated and lowered levels, respectively, amongst COVID‑19 
convalescents compared to healthy controls. Some of the changes were similar to those observed for 
the acute phase of the disease, i.e. elevated levels of proteins from hemolysis, the adaptive immune 
systems, and inflammation. In contrast, some alterations opposed those in the acute phase, e.g. 
elevated levels of CETP and APOA1 which function in lipid/cholesterol metabolism, and decreased 
levels of proteins from the complement cascade (e.g. C1R, C1S, and VWF), the coagulation system 
(e.g. THBS1 and VWF), and the regulation of the actin cytoskeleton (e.g. PFN1 and CFL1) amongst 
COVID‑19 convalescents. We speculate that some of these shifts might originate from a transient 
decrease in platelet counts upon recovery from the disease. Finally, we observed race‑specific 
changes, e.g. with respect to immunoglobulins and proteins related to cholesterol metabolism.

The COVID-19 pandemic has affected more than 607 million people worldwide with approximately 6.5 million 
deaths (World Health Organization). Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
the disease is highly infective and exhibits an extensive clinical heterogeneity, from asymptomatic to symptomatic 
disease  states1. While the primary manifestation of COVID-19 is in the respiratory tract, there is an increased 
risk of other life-threatening pathologies such as pulmonary embolism, myocardial infarction, and ischemic 
stroke with frequent venous and arterial thromboembolisms with the severity of  disease2. Similarly, recovery 
from COVID-19 has displayed enormous heterogeneity, ranging from disappearance of symptoms within a few 
days to establishment of ‘long COVID’, also known as ‘post-acute sequelae of SARS-CoV-2 (PASC) marked by 
a broad spectrum of the ongoing physiological  changes3,4.

Much work has been done to characterize the molecular changes during the acute phase of the disease, e.g. 
in patients plasma and serum  samples5–8. Both untargeted and targeted proteomics approaches have identified 
dysregulation of various pathways including lipid homeostasis, immunoglobulins, inflammatory and antiviral 
cytokines, chemokines of innate and adaptive immunity, as well as complement and coagulation  cascades4,5,9–11. 
These studies also observed platelet degranulation, lymphocyte apoptosis in serum, likely due to the viral mode 
of entry into the  cells4,5,9,10. During acute infection, overproduction of proinflammatory cytokines (IL-6, IL-1β, 
and TNF-α) induces a ‘cytokine storm’ elevating the risk of clot formation, platelet activation, and ultimately 
hypoxia and multiorgan failure leading to high patient  mortality9,12. Accordingly, serum proteomics using a 
highly sensitive targeted assay identified proteins of inflammation, cardiometabolic, and neurologic diseases to 
contribute to disease  severity13. Other studies found an expansion in regulatory proteins of coagulation (APOH, 
FN1, HRG, KNG1, and PLG) and lipid homeostasis (APOA1, APOC1, APOC2, APOC3, and PON1) in serum as 
the disease  progressed5. COVID-19 plasma samples also demonstrated extensive changes in several key protein 
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modifications, such as glycosylation, phosphorylation, citrullination and arginylation during the acute phase of 
the  disease14. Even serum from COVID-19 infected asymptomatic individuals showed altered levels of coagula-
tion and inflammation, such as fibrinogen, von willebrand factor (VWF), and thrombospondin-1 (TSP1)3. In 
comparison, long COVID/PASC patients appear to have altered levels of autoantibodies, localized inflammation, 
and reactivation of latent  pathogens4. In particular, patients of neuro-PASC exhibit plasma proteomes highly 
distinct from COVID-19 convalescents who have no lingering symptoms, e.g. presenting markers of DNA repair, 
oxidative stress, and neutrophil  degranulation15.

In comparison, information on COVID-19 convalescence is much less available, in particular from patients 
without vaccination or prior SARS-CoV-2 infections. One study examining blood samples from severe COVID-
19 patients upon recovery observed elevated erythrocyte sedimentation rates, increased levels of C-reactive 
protein (CRP), and reduced levels of serum  albumin16. Another study showed that carbonic anhydrase 1 (CA1) 
was still bound to immunoglobulin IgA in COVID-19 patients within 2 weeks of recovery, unlike in any healthy 
vaccinated or unvaccinated healthy subjects, or in COVID-19 patients after 6 months of  recovery17. Another 
study identified lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cas-
cades, autophagy, and lysosomal function for at least six weeks upon recovery from infection with the ancestral 
SARS-CoV-2  virus18. Similar substantial changes in the plasma proteome were found in hospitalized COVID-19 
patients even six months after  discharge19.

To understand the broader impact of COVID-19 after recovery, we profiled the proteome in 29 serum sam-
ples from a unique collection of COVID-19 convalescents and 29 samples from age-, sex-, and race-matched 
healthy controls. All COVID-19 convalescents had tested positive for SARS-CoV-2 in March or April 2020, i.e. 
during the first months of the pandemic. All convalescents were symptomless at the time of sample collection, 
i.e. considered outside the acute phase of the disease. We used mass spectrometry to quantify protein levels in the 
soluble fraction of the blood serum in an untargeted fashion and used linear regression models to deconvolute 
the effects of demographic parameters in differentially abundant serum proteins. We identified pathways whose 
member proteins had returned to the pre-infection levels, and pathways with member proteins that were still 
altered either consistent with or opposite to changes observed during the acute infection.

Results
Quantitation of 334 serum proteins
We quantified proteins from serum samples of 29 COVID-19 convalescents and age-, sex- and race-matched 29 
healthy individuals. Figure 1A shows the experimental outline; Supplementary Information 1, Table S1 describes 
the cohort demographics, including known information on the acute phase of COVID-19. Participants age 
ranged from 22 to 61 years, with a median (interquartile range, IQR) of 44 (20) years. The male to female ratio 
was 1.2. About 55% of the individuals reported to have had symptoms at the time of the acute COVID-19 infec-
tion while the remaining individuals reported no symptoms.

The serum samples from COVID-19 convalescents were collected 9–70 days after diagnosis (Days since diag-
nosis). Individuals had been diagnosed by PCR test in March/April 2020, i.e. a few months after the beginning 
of the pandemic. Participants were recruited based on opportunity without further exclusion/inclusion criteria, 
were unvaccinated and experienced their first infection with SARS-CoV-2. None of the individuals had been 
hospitalized or had lingering symptoms at the time of sample collection. Thirteen individuals (45%) reported 
that they experienced no symptoms during the acute phase of the infection. Fifteen individuals (52%) reported 
symptoms during the acute infection, with fever, shortness of breath, loss of taste, and coughing amongst the 
most frequent (Supplementary Information 1, Table S1). Due to the small cohort size and range of symptoms, 
we considered COVID-19 convalescents only as symptomatic or asymptomatic without further distinction.

Serum antibody titers were measured at the time of sample collection. About 28% of the patients showed no 
antibody response whereas 3%, 21%, 21% and 24% patients displayed low, moderate, high and very high antibody 
response respectively, as defined in Supplementary Information 1, Table S1.

Figures 1B–D describe relationships between selected demographics. The age distributions between male 
and female participants were similar (Fig. 1B). Individuals who reported symptoms during the acute phase 
of the infection had a significantly longer period until sample collection (p-value < 0.05, Fig. 1C): the median 
(IQR) Days since diagnosis were 59 (15) for symptomatic and 32 (8) for asymptomatic individuals (Supple-
mentary Information 1, Table S1). Similarly, individuals with symptoms had significantly higher antibody titers 
(Fig. 1D) than individuals without symptoms (p-value < 0.05), and Days since diagnosis and antibody titers 
correlated substantially  (R2 = 0.44, Supplementary Information 1, Fig. S1A). One possible explanation for these 
correlations was that participants entered the study at a time based on severity of the infection (i.e. the extent 
of symptoms) and length of recuperation time: more severely ill individuals provided serum samples at a later 
time than less ill individuals. Conversely, more severely ill individuals might have produced higher antibody 
titers, even if collected at a later point after recovery. Based on the convoluted relationships between Days since 
diagnosis, Symptoms, and Titer levels, the wide range in values, the lack of additional information, and the small 
cohort size, we refrained from extensive analysis of these characteristics except for what is described below.

We quantified a total of 334 proteins across all samples as depicted in Fig. 2. About half of the proteins fall 
into three functional categories: immunoglobulins, complement cascade and high-density lipoproteins (32%, 
9%, and 5%, respectively). We grouped the proteins into 20 clusters based on their levels across the samples and 
the similarity in expression patterns (see Methods). The cluster number was chosen based on the total number 
of proteins. Twelve clusters contained one or more proteins with statistically significant differences between 
COVID-19 convalescents and healthy controls; and we focus discussion on these 12 clusters below. We tested 
the 12 clusters for function enrichment and show example proteins in figures.
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All protein measurements underwent extensive normalization (see Methods). After normalization, we evalu-
ated the quality of the normalized measurements through different methods. First, we analyzed the coefficient of 
variance (CoV) for the four technical matches for all normalized protein measurements across the QC samples 
(Supplementary Information 1, Fig. S1B). The median CoV was < 30% in all four batches, which is consistent 
with what is expected from untargeted proteomics analyses. Only 40 proteins showed an average CoV > 50% in 
the QC samples (Supplementary Information 2); their quantification in the cohort samples is less reliable, and 
the proteins are marked in all figures with a * symbol. Further, we examined the sample distribution across the 
first and second principal component, which showed successful clustering of all QC samples (Supplementary 
Information 1, Fig. S1C). Finally, as an additional quality control, we examined several example proteins for their 
levels amongst demographic subsets (Supplementary Information 1, Figs. S2 and S3). The proteins showed the 
expected sex and body weight related differences.

Altered levels of components of the innate and adaptive immune system
First, we examined the overall difference in protein levels between samples from healthy controls and COVID-
19 convalescents, regardless of the individuals’ demographics. We conducted partial least squares discriminant 
analysis with the protein levels (Fig. 3A). The major components explained 19% of the variability and separated 
the data into two distinct clusters comprising the two cohorts. This separation confirmed that the proteomics 
data captured differences between COVID-19 convalescents and healthy controls.

The volcano plot in Fig. 3B depicts the results from the overall comparison of protein levels between the 
two sample sets. Dots with red and blue colors in Fig. 3B marked the 22 and 15 proteins that were signifi-
cantly elevated or decreased in the serum from COVID-19 convalescents and healthy controls, respectively 
(adjusted p-value < 0.05). Supplementary Information 1, Fig. S4 shows the levels of these proteins measured 
in each sample. The COVID-19 convalescents had significantly elevated immunoglobulins, Orosomucoid 2 

Figure 1.  Experimental design. (A) Overview of experimental design providing proteomic analysis of serum 
samples from COVID-19 convalescents with age, sex, and race matched healthy controls. (B)–(D) Selection 
of demographic factors describing the 29 COVID-19 convalescents: (B) distribution of age between male 
and female cases. (C) and (D) Distribution of Days since diagnosis and Antibody titer levels respectively, 
split by self-reported presence of symptoms during the acute phase. All demographic data are provided in 
Supplementary Information 2 and summarized in Supplementary Information 1, Table S1. P-values were 
derived from t-tests. Symp. symptoms.
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(ORM2), peroxiredoxin-2 (PRDX2), hemoglobin subunits (HBD, HBB and HBA1), as well as proteins involved 
in cholesterol transport such as cholesteryl ester transfer protein (CETP) and apolipoprotein A1 (APOA1). In 
comparison, healthy controls had significantly elevated levels of actin cytoskeleton signaling proteins, e.g. filamin 
(FLNA), profilin (PFN1), cofilin (CFL1), and actin beta (ACTB).

Figure 2.  Normalized levels of 334 serum proteins. Heatmap depicts normalized  log10-transformed levels for 
334 proteins in sera from healthy controls and COVID-19 convalescents sorted according to sex and age. The 
upper panel provides additional sample information such as days passed since diagnosis of an acute SARS-
CoV-2 infection and sample collection, self-reported presence of symptoms during the acute phase, antibody 
titer levels  (log10-transformed), sex, age, and race of the individual. All demographic data are provided in 
Supplementary Information 2 and summarized in Supplementary Information 1, Table S1. After hierarchical 
clustering we split the data into 20 clusters with specific protein expression patterns; letters indicate clusters 
discussed in detail in the text. Each cluster was examined for trends in expression differences and function 
enrichment (see Methods). S.d. since diagnosis.
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We rank-ordered proteins according to their differential levels amongst COVID-19 convalescents vs. controls 
and analyzed them for enriched protein functions (see Methods). Significantly enriched functions and pathways 
are represented in Fig. 3C (false discovery rate < 0.05). Proteins enriched healthy controls are biased with respect 
to only one pathway with three protein members (single node in Fig. 3C). In comparison, proteins with higher 
levels in COVID-19 convalescents are enriched in a large number of pathways with many shared protein members 
(edges in Fig. 3C). The pathways relate to (viral) infection, the innate and adaptive immune response, signaling 
cascades, inflammation, and general cellular processes. Due to the large number of overlapping categories, we 

Figure 3.  Differential protein levels in COVID-19 convalescents and healthy controls. (A) Partial least square 
discriminant analysis depicts segregation between the two cohorts. Supplementary Information 1, Fig. S1 shows 
further characteristics of quality control: the distributions of the Coefficients of Variance (CoV) (Fig. S1B) 
and the first and second principal component including Quality Control samples and sample labels in a plot 
analogous to this one (Fig. S1C). (B) The volcano plot indicates fold changes and corresponding adjusted 
p-values of protein levels between COVID-19 convalescents and healthy controls. Colored dots represent 
proteins with significantly higher levels amongst the COVID-19 convalescents (red) or healthy controls 
(blue), respectively (adjusted p-value <  = 0.05). The expression patterns of these proteins are also listed in 
Supplementary Information 1, Fig S4. A * symbol marks proteins with less reliable quantitation as determined 
by a high CoV across quality control samples (> 50%). (C) The networks visualize the function enrichment 
amongst proteins ranked by their directed adjusted p-value (if the observed  log10-transformed fold change 
was positive, we calculated 1 − p; if negative, we calculated (− (1 − p)). Healthy control samples have only one 
enriched function (false discovery rate < 0.05). Details of network construction are provided in the Methods 
section.
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subsetted the analysis below into proteins with differential expression patterns in addition to those observed 
between COVID-19 convalescents and healthy controls.

The volcano plot in Fig. 3B also shows the proteins with similar levels in both healthy controls and COVID-
19 convalescents (gray dots below the 0.05 threshold). These proteins either did not change during the acute 
infection or had returned to normal levels at the time of analysis. Table 1 shows the subset of the proteins with 
similar levels in both healthy controls and COVID-19 convalescents, but altered levels during acute COVID-19, 
as known from literature. The proteins include members of the complement (e.g. C2, C3, C4A) and coagula-
tion (e.g. F5, F10) cascade, the adaptive immune system, metabolism (e.g. LPA, PON1) and inflammation (e.g. 
ORM1, S100A8, and S100A9). Supplementary Information 1, Fig. S5 shows the expression patterns for additional 
proteins from the complement system, coagulation cascade, and from inflammation. As reported earlier, both 
members of the complement system and coagulation cascade are heavily dysregulated during the acute phase of 
the  infection20–22. An analysis of COVID-19 patients during the acute infection up to six weeks of recovery also 
revealed elevated levels of proteins of the complement system and coagulation  cascade18. It is possible that in 
our study they had changed in the COVID-19 convalescents during the acute phase but had returned to levels 
similar to those observed in healthy individuals by the time of analysis.

We also tested for differences in protein modifications between the two groups. While we did not enrich 
proteins with post-translational modifications, the type of mass spectrometry data we collected allowed for a 
retrospect analysis for modified peptides. To do so, we constructed computational libraries scanning all data 
for the occurrence of several frequently occurring modifications, i.e. mono- and di-hexose, phosphorylation, 
and mono- and di-methylation, and then used the library to analyze the cohort samples. We observed hexose 
addition (glycosylation) most frequently (Supplementary Information 3): three of 55 hexose-modified peptides 
were significantly more abundant in COVID-19 convalescents than in healthy controls, when normalized for 
the levels of the respective unmodified peptides (adjusted p-value < 0.05; Supplementary Information 1, Fig. S6). 
The three peptides originated from albumin (ALB) and immunoglobulin heavy constant alpha 1 (IGHA1); these 
two proteins did not show significantly differential levels across the two cohorts. Our results were consistent 
with extensive serum glycosylation observed in COVID-19  patients23,24. Other modifications affected only a 
few peptides in our data.

Impact of demographic factors on serum protein signatures
Next, we tested for the impact of demographics, i.e. Days since diagnosis, Symptoms, Age, Sex, and Race of the 
individuals on the serum protein levels on the respective COVID-19 states to extract patterns beyond the simple 
difference between COVID-19 convalescents and healthy individuals. To do so, we used a variety of models (see 
Methods). Due to the correlation between Titer and Symptoms as well as Days since diagnosis, we excluded 
Titer levels from the analyses. We tested (i) protein levels in healthy individuals; (ii) protein levels in COVID-19 
convalescents; and (iii) log base 2 ratios of the protein levels in the COVID-19 cases versus the matched healthy 
controls. Figures 4 and 5 show the results, with proteins grouped according to the clusters identified in Fig. 2. 
Example proteins for each cluster were chosen based on their membership in the functions in the respective 
cluster. Results from all analyses are shown in Supplementary Information 2.

The five clusters in Fig. 4 were enriched in cell adhesion and platelet degranulation (cluster A), innate immu-
nity and the complement system (clusters B and C), hemoglobin, adaptive immunity, and immunoglobulins 

Table 1.  Summary of the results in relationship to changes reported in literature.

Pathway Example proteins

Known: This study:

Acute phase COVID-19 COVID-19 convalescents

A. Levels in COVID-19 convalescents similar to those in healthy individuals

Complement cascade C2, C3, C4A, C4B, C8, C9, MASP1, MBL2, FCN2 Elevated Healthy

Coagulation system/thrombosis
F5, F10, FGB, FGG, KNG1 Elevated Healthy

F13B Lower Healthy

Adaptive immune system IGLV3-25, IGKV1-5 Elevated Healthy

Metabolism
LPA, PON1 Elevated Healthy

APOA2, APOA4 Lower Healthy

Inflammation/Immune response CRP, LDH, ORM1, S100A8, S100A9 Elevated Healthy

B. Levels in COVID-19 convalescents different from those in healthy individuals but similar to those in acute COVID-19 patients

Hemolysis HBA1, HBB, HBD, PRDX2, CA1 Elevated Elevated

Adaptive immune system IGHG1, IGHV1-24, IGHV1-46, IGHV1-69, IGKV3D-15, 
IGLV3-19 Elevated Elevated

Inflammation/Immune response ORM2, SAA4 Elevated Elevated

C. Levels in COVID-19 convalescents different from those in healthy individuals and from those in acute COVID-19 patients

Complement cascade C1R, C1S, CFI, COLEC11, VWF Elevated Lower

Coagulation system/thrombosis VWF, FN1, THBS1 Elevated Lower

Actin cytoskeleton/Cell adhesion/Platelet degranulation PFN1, CFL1, FLNA, VWF Elevated Lower

Metabolism CETP, APOA1 Lower Elevated
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(cluster D), and adaptive immunity, immunoglobulins, and the complement system (cluster E). Proteins in these 
five clusters had overall differences between COVID-19 convalescents and healthy controls, but no significant 
interactions with any known demographics, i.e. no obvious additional biases. The samples were ordered by their 
annotation as healthy controls or COVID-19 convalescents, as well as by sex and age.

Clusters A to C contain proteins with lower levels in COVID-19 convalescents, e.g. proteins functioning in 
cell adhesion and platelet degranulation (e.g. fibrinogen A (FGA), VWF), and innate immunity/the complement 
system (e.g. C1R, C1S, C1QA, C1QC, and GGH) (Fig. 4). Actin cytoskeleton proteins (FLNA, PFN1, CFL1, 
ACTB, TAGLN2, and TSMB4X) showed the strongest bias both with respect to fold-change and significance, 
as also indicated in Fig. 3B. The quantitation of TAGLN2 and TSMB4X was less reliable as marked in Supple-
mentary Information 1, Fig. S4 (and as shown in Supplementary Information 2). In comparison, clusters D and 

Figure 4.  Levels of proteins with differences between healthy controls and COVID-19 convalescents 
independent of demographic factors. Heatmap depicting example proteins from five clusters (marked in 
Fig. 2). The clusters were selected based on the significant differences between COVID-19 convalescents and 
healthy controls. Each cluster was analyzed for enriched functions, and examples were selected based on these 
functions (see Methods). Function enrichments were as follows: (A) cell adhesion, platelet degranulation; (B) 
and (C) innate immunity, complement system; (D) Hemoglobin, adaptive immunity, immunoglobulins; and 
(E) Adaptive immunity, immunoglobulins, complement system. Example proteins were selected based on the 
statistical significance of the overall difference between protein levels in COVID-19 convalescents and healthy 
controls (with the adjusted p-value < 0.20 or < 0.05) and based on their relevance for the observed functional 
enrichment in each cluster. (A) shows the color-coded protein levels with samples sorted according to sex 
and age. (B) shows the significance values for two different models. Significance values (adjusted p-values) 
were transformed as follows: if the observed  log10-transformed fold change was positive, we calculated 
1 − p; if negative, we calculated (− (1 − p)). Dark colors indicate adjusted p-value < 0.05; light colors adjusted 
p-value < 0.20; gray: no significance. Columns represent comparisons with significant differences: the Overall 
difference between COVID-19 convalescents and healthy controls; and the impact of Days since diagnosis, 
presence of Symptoms, Sex, Age, and Race in a multivariate model using the healthy controls (beige) or 
COVID-19 convalescents (brown), respectively. The demographic data, protein levels, and results of all models 
are provided in Supplementary Information 2. D.s.d. = Days since diagnosis; Titer =  log10-transformed antibody 
titer as defined in methods; *less reliable quantitation as determined by a high coefficient of variance across 
quality control samples (> 50%).
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E had proteins with higher levels in COVID-19 convalescents, e.g. immunoglobulins playing a role in antigen 
recognition (e.g. IGKV1-27, IGKV1-39, IGHV1-46, IGLV3-1, and PRDX2), hemoglobin subunits (e.g. HBB, 
HBA1, and HBD), and carbonic anhydrase (CA1).

Next, we examined seven clusters with differences between COVID-19 convalescents and healthy controls 
that were more complex, i.e. that involved interactions with demographic factors (Fig. 5). The seven clusters 
correspond to those also shown in Fig. 2 and had the following function enrichments: adaptive immunity, immu-
noglobulins (clusters F and H), cholesterol transport, lipid metabolism (clusters I and J), cell adhesion (cluster 
K), and no bias (clusters G and L). Examples shown in Fig. 5 were chosen from these pathways.

Age, Sex, Days since diagnosis, or Symptoms had no significant bias with respect to their distribution across 
healthy controls and COVID-19 convalescents, with the exception of one protein (HPX) (adjusted p-value > 0.20, 

Figure 5.  Levels of proteins in COVID-19 convalescents and healthy controls with interactions with other 
factors. Heatmap depicting example proteins from five clusters (marked in Fig. 2). The clusters were selected 
based on the significant differences between COVID-19 convalescents and healthy controls. Each cluster 
was analyzed for enriched functions, and examples were selected based on these functions (see Methods). 
Function enrichments were as follows: F: Adaptive immunity, immunoglobulins; H: Adaptive immunity, 
immunoglobulins; I: Cholesterol transport; J: Lipid metabolism, cholesterol transport; K: Cell adhesion; G and 
L: n/a. Example proteins were selected based on the statistical significance of the overall difference between 
protein levels in COVID-19 convalescents and healthy controls (with the adjusted p-value < 0.20 or < 0.05) and 
based on their relevance for the observed functional enrichment in each cluster. (A) The color-coded protein 
levels with samples sorted according to race and the presence of Symptoms. (B) The significance values for two 
different models. Significance values (adjusted p-values) were transformed as follows: if the observed  log10-
transformed fold change was positive, we calculated 1 − p; if negative, we calculated (− (1 − p)). Dark colors 
indicate adjusted p-value < 0.05; light colors adjusted p-value < 0.20; gray: no significance. Columns represent 
comparisons with significant differences: the Overall difference between COVID-19 convalescents and healthy 
controls; and the impact of Days since diagnosis, presence of Symptoms, Sex, Age, and Race in a multivariate 
model using the healthy controls (beige) or COVID-19 convalescents (brown), respectively. The demographic 
data, protein levels, and results of all models are provided in Supplementary Information 2. D.s.d. = Days 
since diagnosis; Titer =  log10-transformed antibody titer as defined in methods; *Less reliable quantitation as 
determined by a high Coefficient of Variance across quality control samples (> 50%).
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Fig. 5). While this outcome may be in part due to the limited sample size, it might also be attributable to an 
intrinsic relationships between demographic variables as discussed above (Fig. 1D): individuals with symptoms 
and higher antibody titers during the acute phase tended to have serum samples collected at later time points 
than those without symptoms and lower antibody titers. We assume that Days since diagnosis and Symptoms/
Titer have opposite effects on protein levels: early sample collection and a more severe acute phase of the disease 
should have similar effects on the serum. Therefore, the inverse relationship between these demographics across 
samples effectively eliminated any potential signal.

The only demographic variable with an interaction in several clusters was race (Fig. 5). To illustrate the effect 
of race, samples in Fig. 5 were sorted into the healthy controls and COVID-19 convalescents, and within the 
cohorts sorted according to race. The figure focused on samples from only white or African-American (black) 
individuals which comprised the majority in this study (n = 26).

The first three clusters (F–H) in Fig. 5 comprised of proteins with significantly higher levels in COVID-19 
convalescents than in healthy controls, and the difference was stronger when taking race into account. For exam-
ple, for IGKV3-20, IGKV1-45, IGHG1, IGHV3-49, and IGLV3-27, the difference only existed for black, but not 
for white individuals. Most proteins from clusters F to H function were immunoglobulins, i.e. they functioned 
in adaptive immunity.

We observed the opposite race effect in proteins from clusters I to L: proteins had lower levels in COVID-
19 convalescents, but more so or only in samples from black individuals (Fig. 5). Healthy individuals had no 
significant biases with respect to race. Proteins from these clusters included those from lipid transport (cluster 
J), e.g. apolipoproteins (APOB, APOC2, APOC3, APOC4, and APOA4), and cell maintenance proteins, e.g. 
selenoprotein P (SELENOP) (cluster K). Cluster I showed very weak and mixed interactions with race, with 
signatures very similar to those in clusters D and E (Fig. 4), and it contained proteins from cholesterol transport, 
e.g. CETP and APOA1.

Discussion
Proteomic alterations in serum and plasma of mild, moderate, severe and critically ill COVID-19 patients have 
been studied extensively with respect to changes during the acute phase of the  disease11,25–30. In comparison, much 
less is known about changes upon  recovery16–19. We present one of the few controlled studies investigating serum 
proteomic differences between COVID-19 convalescents and age-, sex-, and race-matched healthy controls. A 
unique property of the cohort is that samples had been collected early in the pandemic, i.e. from unvaccinated 
individuals who had the first SARS-CoV-2 infection. However, this opportunity limited the cohort size as well 
as control for various factors, e.g. Days since diagnosis. Further, the complexity of the observed patterns and of 
the relationship to other findings as described below limits the discussion to select qualitative  observations16.

Table 1 provides an attempt to relate some of the findings in this study to what is known from the literature 
with respect to serum/plasma proteomic changes during the acute phase of COVID-19. However, it should 
be noted that due to the vast literature on acute COVID-19, many published observations have contradictory 
findings for individual proteins/pathways. Example proteins in Table 1 are listed based on their occurrence in 
literature. Note that some proteins occur in several rows as they function in several pathways. As available, we 
also attempt to relate our findings to those on long COVID/PASC in the text below.

While 37 of the 334 proteins (11%) showed significant differences in their levels (adjusted p-value < 0.05, 
Fig. 3), most of the observed proteome was similar between COVID-19 convalescents and healthy controls. 
Table 1 shows pathways and examples from the associated key proteins that were similar between COVID-19 
convalescents and healthy controls, but were observed to be altered during the acute phase of the infection. In 
comparison, Table 1 also shows (a) pathways and examples of the 37 proteins we found still altered amongst 
the COVID-19 convalescents, but grouped according to their relationship to literature observations in acute 
COVID-19; (b) pathways consistent with changes during the acute phase, i.e. proteins from hemolysis, the 
adaptive immune system and inflammation; and (c) pathways whose protein levels were inconsistent with these 
changes, i.e. proteins from the complement cascade, coagulation, the actin cytoskeleton/cell adhesion/platelet 
degranulation, and metabolism.

For example, we identified markers of acute inflammation (ORM2) and hemolysis (HBA1, HBB, HBD, and 
CA1) as well as the hemolytic anemia associated protein PRDX2 with significantly elevated levels in the COVID-
19 convalescents compared to healthy controls (Figs. 3B and 4), consistent with what had been found in acute 
COVID-19 patients with high IL-6 levels and severely ill  patients31 (Table 1). These findings indicated that 
elevated levels of proteins from inflammation and hemolysis were persistent for up to > 2 months of recovery. 
CA1 is known to associate with the IgA-complex in acute COVID-19 patients but not in healthy  individuals17, 
and the elevated levels we observed indicated that this might still be the case.

Perhaps the most interesting changes were those opposite to the ones observed during the acute phase 
(Table 1). Examples include proteins involved in coagulation (fibrinogen and VWF) whose levels were signifi-
cantly reduced amongst COVID-19 convalescents (Fig. 4). Unfortunately, as VWF is strongly associated with 
blood  type32, but blood type information was unavailable, the interpretation of these findings are speculative. 
VWF mediates platelet attachment to damaged endothelium and acts as a carrier protein for coagulation factor 
VIII rendering protection from proteolytic  degradation33,34. Its levels are known to be elevated in acute COVID-
19 and long COVID/PASC patients signifying platelet activation and adhesion to  endothelium33,35 resulting in 
COVID-19 associated  endotheliopathy36. Fibrinogen regulates protective immune functions and clot  formation37. 
During acute COVID-19, it is involved in thrombosis in  lungs38, and fibrinogen chains are strongly associated 
with COVID-19  fatalities39. The significantly decreased levels of VWF and fibrinogens in COVID-19 conva-
lescents (Table 1) contrasts the finding that most components of the coagulation and complement cascade had 
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returned to pre-infection levels (Table 1; Supplementary Fig. S5). One possible explanation is the temporary 
suppression of some pathways after recovery from the acute phase.

One such pathway relates to platelet counts in the blood. Platelets act as cellular immunomodulators interact-
ing with endothelial cells and leukocytes in response to infections, and are therefore crucial during thrombosis 
and the host immune  response40. During viral infections, low platelet counts, interactions with leukocytes, and 
platelet secretion may lead to protective or injurious immune  effects41. Aberrant blot clot formation, such as 
thrombosis, is a known complication of COVID-19  infection42,43. As fibrinogen and VWF are engaged in platelet 
 degranulation44,45, we hypothesize that the observed decreased levels of proteins from the platelet degranulation 
pathway in samples from COVID-19 convalescents (Fig. 4, cluster A) may be due to low platelet counts resulting 
from platelet consumption during COVID-19 infection. This hypothesis is supported by studies that suggest 
a 5% to 42% exhaustion in platelet counts for several months post infection (immune thrombocytopenia)46–49 
amongst survivors of both severe and non-severe COVID-19  patients50–53. While low platelet counts can occur 
any time during the acute phase of COVID-19, it has been frequently observed after clinical  recovery54, e.g. after 
 three55,56 or five  weeks57 after onset of symptoms, consistent with our findings. Dysregulated platelet function 
has also been observed in patients of long COVID/PASC58,59.

Similarly, we found significantly reduced levels of proteins of the actin cytoskeleton network amongst COVID-
19 convalescents, e.g. PFN1 and CFL1 (Fig. 4, cluster A), partially contrasting what had been found for the acute 
phase (Table 1). The actin cytoskeleton is critical in various pathways of the immune system, ranging from 
hematopoiesis and immune cell development, recruitment, migration, inter- and intra-cellular signaling, as well 
as response  activation60. Many viruses interact with actin and actin-regulating signaling pathways within the 
host  cell61,62 and reprogram the cellular  pathways63. Further, PFN1 is an important player in activation of viral 
transcription and airway  hyperresponsiveness64,65, and it is known to be downregulated in non-severe COVID-19 
 patients64. CFL1 functions in T cell motility, T cell migration to lymphoid tissues, immune reconstitution, and 
immune control of  viremia66 and is dysregulated in HIV-infected  patients66,67. Therefore, an additional interpreta-
tion of altered CFL1 levels observed in our data relates to possible changes in T cell mobility.

Further, we observed significant decreases of levels for some proteins of the complement cascade amongst the 
COVID-19 convalescents (Fig. 5) contrasting observations from the acute  phase68,69 (Table 1). The complement 
system is also known for a complex relationship with long  COVID70: complement dysregulation might even 
be predictive of long  COVID71. The complement cascade directly associates with altered blood coagulation in 
COVID-19  pathology20,72,73, and blood coagulation, which in turn involves platelet activation. We discussed the 
possible impact on platelet counts above which might also explain the temporary depletion of some proteins 
from the complement system.

Finally, by analyzing the impact of known demographics, we found no significant association of past COVID-
19 infections with the individuals’ Age, Sex, Days since diagnosis, and Symptoms. The lack of associations might 
be due to the small size of the cohort available and the heterogeneity amongst available samples. In comparison, 
we identified several proteins that were associated with Race which included mostly white and black individuals.

Examples included many proteins of the adaptive immune response (Fig. 5). Other proteins with a race effect 
were from cholesterol metabolism and transport: their elevated levels amongst COVID-19 convalescents were 
observed more strongly amongst white individuals than black individuals (Fig. 5). Apolipoproteins (APOA1 and 
APOB) are key regulators of cholesterol metabolism and  transport74,75 and can render protection against severe 
COVID-1976–78. Other apolipoproteins such as APOCs are not known to play a critical role in COVID-19, but 
demonstrated a race effect in our data (Fig. 5). Higher levels of proteins from cholesterol metabolism have also 
been observed amongst COVID-19 convalescents six weeks after  diagnosis18. Hospitalized COVID-19 patients 
have shown altered lipid metabolism even six months after  discharge19.

While grouped into a cluster with proteins with race effects (Fig. 5, cluster I), CETP, APOA1, and SAA4 
showed individually no significant race difference. CETP is linked to reverse cholesterol transport and associ-
ated with APOA1 and  SAA479. The elevated SAA4 levels are consistent with findings from acute COVID-19 
 cases29,74,80–82; however, this is not true for CETP and APOA1 (Table 1). APOA1 and APOA isoforms, which are 
also involved in the immune response and dyslipidemia, have been frequently observed in COVID-19 patients 
with acute inflammatory  conditions29,82,83. The elevated APOA1 levels contrast our observations on other APOA 
isoforms which returned to levels similar to those in healthy controls (Table 1) suggesting that further work will 
be necessary to decipher the complex role of cholesterol metabolism and transport.

Another protein with a race effect was SELENOP (Fig. 5). SELENOP is expressed in the liver and secreted 
into  plasma84,85. It has protective functions of host immune defense and tissue  homeostasis84,85. SELENOP levels 
directly impact serum selenium  levels86, and higher serum selenium levels, in turn, have been associated with 
increased COVID-19  survival29,86. We observed elevated SELENOP levels only in the white population but not 
black individuals which suggest complex, possibly race dependent relationships. In general, while increased 
COVID-19 infection rates and deaths amongst African American, Hispanic, and Asian communities compared 
to the white population have been  reported87, the race-dependent changes that we observed will require further 
investigation prior to their interpretations.

In sum, our study provides insights into the proteomic landscape present at up to > two months after the 
infection. While most of the proteome was similar to that found in healthy individuals, we identified several 
intriguing differences. The interpretation of these differences, e.g. with respect to a possible temporary decrease 
in platelet counts, will have to be tested in future work through analysis of larger cohorts. Our findings might 
inspire some of these analyses to be conducted in a targeted fashion.
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Methods
Sample collection
All methods were performed in accordance with the relevant guidelines and regulations. We obtained samples 
from a retrospective case–control study of two cohorts with a total of 58 subjects, comprising healthy controls 
(n = 29) and COVID-19 convalescents (n = 29). All participants had been recruited at the University of Georgia 
at Athens and provided written informed consent prior to participation. The study protocol had been reviewed 
and approved by the University of Georgia Ethical Review Board (IRB #20202906). The participants’ demograph-
ics are shown in Supplementary Information 2. Antibody titers are the maximum dilutions at which antibodies 
were still detected. For visualization, titers were log transformed (base 10). Serum samples were heat inacti-
vated at 56 °C for 30 min and stored at − 80 °C. Samples from COVID-19 convalescents were collected between 
March–April 2020 based on ‘convenience sampling’ due to the inherent difficulty in access to sample at specific 
timing at this early point in the pandemic. Therefore, samples were collected without inclusion/exclusion criteria. 
To construct a retrospective case–control study, we carefully selected healthy control samples based on matching 
age, sex and race. The healthy controls were selected from an independent cohort at the University of Georgia, 
Athens (IRB #3773) with demographic information as provided in Supplementary Information 2.

Sample preparation
Serum samples including individual (n = 58) and pooled samples were processed using a protocol described 
 elsewhere88. In brief, 1 μl of serum sample (~ 70 to 80 μg protein) was lysed with 0.1% Rapigest (Waters, MA, 
USA) in 100 mM ammonium bicarbonate (Sigma, MO, USA) and denatured at 95 °C for 5 min. Further, the 
samples were reduced using 5 mM dithiothreitol (DTT, Sigma) at 60 °C for 30 min, followed by alkylation with 
15 mM iodoacetamide (Sigma) at room temperature in the dark for 30 min. Subsequently, the samples were 
quenched with 10 mM DTT and digested overnight at 37 °C with Trypsin gold (Promega, WI, USA). The diges-
tion was stopped and the surfactant was cleaved by treating samples with 200 mM HCl (Sigma) at 37 °C for 
30 min. The samples were desalted on Hypersep C-18 spin tips (Thermo Fisher Scientific, MA, USA) and the 
peptides dried under vacuum at low heat (Eppendorf, CT, USA). The dried peptides were resuspended in 5% 
acetonitrile in 0.1% formic acid (Thermo Scientific) and quantified by fluorometric peptide assay kit (Thermo 
Fisher Scientific) prior to mass spectrometry analysis.

We analyzed the samples using an EASY-nLC 1200 (Thermo Fisher Scientific) connected to Q Exactive HF 
mass spectrometer (Thermo Fisher Scientific). We used an analytical column RSLC PepMan C-18 (Thermo Fisher 
Scientific, 2uM, 100 Å, 75 μm id x 50 cm) at 55 °C with the mobile phase comprising buffer A (0.1% formic 
acid in water) and buffer B (90% acetonitrile in 0.1% formic acid), injecting approximately 400 ng peptides. The 
chromatographic gradient consisted of 155 min from buffer A to buffer B at a flow rate of 300 nl/min with the 
following steps: 2–5% buffer B for 5 min, 5–25% buffer B for 110 min, 25–40% buffer B for 25 min, 40–80% buffer 
B for 5 min, and 80 to 95% buffer B for 5 min and hold for additional 5 min at 95% for Buffer B.

The serum samples were analyzed using the data independent acquisition (DIA) mode with the following 
parameters: for full-scan MS acquisition in the Orbitrap, the resolution was set to 120,000, with scan range of 
350 to 1650 m/z, the maximum injection time of 100 ms, and automatic gain control (AGC) target of 3e6. The 
data was acquired using 17 DIA variable windows in the Orbitrap with a resolution set at 60,000, AGC target of 
1e6, and the maximum injection time in auto mode.

The order of sample runs was randomized, but we analyzed the age-sex-race matched pairs of healthy con-
trols and COVID-19 convalescents in succession, with a quality control (QC) sample run approximately every 
6 samples (Supplementary Information 2). The QC sample consisted of pooled serum samples that had been 
processed in a way identical to that of the experimental samples.

Data analysis
Primary processing
We used Spectronaut for all primary processing (v14, https:// biogn osys. com/ softw are/ spect ronaut/), i.e. iden-
tification of fragments from raw mass spectrometry data. All 74 raw files were first converted to the HTRMS 
format with the HTRMS converter (centroid method). The converted files were then analyzed with directDIA 
(within Spectronaut) using default settings. We exported intensity information at the fragment level for further 
preprocessing.

We used in-house R scripts to eliminate the effects arising from samples run at different times. Specifically, 
sample queuing created four sets, i.e. four batches, and each batch consists of individual serum samples from 
paired COVID-19 convalescents and healthy controls as well as the QC samples. We first removed fragment 
ions with values missing in more than half of all samples. We then  log2-transformed intensity values of the ions 
and applied Gaussian kernel smoothing with a window of 5 samples: within each batch, we subtracted the time 
trend captured by Gaussian kernel regression of a kernel width (standard deviation) equivalent to 5 samples. 
Then, we equalized the median across four batches and the data was transformed back to linear scale. We further 
applied mapDIA as per published  protocol89 to select the best quality fragment ions to estimate the protein levels, 
and to apply batch-to-batch and within-batch drift normalization to the data at the fragment ion level, prior 
to deriving values for protein levels. This procedure was part of the mapDIA pipeline. The protein levels were 
log10-transformed prior to statistical testing as described below.

QC samples were used to assess the variability of protein levels of the 334 proteins, computed as the Coef-
ficient of Variance within each batch (Supplementary Information 2). CoV distributions and principal compo-
nents separating COVID-19 convalescents and healthy controls, but not the QC samples are shown in Supple-
mentary Information 1, Fig. S1. Three QC samples from batch 3 clustered separately from other QC samples. 
However, samples from COVID-19 convalescents and healthy controls from the same batch clustered correctly 

https://biognosys.com/software/spectronaut/


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4479  | https://doi.org/10.1038/s41598-024-54534-7

www.nature.com/scientificreports/

with the respective groups suggesting that sample data is accurate. At the raw data level (fragment intensities), 
linear correlations between QC samples were all > 0.968. Proteins with less reliable quantitation are marked in 
figures with a *.

Processing for visualization
For data visualization in heatmaps, the data was standardized by subtracting the row median intensity (across 
samples) from the intensity value of each protein. The heatmaps were generated using R-scripts and Perseus 
(version 1.5.5.1)90,91. Hierarchical clustering was performed using Perseus setting the complete linkage method 
and ‘1-Pearson correlation’ as the distance metric. The rows (protein expression signatures) were split into 20 
clusters based on similarity with respect to Pearson correlation (Fig. 2). Cluster number was chosen based on the 
total number of proteins in the set. Each cluster was analyzed for enriched functions (NCBI DAVID tool) and 
example proteins in Figs. 4 and 5 were chosen based on their association with the respective function.

Statistical testing
Overall comparison
To assess the overall difference between protein levels from COVID-19 convalescents and healthy controls, we 
used a two-tailed, paired t-test. P-values were adjusted for multiple testing correction using the Benjamini–Hoch-
berg  procedure92.

Linear regression models
To examine the effect of the demographic variables including age, sex, and race, we used three univariate and 
three multivariate linear regression models. Univariate models considered each variable separately; multivariate 
models considered each variable in the context of all other variables. All models were evaluated with respect to 
the variable’s impact on predicting the levels of a specific protein amongst the samples from (i) the healthy control 
data, (ii) the COVID-19 convalescents, (iii) the data set of paired  [log10(COVID-19/healthy control)] values. 
Note that due to the age/sex/race matching, dataset (iii) intrinsically controlled for some of the effects of age, 
sex, and race already. Further, we also considered for healthy controls (dataset (i)) variables including Presence 
of symptoms and Days since diagnosis which were derived from the corresponding sample of the COVID-19 
convalescents. We included the variables for control purposes: as their role in healthy individuals is meaning-
less, we expected no significant associations between the Presence of symptoms and Days since diagnosis when 
modeling healthy controls (dataset (i)). Indeed, we found only a few and minor associations in the univariate 
models. These associations were likely due to additional links, such as between age and Presence of symptoms.

We evaluated the following models: i) Univariate model: protein level (COVID) as a function of Age/Sex/
Race/Presence of symptoms/Days since diagnosis; ii) Univariate model: protein level (CONTROL) as a func-
tion of Age/Sex/Race/Presence of symptoms/Days since diagnosis; iii) Univariate model:  log10[protein level 
ratio (COVID/CONTROL)] as a function of Age/Sex/Race/Presence of symptoms/Days since diagnosis; iv) 
Multivariate model: protein level (COVID) as a function of Age + Sex + Race + Presence of symptoms + Days 
since diagnosis; v) Multivariate model: protein level (CONTROL) as a function of Age + Sex + Race + Presence 
of symptoms + Days since diagnosis; and vi) Multivariate model:  log10[protein level ratio (COVID/CONTROL)] 
as a function of Age + Sex + Race + Presence of symptoms + Days since diagnosis + Age*Sex. Due to the correla-
tion between Titer and Symptoms as well as Days since diagnosis, we excluded Titer from the modeling to avoid 
overfitting. The main text focuses on the results of the multivariate models on CONTROL and COVID sets; the 
results from all models are presented in the Supplementary Information 2, including corrections for multiple 
hypothesis testing (see below).

Correction for multiple hypothesis testing
We corrected all P-values obtained from the overall comparison and the linear regression models for mul-
tiple testing using the Benjamini–Hochberg  procedure92. To parse the results, we focussed on proteins with 
adjusted p-values < 0.05 as the primary set of proteins discussed. We considered an extended set with adjusted 
p-values < 0.20. All significance values are displayed in gray if not within these thresholds and in dark or light 
color if below the 0.05 or 0.20 threshold, respectively. Blue and red indicate the directionality of protein level 
difference. For visualization purposes only, we transformed adjusted p-values (p) to derive a new value as (1 − p) 
if the respective  log10-transformed fold change was positive, and as (− (1 − p)) if the fold change was negative.

Function enrichment and network construction
Using a ranked list of proteins based on directional adjusted p-values of the overall comparison of COVID-19 
convalescents vs. healthy controls, we tested for enrichment of protein functions and pathways using Gene Set 
Enrichment Analysis (GSEA) with the GSEAPreranked  tool93,94. To do so, we selected the Human MSigDB’s93,95,96 
and the C2  Reactome97,98 databases for function annotations and required 1000 permutations for analysis. We 
excluded from the output enriched pathways with > 300 or < 3 members.

We then used EnrichmentMap v3.3.699 within the Cytoscape 3.10.1  package100 to generate an enrichment 
map displaying the results of the GSEA. Nodes represented significantly enriched functions (false discovery 
rate < 0.01). Node size in Fig. 3 is proportional to the number of genes with the respective annotation. We drew 
edges between nodes if the two nodes shared a substantial number of genes, i.e. the Jaccard index was ≥ 0.80. 
Edge width in Fig. 3 is proportional to the Jaccard index.
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Post‑translational modifications
To examine samples for changes in post-translational modifications, we constructed phosphorylation, mono- and 
di-methylation, a monohexose (+ C6 + H10 + O5) and dihexose (+ C12 + H20 + O10) library with Spectronaut 
Pulsar (v14, https:// biogn osys. com/ softw are/ spect ronaut/), using default settings except for the maximum num-
ber of variable modifications set to 3. Then we matched our DIA samples against this library, setting the minor 
grouping to "by modified sequence" and the differential levels grouping to "minor" (peptide level). We exported 
peptide intensities from Spectronaut for further analysis. The data is available in Supplementary Information 3.

We extracted peptides with monohexose modifications as well as the corresponding unmodified peptides, 
as monohexose modifications were the only modifications with substantial numbers of modified peptides. 
We removed peptides with > 20% missing values across the samples. We defined the modification level as 
 log2(Intensitymodified/(Intensityunmodified +  Intensitymodified)) for each peptide. We calculated the  log2 fold change 
between COVID-19 convalescents and healthy controls and used a paired t-test to determine the significance of 
the difference. As before, we used the Benjamin-Hochberg procedure to adjust for multiple testing correction.

Data availability
We deposited the raw files of the serum proteome in the PRIDE  database101 with the accession number 
PXD036597.
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