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Leader–follower UAVs formation 
control based on a deep Q‑network 
collaborative framework
Zhijun Liu 1,2, Jie Li 1,2, Jian Shen 3,4*, Xiaoguang Wang 4 & Pengyun Chen 5

This study examines a collaborative framework that utilizes an intelligent deep Q‑network to regulate 
the formation of leader–follower Unmanned Aerial Vehicles (UAVs). The aim is to tackle the challenges 
posed by the highly dynamic and uncertain flight environment of UAVs. In the context of UAVs, 
we have developed a dynamic model that captures the collective state of the system. This model 
encompasses variables like as the relative positions, heading angle, rolling angle, and velocity of 
different nodes in the formation. In the subsequent section, we elucidate the operational procedure 
of UAVs in a collaborative manner, employing the conceptual framework of Markov Decision Process 
(MDP). Furthermore, we employ the Reinforcement Learning (RL) to facilitate this process. In light 
of this premise, a fundamental framework is presented for addressing the control problem of UAVs 
utilizing the DQN scheme. This framework encompasses a technique for action selection known 
as ε‑imitation, as well as algorithmic specifics. Finally, the efficacy and portability of the DQN‑
based approach are substantiated by numerical simulation validation. The average reward curve 
demonstrates a satisfactory level of convergence, and kinematic link between the nodes inside the 
formation satisfies the essential requirements for the creation of a controller.

The development of unmanned aerial vehicles (UAVs) has been widely applied in various fields. UAVs can be 
combined with existing technologies to form more intelligent and efficient solutions that meet the needs of mod-
ern society. Aerial photography, unmanned warehousing, express logistics, rescue, and other fields have begun 
to explore the application of UAVs, and there will be more fields in the future that can unleash its  potential1.

The integration of UAVs and artificial intelligence (AI) algorithms through the advancement of unmanned 
cluster technology has enabled the accomplishment of missions with enhanced efficiency and intelligence. Arti-
ficial intelligence algorithms can provide intelligent decision-making and control capabilities for  UAVs2,3. For 
example, through deep learning technology, the autonomous perception and target recognition of UAVs can be 
realized, so that they can autonomously avoid obstacles and identify targets. Through the Reinforcement Learning 
(RL) algorithm, UAVs can be autonomously explored and learned in an unknown environment, achieving more 
flexible and intelligent task execution. Through the combination of UAVs and artificial intelligence algorithms, 
the collective intelligence and collaborative working ability of UAVs can be realized, and the task execution effi-
ciency, ability to deal with complex environments, and autonomous decision-making capabilities of UAVs can 
be improved. This has important application value for some scenarios that require large-scale and complex task 
execution, such as disaster relief, agricultural plant protection, logistics distribution, etc.

To achieve the autonomous planning of UAVs in response to dynamic environmental conditions and facilitate 
collaborative efforts towards accomplishing mission objectives, Xu et al. implemented a novel MARL framework. 
The organization had adopted a strategic approach of centralized training coupled with decentralized execution, 
the utilization of the Actor-Critic network was employed to ascertain the execution activity and thereafter evalu-
ated its efficacy. The new algorithm implemented three significant enhancements derived from the Multi-Agent 
Deep Deterministic Policy Gradient (MADDPG) method. Simulation results demonstrated a clear enhancement 
in learning efficiency, and there was an enhanced improvement in the operational safety factor in comparison 
to the preceding  algorithm4. Hossein et al. proposed the implementation of a system that employs Deep Rein-
forcement Learning (DRL) as a means to tackle the difficulties associated with autonomous waypoint planning, 
trajectory tracking, and trajectory creation for multi-rotor UAVs. The present framework incorporated a DRL 
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algorithm for the purpose of achieving optimal waypoint planning. The primary objectives of this algorithm were 
to minimize control energy expenditure and effectively navigated around obstacles within a specified  area5. For 
the UAVs decision-making problem, Hu et al. introduced a solution for autonomous maneuver decision-making 
in air warfare involving two cooperating UAVs. Their approach utilized a Deep Q-Network (DQN) framework. 
The study conducted a simulation of the air warfare job using a dual-UAV olive formation. The findings indicated 
that the suggested technique demonstrated the potential to enhance the UAVs’ ability to effectively defeat the 
enemy. Furthermore, it was observed that the proposed method outperformed the DQN method, specifically 
in terms of convergence speed, when priority sampling was not  utilized6. Wang et al. conducted a comparative 
analysis of the merits and drawbacks associated with the utilization of DQN and Deep Deterministic Policy 
Gradient (DDPG) algorithms in the context of unmanned aerial vehicle (UAV) autonomous decision-making. 
The findings of the study indicated that the DDPG algorithm exhibited notable benefits in terms of action con-
tinuity and reduced decision time. However, it was shown that the DQN had superior decision-making capabili-
ties when compared to other models of similar  complexity7. Yang et al. presented a novel approach to address 
the challenges associated with the UAV transformation problem. Their method involved utilizing an enhanced 
DQN algorithm to handle the intricate system structure and extensive computational requirements typically 
encountered in conventional multiple UAV formation transformation techniques. Simulation results demon-
strated that the proposed strategy effectively improved the efficiency of transforming multi-UAV formations. 
Furthermore, the approach exhibited favorable characteristics of generalization and  practicability8. For the UAV 
landing maneuver problem, Rodriguez-Ramos et al. introduced a novel DDPG algorithm as a solution to the 
problem of executing UAV landing operations on a mobile platform. Numerous simulations had been conducted 
under diverse settings, encompassing simulated and actual flights, thereby establishing the broad applicability 
of the  methodology9. For the UAV pursuit-evasion problem, Moulay et al. employed DRL techniques to forecast 
the appropriate actions for the follower UAV in order to effectively monitor the movements of the target UAV. 
The efficacy of the algorithms under consideration was proved in outdoor tracking scenarios by the utilization 
of actual  UAVs10. Singh et al. extended the Actor-Critic model-free MADDPG algorithm, which was designed 
for continuous areas, in order to tackle the pursuit-evasion problem. The algorithm was successfully applied, 
and the subsequent analysis of the results demonstrated that the pursuers were able to acquire a viable control 
plan for effectively capturing the  evaders11.

During the execution of multiple tasks, UAVs collaborative control refers to the collaborative work to achieve 
efficient completion of tasks. In the context of collaborative control of UAVs, it is essential to acknowledge that 
each UAV is associated with non-linearity. Consequently, the attainment of attitude control for UAVs necessitates 
the utilization of nonlinear control  methodologies12. Nevertheless, when it comes to real-world scenarios, the 
modeling techniques fail to provide a true depiction of the attributes exhibited by UAVs. The precise aircraft sys-
tem model typically exhibits time-varying behavior, complexity, and non-linearity. Random factors, like errors in 
sensors and disturbances in the environment, can provide challenges when attempting to create accurate models. 
The utilization of conventional control approaches is significantly constrained by this factor. The utilization of the 
model-free RL approach as a potential solution to the aforementioned paradox has garnered growing  interest13. 
The utilization of DRL-based collaborative control has experienced a notable rise in several domains involving 
multiple agents, including multi-robot systems, UAVs, satellite formations, unmanned surface vessels (USVs), 
and other related fields. The utilization of control design methodology incorporating DRL technology enables 
the achievement of collaborative control among UAVs without necessitating a precise system model.

The overall approach suggested by Zhou et al. aimed to integrate DRL with a simulation environment for 
UAVs. The entire system included of the DRL algorithm utilized for attitude control, the Robot Operation System 
(ROS) packing technique employed to establish a connection between DRL and the PX4 controller, and a Gazebo 
simulator that replicated the real-world environment. The efficacy of the proposed framework was substanti-
ated by the experimental  findings14. Zhao et al. introduced a computational guidance approach based on DRL 
to address the issue of preventing collisions among a formation of fixed-wing UAVs operating within a confined 
airspace. The findings of simulated experiments conducted on several cases demonstrate that the utilization of 
a real-time guiding method can significantly decrease the likelihood of collisions among UAVs during flight, 
even when dealing with a substantial number of  aircraft15. Moon et al. introduced a new DRL method to effec-
tively manage the movement of several UAVs in order to monitor multiple First Responders (FRs) in complex 
three-dimensional (3D) environments that contain barriers and occlusions. The simulation findings indicated 
that the UAV controller based on DRL offered a precise target-tracking solution with minimal computational 
 overhead16. Liu et al. proposed the utilization of new DRL techniques for UAV control. The authors presented 
an innovative and very efficient approach rooted in DRL. The simulation results had proven that the method 
based on DRL consistently and considerably beat two generally employed baseline methods in terms of fair-
ness, coverage, and energy  usage17. Wang et al. proposed a framework for mobile edge computing (MEC). The 
suggested framework involved many UAVs with distinct trajectories flying over a designated area to provide 
support to user equipment located on the ground. The trajectory control algorithm presented by the authors 
was grounded on the MADDPG technique, which aimed to autonomously manage the trajectory of each UAV. 
The simulation results demonstrated that the suggested approach exhibited significant performance advantages 
compared to conventional  algorithms18. Zhang et al. introduced an enhanced DDPG method to address the 
UAVs control problem in route following scenarios. The efficiency of the proposed strategy was demonstrated 
by the execution of simulation  experiments19. Wang et al. examined a control approach based on RL for USVs. 
This technique aimed to develop a motion control policy that could effectively counteract wave disturbances. The 
findings of the simulation experiment indicated that the control strategy, after being taught, shown a satisfactory 
ability to manage the unmanned surface vehicle (USV) in front of wave  disturbances20. Wan et al. presented a 
new DRL approach together with a robust DDPG algorithm. Their research was to design a controller capable 
of enabling an UAV to navigate reliably in dynamic and uncertain situations. The learning-based controller was 
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implemented using an actor-critic architecture, enabling it to effectively execute a dual-channel continuous 
control of the UAV, specifically controlling the roll and speed. The training experiments demonstrated significant 
enhancements in terms of convergence speed, convergence effect, and  stability21. Xu et al. advocated the utiliza-
tion of the DDPG algorithm for the purpose of achieving autonomous morphing control and the adoption of 
the MADDPG algorithm to facilitate cluster cooperative operations, so enabled the attainment of autonomous 
and cooperative fighting capabilities in morphing UAV clusters. The objective was to achieve intelligent cluster 
combat and gain control over the future air combat  initiative22. Tožička et al. devised a control system for a fleet 
of several UAVs by leveraging insights from the latest advancements in the field of deep reinforcement learning. 
The control policy for this study was selected to be a deep Convolutional Neural Network (CNN) with a linear 
output layer. This choice was made based on the extensive range of applications that CNN had demonstrated. The 
training of the control policy was conducted in a simulated environment including five UAVs. The control policy 
was implemented and executed on a fleet consisting of five DJI Mavic Pro drones, yielding satisfactory  results23.

UAVs, discussed in this paper utilizing a leader–follower framework, wherein a single UAV assumes the 
role of the leader while other UAVs act as followers, collectively forming a formation. Given the control design 
requirements that have emerged, it is imperative for the follower to consistently uphold the leader’s relative 
distance and adapt to any associated variations in parameters, even in the event of leader maneuvering. When 
examining the modeling characteristics of collaborative control problems in leader–follower UAVs, it becomes 
evident that a DRL-based algorithm is the most suitable option for addressing the challenges posed by the UAVs 
dynamic nature and the uncertainties present in their flight environment. The DQN-based approach, which is 
widely employed in the field of DRL, has the capability to acquire intricate decision-making methods without 
any prior knowledge. Moreover, it has the capability to efficiently enhance performance in large state spaces. This 
study focuses on the development of a cooperative control algorithm for UAVs based on the features of their flight 
environment. In Section Method, we firstly provides an illustration of the environment in which UAVs operate. 
The dynamic model is a representation of the joint state of an intelligent UAV system. This model encompasses 
the velocity, relative locations, heading angles, and rolling angles of both the leader and the followers. Further-
more, the collaborative control process of leader–follower UAVs is characterized as a Markov decision process 
(MDP) model. This will go into the action space, state space, and reward function associated with this model. 
Then, we will describe the fundamental structure of the control problem for leader–follower UAVs, utilizing the 
DQN approach. The proposed approach includes the strategy of ε-imitation for action selection, the creation of 
Q-network, and the specification of algorithm details. In this study, the suggested DQN-based method is sub-
jected to numerical simulation tests in order to validate its convergence and portability. The main contribution 
of this study is illustrating a collaborative framework that utilizes an intelligent deep Q-network to regulate the 
formation of leader–follower UAVs. This framework addresses the challenges posed by the highly dynamic and 
uncertain flight environment of UAVs. The study proposes a novel intelligent control strategy for the cooperative 
control of UAVs, utilizing a DQN algorithm. The proposed system joint states encompass the relative position, 
heading angle, and rolling angle in the formation of UAVs, as defined in the environmental context. Additionally, 
the study modifies a MDP model to depict the collaborative control process of UAVs, using the fundamental 
scheme of RL. With the analysis of the simulation results, it showed a reasonable convergence in the UAVs 
collaborative control process. The work mentioned in this manuscript will provide a new view for the UAVs 
collaborative control problem, and the control strategy training in the numerical simulation environment can 
be directly transferred to the hardware in the loop simulation system without too much parameter adjustment.

UAVs dynamics and MDP framework
Motion equation of the UAV
Given the assumption that the UAV maintains a constant altitude, the mathematical representation of the system 
can be reduced to four independent variables, hence simplifying the model to four degrees of freedom. In order 
to make up for the loss caused by simplification and consider the influence of environmental disturbance, ran-
domness is introduced into each sub-state such as roll and airspeed, and the obtained stochastic UAV kinematics 
model is shown as Eq. (1).

where 
(

x, y
)

 , ψ , φ and V  are the position, the heading angle, the rolling angle, and the velocity of the UAV, respec-
tively. ag is the gravity acceleration. ηx , ηy and ηψ represent the disturbances of the state variable. All data points 
in the sample adhere to the normal distribution. The statistical measures of central tendency and dispersion, 
specifically the mean values and variance, are provided in Table 1. f (φ,φd) represents the relationship between 
the rolling angle φ and its desired value φd . Second-order system response is used to simulate the dynamic 
response of UAV rolling channels.

UAVs system model
The utilization of the leader–follower control method is a significant technical strategy that plays a crucial role 
in ensuring the coherence and effectiveness of collaborative control  systems24,25. The leader is an exceptional 
individual. As the individual assuming leadership within the formation, they possess the authority to determine 
and direct the trajectory of the formation, so that it is not affected by external influences. Nevertheless, the fol-
lower is not obligated to perceive the target data of the formation, but rather solely relies on the information 
provided by the  leader26. Hence, a drawback of the leader–follower control approach relates to the inherent 
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independence between the leader and the follower, making it challenging to obtain feedback on tracking errors 
from the follower.

In order to depict the relative positioning of the leader–follower arrangement of UAVs, a coordinate system 
is developed with the follower UAV serving as the reference point, as seen in Fig. 127.

In Fig. 1, the coordinates XL and YL represent the inertial system of the leader. XF and YF represent the inertial 
system of the follower. In the follower’s velocity coordinate system, xF and yF represent the relative distances 
between the leader and the follower. VL and VF represent the velocity of the leader and the follower.  ψVL and 
ψVF denote the heading angles of the leader and the follower, respectively.

The control of the UAV is achieved by changing the roll angle setting value. The control strategy periodically 
updates the roll command at a frequency of one time per second, while the self-driving instrument effectively 
executes the low-level closed-loop control within the specified  interval28. With consideration of the data pre-
sented in Fig. 1, the states S of UAVs, which depict the relative link between the leader and the follower, can be 
represented  as29:

Table 1.  Arguments of the DQN method.

Argument Value Argument Value

Number of followers 2 Return discount factor γ 0.95

Maximum action candidates φmax (°) 15 Update period of the target network K 103 →  104

Threshold of heading angle ψg ( ) 20 The capacity of experience replay pool N 105

Threshold of the rolling angle φbd ( ) 30 Mini-batch size ne 32

Inner radius dI (m) 40 Total episodes Ns 5 ×  104

Outer radius dO (m) 60 Each episode time tE (s) 60

Time step �t (s) 1.0 Episodes number NAvg to calculate average total reward 100

Exploration probability ε 1 → 0.1 ηψ ’s mean value and variance 
(

ηψ , σψ
)

(0.0,1.0)

Learning rate � 0.01 ηx ’s mean value and variance 
(

ηx , σx
)

(0.0,1.0)

Adjust factor ω 0.05 ηy ’s mean value and variance 
(

ηy , σy

)

(0.0,1.0)

Figure 1.  The relationship between the leader and the follower within the inertial coordinate system.
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where S1 are the differences of the heading angles between the leader and the follower. S2 and S4 are the leader’s 
rolling angle and its desired value, S2 represents the follower’s rolling angle. S5 and S6 are the differences of the 
relative position in x, y direction between the leader and the follower. During actual flying operations, the control 
commands issued by the leader will be modified in response to the prevailing conditions on the battlefield. To 
enhance the adaptability of the model to dynamic input uncertainty, control instructions will be either constant 
or randomly produced through user functions in Results Section.

MDP model for UAVs collaborative control
Based on the aforementioned material, it is evident that the control issue pertaining to UAVs can be characterized 
as a multi-step decision-making problem. At its essence, this problem entails the selection of the suitable control 
command for the roll angle, as well as the determination of the optimal timing for executing and releasing the 
order decisions. This work presents a novel approach for addressing the control issue in collaborative control of 
UAVs, utilizing an intelligent and efficient control mechanism. The activities of UAVs have been reinterpreted 
within the context of MDP. The fundamental MDP paradigm is depicted in Fig. 2.

The representation of a discrete MDP can be achieved through the utilization of a quintile array denoted 
as {S,A,R, P, J} . The state space, denoted as S , is partitioned based on the attitude and relative position of the 
leader and followers. The action space A consists of the control instructions for the follower’s rolling angle. R 
represents the return values associated with actions and states. R illustrates the transition percentage between 
states, and J represents the optimization objective function of the control decision. The properties of a discrete 
MDP are as follows.

where pij(ak) represents the probability of transitioning from state si to state sj when the action ak is executed 
in the given state.

The learning effect of the formation controller in the discrete MDP model is directly influenced by the range 
and precision of the discrete parameters in the state space S . The selection of state space parameters for the 
formation MDP model in the warfare process of UAVs encompasses aspects such as the relative position and 
attitude between the leader and the follower. The other four parameters A,R, P, J of the MDP model are primarily 
developed based on the intended mission target. Action space A incorporates the rolling angle’s operation. The 
reward function R is built by utilizing UAVs to measure the distance values between the real-time positions of 
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)
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∀si , sj ∈ S, ak ∈ A,∀t ≥ 0

Figure 2.  The framework of collaborative control for UAVs based on MDP.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4674  | https://doi.org/10.1038/s41598-024-54531-w

www.nature.com/scientificreports/

various members inside a formation. The transition probability P is contingent upon the precise location of the 
UAV subsequent to the execution of the action. The objective function J represents the total return value. As the 
action selection strategy, J∗ represents the optimal return value:

where γ ∈ (0, 1) illustrates the return discount factor, rt indicates the return value of time t .

State space
The representation of UAVs can be achieved through the utilization of a multidimensional array. The establish-
ment of a collaborative control problem inside the leader–follower topology necessitates careful consideration 
of the relative link between the leader and the follower. Factors such as heading difference and distance play a 
pivotal role in shaping the formulation of the control strategy. System state is used to represent the state space, 
which serves to describe the pose relationship and relative spatial location between the leader and the follower. 
In real engineering applications, based on the relative position relationship, the determination of the control 
command of the leader is contingent upon the flight control system. The primary focus of this study pertains to 
the development of a collaborative control architecture. In order to enhance the model’s ability to handle diverse 
inputs, a random function is employed to create the control instruction of the leader during the training process 
of the DQN. This approach aims to imitate the inherent uncertainty associated with system input. The state space 
of a MDP scheme for UAVs can be denoted as S = {S1, S2, S3, S4, S5, S6} , as stated in Eq. (2).

Action space
The manipulation of the UAV is achieved through the alteration of its rolling angle. The control approach involves 
updating the control command at a frequency of one time per second, and the lower closed-loop control is exe-
cuted by the autonomous system within this specified duration. The action space encompasses the rolling angle 
command of the follower UAV, taking into account the UAV’s maximum acceleration and the need to prevent 
abrupt changes in control commands that could disrupt the flight of the UAV. On one side, it is advantageous 
for the followers to closely align with the current status of the leader’s movement. Conversely, it is imperative to 
mitigate the inherent instability of the UAVs structure.

The set of possible actions, denoted as A , that can be taken by the followers can be represented as:

where φmax denotes the upper limit of potential actions for the rolling angle of the followers.
The expected action for the subsequent time step is depicted as:

where aφ has been selected based on the control demand of the followers. φbd represents the thresholds associ-
ated with the follower’s rolling angle.

Reward function
In order to ensure proper configuration maintenance, it is imperative that each node inside the formation 
maintains a safe distance from its neighboring nodes. Insufficient space between nodes may result in collisions 
occurring among these neighboring entities. In the event that the distance is considerable, the delay time in com-
munication will give rise to additional  malfunctions30. Figure 3 illustrates a collision avoidance and reward evalu-
ation scheme based on the intended elevated reward and the range (dO , dI ) between the leader and the following 
UAVs. Each node will receive a reward value from the leader based on the proximity to its neighboring nodes. 
The individuals inside the group will modify their conditions in accordance with the reward values provided.

The construction of an acceptable reward function is crucial in the field of reinforcement learning. The 
cost function for collaborative control of UAVs is formulated and the reward function has been  defined31. The 
reward function primarily takes into account the distance of UAVs, as depicted in Fig. 3. The value of reward 
limits ensure that the followers remain within the distance of the UAVs once the action has been executed. The 
reward function is depicted as:

where r represents the immediate reward. The inner radius and outer radius in Fig. 3 are denoted as dI and dO , 
respectively. D illustrates the spatial separation between the follower and the circular object. The adjust factor, 

(4)J∗ = max
π

J = max
π
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denoted as ω , is employed to modify the weight of D . ρ illustrates the spatial separation between the leader and 
the follower.

DQN control method
Fundamental framework
In the context of UAVs, it is observed that subordinate units obtain the relevant system status information from 
the commanding unit. The selection of actions in the control system is determined by the action-selecting strat-
egy. The value of reward function is then calculated based on the feedback received from the updated system 
state information, which is obtained after the execution of the selected action. This study aims to reassess the 
benefits and drawbacks of the action plan by using the real-time rewards obtained by UAVs and optimizing the 
cumulative return. The Q-learning algorithm, within the context of this theoretical framework, is responsible 
for storing and estimating the action value function of the follower in various states within the MDP model. 
Additionally, it utilizes the real-time system state information provided by the pilot to iteratively renew the action 
value function. This iterative process aims to solve the optimal sequential decision-making problem associated 
with the follower actuator.

The value function estimation Q(st , at) of the action at executed by the follower in state st is determined:

where s0 represents the initial state of UAVs, a0 illustrates the first action of the follower.
Based on the pertinent theory in the field of operations, Q(st , at) can be observed to satisfy the Bellman 

equation as follows:

where p(st , at , st+1) shows the probability of state st transition to state st+1 with actions at . r(st , at , st+1) represents 
the return value of state st transition to state st+1 with actions at.

The optimal strategy Q(st , at) of Q-learning relates to maximize the accumulative return value, hence the 
strategy may be formulated as:

In the field of RL, agents engage in ongoing interactions with their environment through a process of trial 
and error. The objective of this iterative process is to acquire an optimal strategy that maximizes the cumulative 
reward obtained from the  environment32. In the Q-learning method, the determination of the Q-value function 
enables the identification of an optimal strategy. This is achieved by employing the greedy approach, where the 
agent selects the action indicated by the maximum Q-value at each time step. The Q-learning technique is com-
monly employed and very straightforward to implement. Nonetheless, it is still confronted with the challenge 
of the dimensional disaster. The approach commonly use tabular representation for storing Q values, rendering 
it unsuitable for reinforcement learning issues characterized by high-dimensional or continuous state  spaces33.

The utilization of deep neural network (DNN) as function approximators for estimating Q values has emerged 
as a viable approach for addressing the aforementioned  challenge34. Minh et al. demonstrated the utilization of 
CNN and empirical playback technology for the implementation of a Q-learning algorithm, exemplifying the 

(8)Q(st , at) = E

(

∞
∑

t=0

γ t rt |s0 = st , a0 = at

)

(9)Q(st , at) =
∑

st+1

[

p(st , at , st+1)r(st , at , st+1)
]

+ γ
∑

st+1,at+1

[

p(st , at , st+1)Q(st+1, at+1)
]

(10)π ∗ (st) = arg max
at

Q(st , at)

Figure 3.  The scheme for collision avoidance in formations of UAVs.
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application of a DQN  method35. To mitigate the uncertainty of the neural network approximation function, a 
distinct target network was employed to generate Q values. This approach aimed to minimize the correlation 
between the predicted Q value, which is the output of the main network, and the target Q value, which is the 
output of the target network.

Based on the equation presented as Eq. (8), it is necessary to construct the optimal policy subsequent to 
the attainment of the maximum Q-function. By employing the recursive framework, the Q-function can be 
iteratively renewed  as36,

where � represents the learning rate.
The target Q value is illustrated as:

where θ− shows the parameter of the target network.
The minimize loss function can be shown as:

As demonstrated by the DQN, the disparity between the assessed Q value of the main network and the Q 
value output of the target network is utilized to dynamically alter the parameters of the main network. In contrast 
to the real-time renewed parameters of the main network, the parameters of the target network are renewed 
at regular intervals of K time steps. The target network parameters are updated by copying the main network 
parameters at regular intervals of K time steps.

In this part, we propose a control strategy for collaborative control of UAVs based on the DQN algorithm. The 
DQN algorithm is an innovative adaptation of Q-learning that integrates reinforcement learning with artificial 
neural  networks35. In order to mitigate the instabilities that arise from approximating the action value function 
(Q function) using neural networks, the DQN approach incorporates the utilization of a periodically renewed 
separate target Q-network and an experience replay mechanism. DQN algorithm has demonstrated successful 
applications in several sectors, including agriculture, communication, healthcare, and aerospace  engineering37. 
The structure of the control algorithm based on DQN is depicted in Fig. 4.

As depicted in Fig. 4, the followers are assigned to the agents within the framework of RL. The agents acquire 
the control method and modify the network arguments through ongoing interactivity with the environment. 
The followers receive both the state message of the leader and their state information. The state message is 
combined to generate a joint system state S , which is then fed as input of the DQN process. The action selection 
policy, referred to ε-imitation where ε indicates the exploration ratio, determines the follower’s rolling angle 
based on DQN’s output. The action instructions issued by the leader and the followers are utilized as inputs in 
the kinematics model of UAVs to determine the state of both the leader and the followers at the subsequent time 
step. The value of the reward function, denoted as R , as well as the system state, denoted as S′ , at the next time 
step can also be obtained. 

(

S,A,R, S′
)

 values throughout the interaction process are preserved in the experience 
pool. During each iteration, the experience pool is subjected to random sampling, and afterwards, the network 

(11)Q(st , a) = Q(st , a)+ �

[

rt+1 + γ max
a

Q(st+1, a)− Q(st , a)
]

(12)y
DQN
t = rt+1 + γ max

a
Q
(

st+1, a, θ
−
)

(13)L(θ) = E

[

(

y
DQN
t − Q(st+1, at |θ )

)2
]

Figure 4.  The framework for collaborative control of UAVs based on the DQN control algorithm.
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arguments of the DQN are modified. Once the predetermined number of time steps is reached in each round, 
the ongoing episode concludes and the subsequent episode commences.

Action strategy
In order to enhance the learning productivity of DQN during the training phase, a novel action favour approach 
called ε-imitation is proposed. This method combines the ε-greedy strategy and the imitation strategy, aiming to 
strike a balance between exploration and exploitation in the learning  process31. The imitation method involves the 
follower selecting its control instruction based on the control demands related to relative distance. The essential 
concept of this method is that when followers make a selection from the action space with a chance of 1 − ε , the 
chosen action is determined by the expected relative distance between the leader and the follower, as outlined in 
Eq. (2). When the separation between the leader and the follower exceeds the designated safety limits (dO , dI ) , 
a derivative action Amax is selected from the available set of actions in order to mitigate the danger of collision. 
In the event that the relative distance is deemed to be within a secure range, it is advisable for the follower to 
sustain their present conditions, resulting in a state of inaction or zero action. The utilization of ε-imitation action 
selection strategy in the context of topology maintenance in UAVs flying has several advantages, including the 
reduction of follower blindness during the first exploration period. Additionally, this approach mitigates the 
occurrence of invalid explorations, enhances the quantity of positive samples within the experience pool, and 
contributes to the optimization of training efficiency.

ε-imitation action selection strategy can be observed in Algorithm 137.

Algorithm 1: ε-imitation action selection strategy.

DQN method
The Q function in the DQN framework is estimated by the utilization of a neural network, known as a Q-net-
work, which is characterized by its weight parameters denoted as θ . In order to assess the Q value, a fully linked 
Q-network is constructed, as depicted in Fig. 5. At time step t  , the state of the UAVs is accepted by the input 
layer of the Q-network. Every individual node within the output layer of the neural network corresponds to the 
Q value associated with a specific action within the set of all possible actions. The network is comprised of two 
hidden layers, single input layer and single output layer. Dimensions of the hidden layer are set to 40 × 40, and 
the training function is specified as Variable Learning Rate Gradient Descent.
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UAVs coordination control is accomplished by using the DQN algorithm. Figure 4 illustrates the training 
process, depicting the key implementation elements of the collaborative control method based on DQN in 
Algorithm 2.

Algorithm 2: DQN method.

Results and discussion
The training process is finished in MATLAB which includes 50,000 episodes totally. In each episode, the simula-
tion time is 60 s. Before the formal training, a pre-training of 200 episodes is conducted to collect experiential 
data for batch training. During the training process, the exploration probability ε linearly decreases from the 
initial value of 1 to the minimum value of 0.1 over 10,000 episodes, and the update period of the target network 
K gradually increases from 1000 to 10,000 in the initial 1000 episodes.

The simulation data-set consists of UAVs with a leader and two followers which monitoring the 
 configuration38. The parameters pertaining to the dynamics of UAVs are presented here.

Table 1 provides a comprehensive overview of the specific parameter configurations for the DQN algorithm.
Table 2 displays the physical characteristics of both the leader and the follower.
In order to assess the efficacy of the DQN-based method utilized in this study, an average reward RAvg was 

established as the evaluative standard. The variable RAvg is formally delimited  as31,

where r represents the immediate reward in Eq. (7).

(14)

NE =
tE

�t

RAvg =
1

NAvgNE

NAvg
∑

n=1

NE
∑

t=1

rn,t

Figure 5.  The conceptual structure of a Q-network.
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Figure 6 illustrates the fluctuations in the average rewards across all training episodes. The results indicate 
that the average rewards reach a state of convergence following around 10,000 training events for a pair of fol-
lowers. From what is shown in Fig. 6, after the curves exhibit convergence, the average rewards tend to hover 
around a value of − 7.

According to the highest reward of the episode, the results are shown as follows. Figure 7 shows the trajec-
tory curves and distance change in different directions of leader and a pair of followers. Based on the observed 
patterns of the curves, it can be inferred that the followers are consistently converging towards the trajectory of 
the leader in both the X and Y directions.

Figure 8 depicts the comparative distance-time profiles of the leader and the followers. The adjustment of 
the reward function reveals the establishment of a secure distance range of 40–60 m between the leader and the 
followers. Moreover, the followers also maintained a safe relative distance from each other, and there is no risk 
of collision during the simulation.

In Fig. 9, it shows that the heading angle of followers changes with the leader. Along with the heading angle 
change of the leader, followers gradually adjust their heading angle and fly with the leader in a similar trends. 
After 45 s of simulation time, it shows that the heading angle changes of the leader and the followers tend to be 
consistent.

Figure 10 illustrates the changes in rolling angle and its desired value of followers. In order to collaborate with 
the leader to fly within a safe distance, the rolling angle controls of followers are adjusted continuously according 
to the action space and ε-imitation action selection strategy. As is shown in this figure, followers’ rolling angle 
and commands are all changing with the leader’s roll angle which are in a range from − 20° to 20°.

Conclusion
The objective of this study was to devise an innovative approach for addressing the challenges posed by non-
determinacy, non-linearity, systematical error, and disturbances in the modeling of UAVs. A novel intelligent 
control strategy was proposed for the cooperative control job of UAVs, utilizing a DQN algorithm. The proposed 
system joint states encompassed the relative position, heading angle and rolling angle in the formation of UAVs, 
as defined in the environmental context. Subsequently, a MDP model was modified to depict the collaborative 
control process of UAVs, using the fundamental scheme of RL. Afterwards, the comprehensive DQN algorithm 
was presented, encompassing the fundamental structure, the -imitation action selection technique, and a com-
plete account of the algorithm. In order to assess the effectiveness and practicality of the DQN control technique 
mentioned in this research, a simulation experiment was conducted.

Based on the outcomes of the simulation, it can be observed that the algorithm based on DQN exhibits a 
distinctive level of behavior in the context of cooperative control of UAVs. The average total reward profile dem-
onstrates a satisfactory level of astringency, indicating that the collaborative controller design meets the necessary 
requirements for the relative kinematic link among different nodes in the formation. In subsequent research 
endeavors, there will be an expansion towards the development of a high-fidelity hardware-in-the-loop simula-
tion system. This system will be designed to assess the efficacy and adaptability of the DQN-based method. The 

Table 2.  Arguments of the leader and the follower.

Leader Follower 1 Follower 2

Initial position (m) (0,0) (30,40) (− 30,40)

V0 (m/s) 10 10 10

ψ
0
 (°) 0.0 0.0 0.0

φ0 (°) 0.0 0.0 0.0

Figure 6.  The variation of the average rewards.
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control algorithm that has been trained within the numerical emulation environment can be seamlessly shifted 
to the hardware-in-the-loop system with minimal argument adjustments required.

Figure 7.  The relative motion relationship of the leader and the followers. (a) The trajectory of the leader and 
the followers. (b) The relative distance change in X and Y direction of the leader and the followers.

Figure 8.  The relative distance variation of the leader and the followers.
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Data availability
The code alongside the datasets used and generated during the current study are available from the correspond-
ing author on reasonable request.
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