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Estimation of compressive strength 
of waste concrete utilizing fly ash/
slag in concrete with interpretable 
approaches: optimization 
and graphical user interface (GUI)
Yakubu Dodo 1, Kiran Arif 2*, Mana Alyami 3, Mujahid Ali 4, Taoufik Najeh 5* & Yaser Gamil 6

Geo-polymer concrete has a significant influence on the environmental condition and thus its use in 
the civil industry leads to a decrease in carbon dioxide  (CO2) emission. However, problems lie with its 
mixed design and casting in the field. This study utilizes supervised artificial-based machine learning 
algorithms (MLAs) to anticipate the mechanical characteristic of fly ash/slag-based geopolymer 
concrete (FASBGPC) by utilizing AdaBoost and Bagging on MLPNN to make an ensemble model with 
156 data points. The data consist of GGBS (kg/m3), Alkaline activator (kg/m3), Fly ash (kg/m3), SP 
dosage (kg/m3), NaOH Molarity, Aggregate (kg/m3), Temperature (°C) and compressive strength as 
output parameter. Python programming is utilized in Anaconda Navigator using Spyder version 5.0 to 
predict the mechanical response. Statistical measures and validation of data are done by splitting the 
dataset into 80/20 percent and K-Fold CV is employed to check the accurateness of the model by using 
MAE, RMSE, and  R2. Statistical analysis relies on errors, and tests against external indicators help 
determine how well models function in terms of robustness. The most important factor in compressive 
strength measurements is examined using permutation characteristics. The result reveals that ANN 
with AdaBoost is outclassed by giving maximum enhancement with  R2 = 0.914 and shows the least 
error with statistical and external validations. Shapley analysis shows that GGBS, NaOH Molarity, 
and temperature are the most influential parameter that has significant content in making FASBGPC. 
Thus, ensemble methods are suitable for constructing prediction models because of their strong and 
reliable performance. Furthermore, the graphical user interface (GUI) is generated through the process 
of training a model that forecasts the desired outcome values when the corresponding inputs are 
provided. It streamlines the process and provides a useful tool for applying the model’s abilities in the 
field of civil engineering.

Keywords Waste ingredients, Machine learning, Ensemble approaches, Statistical analysis, Permutation 
features importance

The cement construction sector contributes significantly to global  CO2 emissions in the construction  sector1. 
The production of Portland cement (PC) emits approximately 4 billion tons of  CO2. Thus, contributing to 
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approximately 5–7% of total anthropogenic  CO2 emissions in the  atmosphere2–4. Currently, the construction 
industry accounts for up to 50% of global greenhouse gas (GHG)  emissions5,6. Literature reveals that around 
4000 million tons of cement are manufactured globally and will continue to rise to 6000 million tons by  20606. 
This increase in demand for cement will have a malignant effect on the environment. Therefore, initiative and 
effort are needed to minimize the building industry’s reliance on cement. The use of waste or recycled mate-
rial including supplementary cementitious materials (SCMs), such as volcanic ash (VA)7, recycled aggregate 
(RA)8, fly ash (FA)9, ground granulated blast furnace slag (GGBS)10, and limestone powder (LP)11 in concrete 
production can aid in alleviating the adverse impacts on  environment12–14. This will not only fulfill the increas-
ing need for cement in the building sector, but it will also minimize future environmental  risks15–17. SCMs are 
often utilized in the construction sector as a partial substitute for cement to reduce the environmental effect of 
cement manufacture and usage in  concrete18–20. Moreover, it is reported that using natural pozzolanic materials 
having a rich concentration of silica and alumina such as FA and GGBS in concrete reduces the GHG emissions 
by 80% rather than in conventional  concrete21. In addition, alkali-activated materials (AAM) have recently been 
utilized in combination with industrial materials and alkaline activators such as NaOH and  Na2SiO3 to create 
geopolymer concrete (GPC)22–24. The amorphous gel-like structure of GPC provides remarkable and attractive 
properties including sulfate attack, resistance to  acid25, better  durability26, resistance to  fire27, and obstinately 
higher compressive  strength28, as shown in Fig. 1. The incorporation of FA and GGBS in making a gel-like 
structure making a geo-polymerization compound can give the utmost benefit in the cementitious composite 
 matrix10. Thus, its incorporation in matrix not only gives desirable properties but will substantially reduce  CO2 
emission by up to 25–45%29.

Alkali activated-based geopolymer concrete (AA-GPC)
Fly ash (FA) is a waste product of the thermal coal manufacturing process. It is pozzolanic that have the properties 
of binding materials which get polymerized under high temperature with an alkaline medium to make GPC. As 
a result, a crystalline and amorphous combination is created, which may then be used to provide the necessary 
mechanical characteristics. Due to the significant requirement for heat curing, however, field applications of 
geo-polymerization chemicals are not  advised30,31. Due of its high curing temperature requirement, FA-GPC 
application in the construction sector will be  restricted31. Therefore, by using a slag combination with a high 
concentration of calcium, silica, and alumina, heat demand may be  decreased32. When GGBS and FA are com-
bined, calcium aluminosilicate hydrate (C-A-S-H) is created as a byproduct.This gel is responsible for making a 
dense gel structure in GPC. Thus, its utilization can achieve early strength and produces enhanced mechanical 
 properties33. Mehta et al.34 studied the mechanical properties of FA-GPC with GGBS by varying its concentra-
tion. The author observed a compact microstructure containing hydration and polymerization products, which 
greatly improved the strength of GPC during its early stages. Yazdi et al.35 examined the impact of GPC by alter-
ing the FA concentration from 30 to 100% in combination with GGBS. The author illustrates that substituting 
50% of fine aggregate (FA) with ground granulated blast furnace slag (GGBS) leads to a significant enhancement 
in both compressive and flexural strength, with values of 100 MPa and 10 Mpa correspondingly. In addition, 
Fang et al.31 investigated the impact of slag on the flexural and split tensile strength of FA-GPC and found that 
it resulted in increased strength levels. This phenomenon occurs as a result of the creation of C-A-S-H gel and 
N-A-S-H gel by the manipulation of GGBS concentration, leading to an expedited reaction  process36. Moreover, 
Table 1 illustrates the mixing regime of FA-GGBS-based GPC. Hence, the utilization of blend slag with FA in 
making GPC results in the decrease of  CO2 emission in the atmosphere, disposal of waste, and consumption of 
energy to make eco-friendly concrete.

An experimental mix design is utilized to establish the optimum loading capacity of concrete. However, 
prior research has shown that GP concrete is significantly influenced by the chemical composition and physical 
amounts of factors. There exists heterogeneity in making GP concrete due to its diverse factor and still their exit 

Figure 1.  Properties of GPC.
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ambiguity in making a  mixture41–43. However, many methods and methodologies based on statistical approaches 
may be used to analyze the crushing nature of GPC. Despite the little study into the link between variables and 
mechanical properties. Recently, the use of machine learning algorithms (MLAs) and their application in concrete 
mix design has increased in the last  decades44–48. This is due to its non-linearity relationship and its complex 
behavior that takes the uncertainty and predicts the most influential results by taking dependent and independent 
variables. MLAs frequently split the data samples into the training set and testing set. The employed algorithms 
in making a model trains it by using a training set and predicting the outcome on the test set. The usefulness of 
MLAs is often lying in their nonlinearity relation due to their automatically complex iteration to achieve accurate 
 prediction49–51. Furthermore, empirical models, iterate once in the data sets and predict the outcome with fitted 
variables that is why linear regression is not useful in getting accurate and desirable predictions.

Lokuge et al.41 predict the compressive nature of FA-GPC by employing the Multi-variate Adaptive Regression 
Splines (MARS) algorithm. The author predicts robust performance by using nonlinear regression. Mohsin et al.52 
employed two approaches namely as random forest and gene expression programming by using 298 data points, 
and the results showed that RFR provides a more accurate performance than GEP with R = 0.9826. Similarly, Ayaz 
et al.53 predict the loading capacity of FA-GPC on 154 data samples that was gathered from literature by employ-
ing supervised machine learning approaches. The author achieved a good correlation of  R2 = 0.97 by using the 
bagging algorithm as compared to AdaBoost and decision tree algorithms. Unluer et al.54 used different MLAs 
including support vector machines (SVM), backpropagation neural networks (BPNN), and extreme learning 
machines (ELMs) for the prediction of FA-GPC with 110 data points. The author concluded that SVM outclasses 
ELM and BPNN with a higher correlation for testing set with  R2 = 0.955. Ali et al.55 utilized 399 data sets to 
estimate the compressive nature of GPC using an artificial neural network (ANN) by using two hidden layers of 
ANN. The author obtained an excellent response with  R2 = 0.9916 as compared to other layers. In addition, Moh-
sin et al.42 forecast the mechanical characteristics of GPC using the GEP technique. The results show a significant 
connection with the empirical equation. Similarly, Alkaroosh et al.56 forecast the GPC strength by utilizing the 
GEP model with 56 data points and reported a good correlation with  R2 = 0.89 for validation set. Aneja et al.57 
forecasted the compressive strength of FA and BA-based GPC by using artificial neuron network by gathering 
46 data points from the literature and made eighteen samples by conducting experimental work. Fourteen ANN 
models that differ in hidden layers, backpropagation training algorithms, and neuron was tilized. Bayesian Regu-
larization (BR), Levenberg–Marquardt (LM), and scaled conjugate gradient (SCG) as backpropagation algorithms 
was employed. Moreover, number of neurons, hidden layers and training approaches have siginificant influence of 
ANN models. Moreover, model evaluation is gauged by mean square error (MSE), and coefficient of correlation 
®. The author reveals that increasing hidden layers decreases the MSE and increases the R value of BR and LM 
models. In addition, eight model (ANN-VIII) BR-ANN with three layers and 10 neurons demonstrates accurate 
prediction with R = 0.99 and lesser MSE = 1.017. Dong et al.58 forcasted the compressive strength of GPC with 
artificial neural network and adaptive neuro fuzzy inference (ANFIS). The author use four input parameters for 
prediction and reported that ANFIS performs much better then ANN in term of  R2 and statistical measures. Cao 
et al.59 utilized three approaches namely as support vector machine (SVM), extreme gradient boosting (XGB), 

Table 1.  Mix regime of FA/GGBS-based GPC.

S. no FA (kg/m3)
GGBS (kg/
m3)

Aggregates Alkaline activator

NaOH 
molarity (M)

Water (kg/
m3)

Curing 
temperature 
(°C )

Strength 
(MPa) References

Coarse (kg/
m3) Fine (kg/m3)

NaOH (kg/
m3)

Na2SiO3 (kg/
m3)

1 0 500 1115 600 50 125 12 24 24 59.5

37

2 50 450 1115 600 50 125 12 24 24 59.0

3 100 400 1115 600 50 125 12 24 24 58.2

4 150 350 1115 600 50 125 12 24 24 49.2

5 200 300 1115 600 50 125 12 24 24 42.5

6 250 250 1115 600 50 125 12 24 24 40.9

7 300 200 1115 600 50 125 12 24 24 35.9

8 349.2 38.8 1221.2 620.8 194.0 12 13.3 23 41.7

38
9 349.2 38.8 1221.2 620.8 194.0 12 13.3 60 50.0

10 349.2 38.8 1221.2 620.8 194.0 12 13.3 75 62.3

11 349.2 38.8 1221.2 620.8 194.0 12 13.3 90 60.7

12 400 0 1209 651 45.7 114.3 14 22 22 26.7

13 360 40 1209 651 45.7 114.3 14 22 22 34.6 39

14 320 80 1209 651 45.7 114.3 14 22 22 45.6

15 280 120 1209 651 45.7 114.3 14 22 22 54.8

16 225 225 1164 627 45 112.5 14 24 24 41.1 40

17 200 200 1068 712 12 74 24 24 50.0

18 300 100 1068 712 12 74 24 24 51.3 28

19 400 0 1068 712 12 74 24 24 63.4
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and multilayer perceptron (MLP) for predicting the compressive strength of GPC. The author reveals that XGB 
approach outclass by depict higher correlation  R2 = 0.98 as compared to SVM and MLP which is 0.91 and 0.88, 
respectively. In addition, statistical measures and validation with K-fold confirms the high accuracy of XGB. 
Simlarly, Ashrafian et al.60 anticipated the apparent chloride concentration of marine structure having different 
zones. The author employees gene expression programming (GEP), Multivariate Adaptive Regression Splines 
(MARS), and M5p Model Tree (MT) on 642 data points, and observed that MARS outperformed outclass from 
both approaches. In addition, Ashrafian et al.61 predicted the slump flow of self compacting concrete (SCC) with 
117 data points by utlizining MARS and MT approach, and observed both models have greater potential with 
higher precision. Chu et al.62 anticipated the mechanical strength of FA-GPC on 311 data points by employing 
GEP and MEP techniques and revealed that GEP is far superior to MEP as it gives an empirical relation with 
accuracy. Ashrafian et al.63 anticapted the strength of waste concrete by employing various machine learning 
approaches and demonstrated that fuzzy model with HOA optimizer depicts robust performace as compared 
to remaining models. Thus, MLAs have been used in the civil engineering domain due to their extraordinary 
response to prediction as listed in Table 2. MLA employs statistical analysis and database approaches to extract 
correlations, undiscovered patterns, and data from massive datasets. Prediction and modeling often use one of 
the two approaches. The first option, the traditional technique, is based on a stand-alone  model64. The second 
approach makes use of several ensemble learning algorithms including bagging, boosting, and random forests. 
The newly developed ensemble learning algorithms significantly outperformed traditional ML models when 
predicting  outcomes65–67. The training data is used to educate a large number of weak learners, and then those 
learners are combined to produce strong learners using the ensemble learning approach. These weak learners 
are developed using individualized learning techniques such as ANN, SVM, and DT. These recently established 
ensemble techniques may be used to investigate the properties and resilience of complex materials, such as HPC 
made from waste. Ensemble learning and classifier generation algorithms have been the subject of recent studies 
because of their potential to improve machine learning model performance. Likewise, Ahmad et al.68 utlizes 
adaBoost, decision tree and random forest approaches with 207 samples to predict the high-temperature com-
pressive strength of concrete. The author observed that AdaBoost approach give strong  R2 = 0.938 as compared to 
other approaches, and cement concentration (CC) of the mixture was the most sensitive variable in prediction. 
Chou et al.69 used MLP, SVM, a classification and regression tree (CART), and linear regression (LR) to develop 
separate and combined classifiers for learning. The results demonstrated that HPC (high-performance concrete) 
compressive strength may better predicted using ensemble learning approaches than using individual learning 
methods. To foretell HPC’s compressive and tensile strengths, Nguyen et al.69 used prediction algorithms such 
SVM, MLP, GBR, and XGBoost. The author demonstrated that GBR and XGBoost performed better as compared 
to SVM and MLP. The distinction between standalone algorithms and ensemble methods is also shown in Fig. 2. 
It also shows how individual algorithms and ensemble techniques differ from one another.

Studies reveal that nonlinear regression is used to obtain the optimal performance of low calcium FA-GPC 
but no nonlinear regression MLAs by employing fly ash slag-based GPC. In this research work, AdaBoost and 
bagging on MLPNN were used to make an ensemble model to predict the mechanical strength of mixed GPC by 

Table 2.  Forecasting of mechanical properties by using MLAs.

Sr. no Methods employed Symbolization Data points Forecasted properties Year Material used References

1 Individual and ensemble algorithm GEP, DT and Bagging 270 Crushing strength 2021 FA 70

2 Data envelopment analysis DEA 114
Compressive strength Slump test
L-box test
V-funnel test

2021 FA 71

3 Individual algorithms ANN, GEP, DT 642 Chloride Concentration 2021 FA 72

4 Individual using ensemble modeling ANN, bagging and boosting 1030 Crushing strength 2021 FA 73

5 Support vector machine SVM 115
Slump test
L-box test
V-funnel test
Crushing strength

2020 FA 74

8 Support vector machine SVM – Crushing strength 2020 FA 75

9 Neuro-fuzzy inference system that is adaptable ANFIS with ANN 7 Crushing strength 2020 POFA 76

10 Random forest and gene expression program-
ming RF and GEP 357 Crushing strength 2020 – 77

11 Gene expression programming GEP 357 Crushing strength 2020 – 78

12 Fuzzy rules and intelligent rule-based 
improved multiclass support vector machine IREMSVM-FR with RSM 114 Crushing strength 2019 FA 79

13 Artificial neuron network ANN 205 Crushing strength 2019
FA
GGBFS
SF
RHA

80

14 Multivariate adaptive regression spline M5 MARS 114 Crushing strength Slump test
L-box test 2018 FA 81

21 Artificial neuron network ANN 300 Crushing strength 2009 FA 82

22 System of adaptive neurofuzzy inference ANFIS 55 Compressive strength 2018 – 83
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conducting a literature review in an anaconda navigator using Sypder version 5.1.5. A vast data set of about 156 
is gathered from the literature and Web of Science present in supplementary file S1. Additionally, K-Fold cross-
validations, statistical analysis, and external validation checks are used to assess the correctness of the models. 
Shapley analysis is done to give the most influential variable. Furthermore, a graphical user interface (GUI) is 
made for practical implementation in the industry for concrete prediction. To the best author’s knowledge, no 
work is reported by conducting nonlinear regression by employing AdaBoost and bagging on FASBGPC.

Data description
The data of GP concrete containing FA and GGBS has been taken from the published literature to model the 
strength. Furthermore, the effectiveness of the gathered data is entirely dependent upon the data points and the 
variable used to make a model (see supplementary file S1). The parameters used to make model compromises 
of fly ash (kg/m3), granulated blast furnace slag (kg/m3), fine and coarse aggregate (kg/m3), alkaline activators 
(kg/m3), superplasticizer (kg/m3), sodium hydroxide (M), temperature (°C). Moreover, the descriptive statics 
with frequency distribution is shown in Table 3 and Fig. 3. In contrast, the maximum and minimum values with 
their averages are also shown in Fig. 4.

Moreover, the pearson correlation coefficient shows the linear relationship between input and output 
variables,ranging from -1 to 1 as illustrated in Fig. 5. In general it can be depicted that the correlation between 
inputs and outputs are weak, varying from [− 0.03 − 1]. In addition the strongest correlation between ground 
granulated blast furnace slag and flyash. Consequently, each of the nine inputs to the dataset can be considered 

Figure 2.  Difference between individual and ensemble approaches.

Table 3.  Parameter descriptive statistics.

Statistical description FA GGBS Fine Coarse NaOH Na2SiO3 SP NaOH Temp

Mean 252.5 151.4 729.8 1096.0 60.5 123.0 77.6 8.6 28.1

Standard error 6.9 6.9 5.4 9.4 2.1 2.9 6.5 0.3 1.6

Median 270.0 135.0 760.5 1090.8 57.1 115.7 7.9 8.0 25.0

Mode 303.8 101.3 774.0 1090.8 81.0 81.0 0.0 8.0 30.0

Standard deviation 86.3 86.7 68.0 117.9 26.8 35.7 81.0 3.9 20.6

Sample variance 7442.7 7522.7 4620.5 13,889.3 720.4 1275.1 6558.3 15.2 422.4

Kurtosis 2.5 2.2 0.0 − 1.5 3.0 − 0.9 − 1.9 0.2 − 0.9

Skewness − 1.4 1.3 − 0.8 0.3 1.2 0.1 0.2 − 0.5 0.3

Range 400.0 409.0 263.6 327.0 134.3 138.9 180.0 16.0 60.0

Minimum 0.0 0.0 547.0 966.0 9.0 54.0 0.0 0.0 0.0

Maximum 400.0 409.0 810.6 1293.0 143.3 192.9 180.0 16.0 60.0

Sum 39,384.5 23,624.5 113,849.2 170,980.4 9432.3 19,185.4 12,100.6 1336.0 4380.0

Count 156.0 156.0 156.0 156.0 156.0 156.0 156.0 156.0 156.0
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independent, enabling each variable to be used to construct machine learning models and conduct feature sig-
nificance and sensitivity analyses.

It is evident that the Flyash/slag based material has a significant role in enhancing strength. The reason for 
this is the Pozzolanic activity of both fly ash and GGBFS. Pozzolanic materials have the ability to react with cal-
cium hydroxide, which is produced during cement hydration, when water is present. This reaction leads to the 
formation of more cementitious compounds. The pozzolanic reaction generates calcium silicate hydrates (C-S-H) 
and other cementitious substances, which efficiently occupy the empty spaces and improve the overall strength 
and density of the concrete structure. Moreover, their addition will reduces the water content, filler effect, and 
enhanced hydration reaction that ultimately increase in strength when fly ash and GGBFS are added to concrete 
mixtures, making them valuable and sustainable additions to enhance concrete performance.

Figure 3.  Parameters used in making an ensemble model; (a) fly ash (kg/m3), (b) granulated blast furnace slag 
(kg/m3), (c) fine aggregate (kg/m3), (d) coarse aggregate (kg/m3), (e) NaOH (kg/m3), (f)  Na2SiO3, (g) super 
plasticizer (kg/m3), (h) sodium hydroxide (M), (i) temperature (°C), (j) compressive strength (MPa).
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Methodology
The data description is used to create a models to predict the compressive property of FASBGPC, statistical 
analysis, parametric study of the influencing variable, and the algorithms used to create the model. This sec-
tions discuss the effect of all these in details in making predictive models. Moreover, Sklearn library in Python 
is employed for interpretability analysis of models, which was trained by using an Artificial Neural Network 
(ANN) architecture. The ANN was chosen due to its effectiveness in capturing complex patterns in the data and 
its flexibility in handling various types of input features. In addition, hyperparameter tuning on the ANN model 
is used to optimize its performance to find the best performance. In addition, ensemble techniques, specifically 
bagging and boosting is performed to enhance the predictive performance of the ANN model. Parameter tun-
ing was conducted not only for the individual ANN model but also for the ensemble approaches to fine-tune 
their hyperparameters for improved performance. Moreover, Fig. 6 illustrates the overall flowchart used in this 
research.

Multilayer perceptron neuron network (MLPNN)
Biological nervous system microstructure (neurons) is simulated by artificial neural network (ANN) algorithms. 
ANN networks are made up of a lot of parallel connections. These cells receive biased contributions from ANN 
neurons and then provide the biased production to other neurons through an stimulation function. There are 

Figure 4.  Parameter maximum and minimum value.

Figure 5.  Pearson correlation of input parameters to output strength.
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one or more multilayers in these neutral activities. Moreover, ANNs uses neural activities as a path between 
network. The perception response is determined by the numeral input variables, output, and input layers. Indi-
vidually network of ANN is made up of three standard layers namely the input layer, output layer, and hidden 
layer. The hidden layer which acts as a source of accuracy by doing a nonlinear performance on the parameters 
using activation function is located between the input layer and the output layer. Moreover, the hidden layer 
can be one or more depending on the accuracy of the model. Although a single hidden layer can handle all of 
the challenges that a perceptron encounters, it is more beneficial and efficient to employ multiple hidden layers. 
Figure 7 shows the architecture of a neural network, which contains an input layer, two hidden layers, and an 
output layer. Except for the input layer, every neuron in a layer determines the linear combination and bias. The 
neutrons then utilize the model’s output to compute the non-linear activation function sigmoid in their input.

This research study performs ANNs modeling with the use of a multi-layer perceptron (MLPNN) feed-
forward network. The best performance of the model is evaluated by changing the numbers of neurons and 
hidden layers. Afterward, the gathered data from the literature is split into testing and training sets. This is done 
by splitting the data into random sets into a ratio of 80% (train set) and 20% (test set) to mitigate the overfitting 
effect and bias of the model in predicting the mechanical property of FASBGPC.

Hyper-tuning parameters
The selection of appropriate parameters are crucial in making ML models to obtain the highest accuracy. In this 
study, numerous hyper-parameter combinations were investigated to improve the model’s accuracy, as shown 
in Table 4. In addition, Fig. 8 demonstrates the ANN model with optimal parameters. Furthermore, a critical 
stage in the development of non-linear models is selecting the appropriate hyper-parameters. As a result, test-
ing multiple configurations to discover the one that would operate correctly and stably when constructing ML 
models may require a significant amount of effort. The details of parameters selection is can also be seen in 
supplementary file S1.

Figure 6.  Flowchart of current research.

Figure 7.  ANN-based feed-forward process.
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Ensemble methods using boosting and bagging approach
To increase the recognition and prediction accuracy of machine learning, ensemble techniques are utilized (ML). 
By merging and pooling several subpar prediction models, these solutions often help to alleviate over-fitting 
concerns (component sub-models). These sub-models learn nonlinearly and intelligently, producing a learner 
that is more accurate at making predictions. The best parametric/predictive model is produced by combining 
qualifying sub-models using averaging or voting combination techniques.

Bagging and boosting algorithm
Figure 9 depicts the schematic technique of the bagging model. Bagging is the term used to describe the modifi-
cation to the estimation procedure resulting from the substitution of a new dataset for the training dataset. The 
primary set data are replaced as part of the strategy for irregular sampling. Using replacement sampling, specific 
observations can be replicated in each training database. Every phase of the bagging procedure must have an 
equal option in the new database. The training dataset size has no effect on the accuracy of predictions. Moreover, 
modifying the intended outcome prediction appropriately reduces variance significantly. Using this resource, 
additional models can be  trained84. In this ensemble, the predicted values of the models are utilized. In regression, 
a prediction could be the mean of forecasts from multiple models. The optimal output value is determined by 
utilizing the DT’s 20 sub-models to update the aggregating model. In addition the overall bagging principle of 
ensemble learning process involves the following steps. (1) Bootstrap Sampling: Random subsets of the original 
dataset are created through bootstrap sampling, where data points are randomly selected with replacement. 
Multiple subsets, often of equal size to the original dataset, are generated. Each subset is used to train a separate 
base model. (2) Model Training: A base model (e.g., decision tree, neural network) is trained independently on 
each subset of the data. Each model learns different patterns from its subset due to the randomness introduced 
by the sampling process. For instance, in the case of neural networks, multiple networks are trained with dif-
ferent subsets. (3) Individual Predictions: Once the models are trained, they are used to make predictions on 
the validation or test dataset (data not used for training). Each model independently generates its predictions 
based on the input data it has been trained on. (4) Aggregation of Predictions: The final output is generated by 
combining the predictions of all individual models. For regression tasks, this often involves averaging the pre-
dictions made by each model. In classification tasks, the final prediction may be determined by majority voting 
or averaging the probabilities predicted by each model. (5) Final Output: The aggregated predictions from all 

Table 4.  Model learning with parameters tuning.

Method utilized

Hyper parameters

Title Values considered Optimal

Artificial neural network

Hidden layer 2–40 14

Max iter 0–450 250

Solver Sgd, lbfgs, adam Adam

Activation Identity, logistic, tanh, relu Relu

Learning rate init 0.01, 0.05, 0.1, 0.15, 0.2 0.1

Learning rate Constant, invscaling, adaptive Constant

Figure 8.  Optimization of the model by hit and trial method to achieve the best performance.
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models form the final output of the bagging ensemble method. This combined output tends to be more robust 
and accurate compared to the prediction of any single model, as it leverages the diverse perspectives learned by 
each model from its subset of the data.

Like the bagging technique, the boosting strategy influences the creation of several components that are more 
precise than a single model by creating a collective model as illustrated in Fig. 10. By means of biased averages of 
the dependent sub-models, the boosting approach chooses which sub-models to include in the final model. In 
this work, a boosting and bagging strategy was utilized to build an ensemble model on FASBGP concrete using 
a single ANN algorithm as a fundamental learner. Moreover, process regarding boosting as ensemble approaches 
involves the following steps. (1) Weighted Training: Initially, each data point in the training set is given equal 
weight. A weak learner (e.g., decision tree with limited depth) is trained on the entire dataset, focusing on the 
areas where the previous model(s) made mistakes. This model tries to fit the data while minimizing the errors. (2) 
Error Calculation: After the first model is trained, the errors or misclassifications made by this model are identi-
fied by comparing its predictions to the actual labels. Data points that were incorrectly predicted are assigned 
higher weights, while correctly predicted points are given lower weights. (3) Focus on Misclassified Data: The 
next weak learner is trained on the modified dataset, where the emphasis is placed on the previously misclassified 
data points. This iterative process aims to ‘boost’ the model’s performance by focusing on the areas where it has 
not performed well. (4) Sequential Improvement: The process continues for multiple iterations (typically with a 
predefined number of iterations or until a specified performance threshold is reached). Each subsequent model 
is trained to correct the errors of the combined ensemble of models created so far. (5) Weighted Combination: 
Finally, the predictions from all weak learners are combined with different weights assigned to each model 
based on its performance. Usually, models that perform better are given higher weights in the final prediction. 
(6) Final Output: The final output is generated by aggregating the predictions of all weak learners, often through 
a weighted sum or a weighted voting scheme, where the weights are determined by the performance of each 
model in the ensemble.

Figure 9.  Bagging algorithm schematic chart.

Figure 10.  Boosting algorithm schematic chart.
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Parameter’s tuning for ensemble learner
The model tuning variables that are employed in making an ensemble approach can be (i) learning rate (ii) 
parameters associated with the finest number of model learners and other specific characteristics that have a 
significant influence on ensemble methods. The best and optimal model using twenty sub-model each with 10, 
20, 30,…, 200, and nth estimator components on-base learner (ANN) were made and the most robust perfor-
mance was selected. Table 5 demonstrates how the optimal model was selected using the correlation with high 
coefficient values. As a consequence, the ensemble with boosting outperforms the bagging and individual ANN 
models in terms of correlation coefficient.

K-fold cross-validation method
Cross-validation (CV) is a technique that is used to examine and eliminate the bias and variance of the data to 
make an effective machine learning model. It is also known as a re-sampling procedure, and it is employed to 
assess the model’s effectiveness. This strategy is the easiest and outcomes in a less biased model as compared 
with other models. This is because it ensures that every observation from the data has an equal probability of 
appearing in both the test and train  sets85. The accuracy of the algorithm is obtained in the form of statistical 
and average errors accuracy throughout ten verification cycles as demonstrated in Fig. 11.

Statistical analysis
Statistical checks are employed to evaluate the efficacy and accuracy of the model. Mean absolute error (MAE), 
coefficient of determination  (R2), root mean square error (RMSE), relative squared error (RSE), and relative root 
mean square error (RRMSE) are some statistical indicators. These indicators are defined by Eqs. (1–5).

Table 5.  Sub-model details in making an ensemble model.

Approaches employed Ensemble approach Machine-learning methods Ensemble sub models Optimal estimator R2-value

Individual – MLPNN – – 0.80

Ensemble Bagging Multilayer perceptron neuron 
network- Bagging (10,20,30….200) 180 0.87

Ensemble Boosting Multilayer perceptron neuron 
network- Adaboost (10,20,30….200) 170 0.89

Figure 11.  K-fold cross-validation.
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where tj = Before creating a model, try out different values. pj = The model’s expected result. tj = Indicate the 
desired mean value. pi = show the anticipated mean value. m = Denotes the total number of examples used for 
modeling.

A higher coefficient of determination  (R2) of the model is used to assess its reliability and accuracy, and a 
higher value with a lower value of statistical indicators indicates an ideal  model86.  R2 values are usually between 
0 and 1, and a value close to 1 means that the experimental and predicted values are linked  well87. According 
to some experts, the effectiveness of the proposed model significantly affects the model’s ratio of data points to 
inputs. The optimal model should have a ratio larger than five to assess if the data points are acceptable for creat-
ing the required relationship between chosen variables. According to the present study’s results, the proposed 
ratio is 17, which fits the researchers’ standards. In addition, external statistical checks are used to assess the 
model, which are detailed in Table 6.

Model result
The prediction results from the supervised algorithms give robust performance as illustrated in Fig. 12. It can 
depicts in Fig. 12a that the ANN algorithm yield a good correlation with  R2 = 0.82951 with better accuracy. This 
is because ANN uses hidden layers to give a better response as compared to linear regression. Moreover, the 
model accuracy of FASBC is also depicted by its errors allocation as in Fig. 12b. Figure 12a represents that some 
of the predicted data points lie away from the regression line and the same is also depicted in the error graph. In 
addition, a comparison of the model is made with linear regression (LR) in terms of  R2 and error allocation as 
depicted in Fig. 12c,d. The evaluation of models is compared through MAE and the average errors of the testing 
set. ANN model shows 28 percent and 27% enhancement with MAE and average error respectively. This is due 
to the complex behavior of ANN as it mitigates the effect of linear regression and gives robustness performance.

Ensemble with Adaboost algorithm
The prediction via ensemble algorithm using the Adaboost method depicts stronger correlations as compared 
to the individual model ANN and LR. This is due to the ensemble model as it takes into account the base ANN 
model to give the best optimal model as illustrated in Fig. 13. Twenty-sub models are constructed and an optimal 
model is selected as depicted in Fig. 14. It can be seen that Adaboost gives a robust performance of  R2 = 0.92889 
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with seventeen sub-model as it takes several weak learners to predict the optimal response of the model (see 
Fig. 14a). Moreover, Furqan et al.73 anticipated the same response by employing ensemble algorithms. In addi-
tion, Fig. 14b demonstrates the error distribution of the ensemble model. It demonstrates that average errors are 
reduced and exhibits a 33 percent improvement over the individual ANN model. In addition, the Adaboost model 
illustrates 32 percent robust performance with MAE error than 51 percent for LR showing that experimental 
and predicted values are close to one with the least errors.

Figure 12.  Regression models. (a) ANN prediction model; (b) error distribution of ANN model; (c) LR 
regression prediction model; (d) error distribution of LR model.

Figure 13.  Regression models (Adaboost) prediction with twenty sub-models.
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Ensemble with bagging algorithm
The predicted outcome of FASBC with a bagging approach with twenty sub-models is illustrated in Fig. 15. It 
can be seen that the ensemble models show good performance from the individual ANN model as depicted in 
Fig. 16 with  R2 = 0.89. Moreover, the bagging algorithm decreases the effect of variance and overfitting of data to 
give a better response. The individual model which is a weak learner is trained on twenty sub-models to give the 
most advantageous predicted outcome as depicted in Fig. 16. Figure 16a demonstrates that the submodels with 

Figure 14.  Regression models. (a) Adaboost prediction model; (b) error distribution of Adaboost model.

Figure 15.  Regression models with (Adaboost) prediction with twenty sub-models.

Figure 16.  Regression models. (a) Bagging prediction model; (b) error distribution of bagging model.
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n estimater equal to eighteen exhibit robust performance. In contrast, the model’s accuracy is also estimated by 
its mistakes, as illustrated in Fig. 16b. Furthermore, the bagging model outperforms ANN in terms of MAE and 
average error distribution, with a current accuracy of 51% when compared.

Statistical analysis of model
Statistical analysis is used to assess the model’s effectiveness in predicting concrete properties. Moreover, it is the 
mathematical equation-based formalization of connections between variables in data. Furthermore, the coef-
ficient of determination  (R2), mean absolute error (MAE), relative squared error (RSE), root mean square error 
(RMSE), and relative root mean square (RRMSE) were used to compare individual and ensemble methods, as 
shown in Table 7.

Moreover, an external statistical analysis check is also applied to the predicted outcome as mentioned in the 
literature. The result of the aforementioned algorithm is summarized in Table 8.

Table 7.  Statistical evaluation of models with different errors.

Approaches use ML methods
Statistical 
measures

Individual Linear regression

R2 0.710

RMSE 8.75

RRMSE 0.20

MAE 7.65

RSE 0.29

Individual learner ANN

R2 0.783

RMSE 7.57

RRMSE 0.17

MAE 5.57

RSE 0.22

Ensemble learning bagging ANN-Bagging

R2 0.877

RMSE 5.69

RRMSE 0.12

MAE 4.16

RSE 0.12

Ensemble learning boosting ANN-Adaboost

R2 0.914

RMSE 4.75

RRMSE 0.11

MAE 3.74

RSE 0.09

Table 8.  Statistical evaluation of models using external checks.

Equations used to validate Condition to obtain Model used Values
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Cross-validation of K-folds
The validation process is essential to the model’s success because it ensures that the data used to create the model 
is as accurate as possible. K-Fold CV is employed to improve the reliability, robustness, and effectiveness of the 
individual and ensemble models as depicted in Table 9 and Fig. 17. It can be seen that the ANN model with 
Adaboost outclassed with individual ANN and ANN with bagging model. Moreover, a comparison is made 
between its average error using MAE and RMSE. MAE of ANN-AdaBoost gives enhanced results by about 
46% and ANN-bagging depicts 24% robust performance. Similarly, boosting and bagging show a 44% and 28% 
increase in model capacity as compared to the individual ANN model. The same result has been reported by 
Ayaz et al.70 by employing ensemble approaches to predict the most beneficial outcome.

Shapley analysis
The shapley analysis is performed on FASBC using the Sklearn library in Python and the detailed analysis of each 
variable is illustrated in Fig. 18. In addition, the best method is to firstly apply the SHAP explainer to the training 
data subgroup to recognize the model’s behavior and address any issues, followed by validation on the testing 

Table 9.  Evaluation of models using K-Fold validation.

K-fold

ANN ANN-Adaboost ANN-bagging

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 13.68 11.57 0.84 7.94 6.8386 0.98 11.68 7.98 0.87

2 6.86 14.5 0.89 3.9 5.41552 0.89 4.35 8.52 0.94

3 8.54 11.28 0.85 4.54119 5.80112 0.94 3.94 9.14 0.85

4 17.14 10.25 0.9 8.18209 7.60701 0.91 12.42 8.64 0.96

5 7.92 8.57 0.91 3.70382 1.689 0.86 6.82 4.81 0.91

6 9.258 7.65 0.88 7.32827 4.812 0.89 7.14 6.81 0.89

7 11.578 8.65 0.9 2.89234 8.6571 0.98 9.81 5.18 0.92

8 15.24 9.54 0.87 7.518 5.034 0.95 12.48 6.81 0.95

9 7.2 12.57 0.9 3.654 6.571 0.92 4.68 8.21 0.94

10 11.58 10.25 0.87 9.63297 5.99667 0.88 9.2 9.21 0.9

Figure 17.  K-fold validation approach.
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data subset to evaluate interpretability and generalization performance. This comprehensive approach ensures 
a thorough evaluation of the model’s behavior across different datasets and leads to more robust interpretations. 
It demonstrates that GGBS, temperature, sodium hydroxide and its molarity, and FA have a significant impact 
on the compressive strength of FASBC. This is due to the presence of  Al2O3, CaO, and  SiO2 in the amorphous 
 state90–92. Furthermore, GGBS has a binding behavior in an alkaline media. It’s a key ingredient in geopolymer 
concrete as it contributes to its strength and durability. GGBS contains silicates and aluminates, which react with 
the alkali activator (sodium hydroxide) to form the binding matrix in geopolymer  concrete93. Similarly, tempera-
ture affects the curing process of geopolymer concrete. Generally, higher curing temperatures can accelerate the 
reaction between the alkaline solution (usually sodium hydroxide) and the precursors (like GGBS and fly ash), 
leading to faster setting times and increased strength. Moreover, sodium hydroxide, commonly known as caustic 
soda, is used as an alkaline activator in geopolymer concrete. Its concentration (molarity) influences the reactivity 
and strength of the resulting geopolymer. Higher concentrations or molarities of sodium hydroxide often lead 
to faster reaction rates and higher  strengths94. Likewise, when GGBS is mixed with FA in an alkaline media, 
extra calcium content is formed, which is responsible for the improved mechanical qualities. Thus, contributes 
to the overall strength and durability of the concrete. Local and global explainability of the model was enhanced 
using SHAP analysis. In global explainability analysis, mean SHAP values were used for features importance 
ranking as depicted in Fig. 18, and a summary plot was used to indicate the features values’ impact on the CS as 
shown in Fig. 19. The summary plots display the trend of the associated variable and the distribution of SHAP 
values for a certain feature. The y-axis of the summary plot displays the input variables utilized in the study and 
their significance in a sequential manner, while the x-axis represents the corresponding SHAP value. The dark 
color represents their size, ranging from little (blue) to large (red), and they serve as samples in the database. 
The x-axis represents the range of prediction, measured by SHAP values, for each variable as the input variables 
change in magnitude (from blue to red). In addition, red indicates positive SHAP values, suggesting that higher 
values of that feature positively impact the model’s output or prediction. For instance, higher values might lead 
to higher predicted outcomes. Simiarly, blue represents negative SHAP values, implying that lower values of that 
feature have a positive effect on the model’s output. In other words, lower values might result in higher predicted 

Figure 18.  Shapley analysis of FASBC.

Figure 19.  Feature impact on model.
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outcomes. It can be seen that all the feauture have impact on model performance with GGBS have major influ-
ence. The strength increases proportionally with the ground granulated blast furnace slag (GGBS) content in the 
specimen. FA exhibits red color values on the left side and blue color values on the right-hand side. These findings 
indicate that elevating FA above a specific threshold can result in a reduction in CS. Furthermore, elevating the 
temperature and utilizing a greater concentration of  Na2SiO3 can positively influence the compressive strength 
(CS) of GPC. Nevertheless, the amount of sodium hydroxide (NaOH) had both beneficial and detrimental effects 
on the CS, indicating the need to employ NaOH within the ideal range.

Figure 20 explores the correlation between components and their influence on GPC model. The graph dem-
onstrates that increasing the FA results in a decrease in the CS after surpassing a threshold of 300 (kg/m3), 
indicating a substantial reduction in the CS. The SHAP study revealed that the ideal amount of FA was approxi-
mately 300 kg/m3, leading to the highest level of CS. However, the negative impact was demonstrated with 
higher levels of FA concentration. The negative effect on the majority of fly ash (FA) could be attributed to the 
disparity in calcium levels seen in the FA used across several  investigations95. Furthermore, there is a notable 
upward tendency for GGBS, where higher concentrations greatly improve the compressive strength (CS) of GPC. 
Furthermore, Kashifi et al.96 has also seen a comparable pattern. Furthermore, both sodium silicate and sodium 
hydroxide exhibit a favorable impact up to a specific threshold. For example, when sodium silicate is elevated 
over a particular threshold, it has a harmful impact. Likewise, the effect of large-sized aggregate has a fluctuat-
ing impact on compressive strength, particularly when its quantity exceeds 1200 kg/m3. The data demonstrates 
that variables such as temperature and sodium hydroxide have a positive impact on the outcome of the model. 
It accelerates the polymerization reaction. Increasing the curing temperature was found to positively impact the 
compressive strength (CS) of polymer composites. Similary, Zhang et al.97 also documented a comparable effect. 
The findings of this study were obtained by analyzing the inputs and dataset size used in the SHAP analysis. 
Increasing the scope of the database to include a wider variety of input variables has the potential to yield more 
precise correlations.

Figure 20.  Features interaction with strength.
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Graphical user interface
A straightforward and user-friendly graphical user interface with input variables and output strength has been 
built for the practical application of our model, as illustrated in Fig. 21. The user must input the amounts of the 
input variables in the units specified while the compressive strength will be calculated at the conclusion of the 
analysis. All settings may be reset to default empty values using the clear button. This straightforward GUI offers 
effective model applicability for both study and business. The creation of a graphical user interface (GUI), which 
offers a natural and user-friendly manner to interact with computer programs via visual components, is essential 
for the development of contemporary computer applications.

Conclusion
The implementation of individual and ensemble methods employing ANN with Adaboost and bagging to antici-
pate the mechanical characteristics of FASBGPC is described in this study. Python code was utilized in the Ana-
conda prompt navigator with Spyder to run the necessary models for additional investigation. For the assessment 
and correctness of each model, statistical indicator checks in the form of numerous statistical mistakes were 
performed. The research led to the following findings:

1. The ensemble methods, which include bagging and boosting techniques, exhibited more dependable perfor-
mance in comparison to individual methods. More precisely, the utilization of boosting with artificial neural 
networks (ANN) led to an enhancement compared to the individual strategy. Furthermore, both techniques 
demonstrated a strong association, with an  R2 value exceeding 0.85.

2. Compared to the LR model, the ANN model’s prediction of FASBGPC’s compressive strength has a good 
relationship with  R2 = 0.829. In addition, statistical indicator in form of MAE depicts that ANN models give 
28% more accurate result. This shows that non-linear regression gives a robust performance than linear 
models.

3. Adaboost with ANN as an ensemble model shows an obstinate correlation of  R2 = 0.928 as compared to ANN. 
Similarly, ANN with bagging gives  R2 = 0.89, as opposed to ANN which is  R2 = 0.829. Thus, the ANN model 
with boosting shows the least error and accurate performance than other models.

4. Numerical errors in the form of MAE, RMSE, RRMSE, RSE, and  R2 provide obstinate outcomes for ANN 
with Adaboost by displaying the least error indications. Also, External validation checks fulfill the criteria 
and thus boosting present a good model.

5. Validation by using K-Fold cross-validation and statistical indicator shows a higher accuracy of the models.
6. Shapley analysis reveals that GGBS, sodium hydroxide molarity, and temperature has a major influential 

aspect on crushing strength of GPC.

Figure 21.  Graphical user interface of FASBC.
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Code availability
The python-based source code that support the findings of this study is available at https:// github. com/ Kiran 
arif0 01/ Paper- data.

Received: 28 October 2023; Accepted: 13 February 2024

References
 1. Huang, L., Krigsvoll, G., Johansen, F., Liu, Y. & Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy 

Rev. 81, 1906–1916 (2018).
 2. Arbelaez Perez, O. F., Florez, D. R., Zapata Vergara, L. M. & Hernández Benavides, K. V. Innovative use of agro-waste cane bagasse 

ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions. J. Clean. Prod. 379, 
(2022).

 3. Liu, N. et al. Road life-cycle carbon dioxide emissions and emission reduction technologies: A review. J. Traffic Transp. Eng. (English 
Edition) 9, 532–555 (2022).

 4. Iftikhar, B. et al. Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization 
and comparison. J. Clean. Prod. 348, 131285 (2022).

 5. Khasreen, M. M., Banfill, P. F. G. & Menzies, G. F. Life-cycle assessment and the environmental impact of buildings: A review. 
Sustainability 1, 674–701 (2009).

 6. Shahmansouri, A. A., Akbarzadeh Bengar, H. & Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geo-
polymer concrete using GEP method. J. Build. Eng. 31, 101326 (2020).

 7. Waqar, A. et al. Effect of volcanic pumice powder ash on the properties of cement concrete using response surface methodology. 
J. Build. Pathol. Rehabil. 8, (2023).

 8. Tang, Y. et al. Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective 
optimization analysis. Rev. Adv. Mater. Sci. 62, (2023).

 9. Khankhaje, E. et al. Properties of pervious concrete incorporating fly ash as partial replacement of cement: A review. Dev. Built 
Environ. 14, 100130 (2023).

 10. Li, Z. et al. Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolym-
erization mechanism. Case Stud. Constr. Mater. 19, e02410 (2023).

 11. Zeng, H., Li, Y., Zhang, J., Chong, P. & Zhang, K. Effect of limestone powder and fly ash on the pH evolution coefficient of concrete 
in a sulfate-freeze–thaw environment. J. Mater. Res. Technol. 16, 1889–1903 (2022).

 12. Kajaste, R. & Hurme, M. Cement industry greenhouse gas emissions—Management options and abatement cost. J. Clean. Prod. 
112, 4041–4052 (2016).

 13. Khan, M. A. et al. Simulation of depth of wear of eco-friendly concrete using machine learning based computational approaches. 
Materials (Basel). 15, 58 (2022).

 14. Ince, C., Shehata, B. M. H., Derogar, S. & Ball, R. J. Towards the development of sustainable concrete incorporating waste tyre rub-
bers: A long-term study of physical, mechanical and durability properties and environmental impact. J. Clean. Prod. 334, 130223 
(2022).

 15. Singh, A. et al. Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction 
materials. Constr. Build. Mater. 408, 133689 (2023).

 16. Zhou, C. et al. The feasibility of using ultra-high performance concrete (UHPC) to strengthen RC beams in torsion. J. Mater. Res. 
Technol. 24, 9961–9983 (2023).

 17. He, H. et al. Employing novel N-doped graphene quantum dots to improve chloride binding of cement. Constr. Build. Mater. 401, 
(2023).

 18. Song, Q., Guo, M. Z., Gu, Y. & Ling, T. C. CO2 curing of SCMs blended cement blocks subject to elevated temperatures. Constr. 
Build. Mater. 374, 130907 (2023).

 19. Cordoba, G. & Irassar, E. F. Carbon footprint of reinforced concrete columns with and without supplementary cementitious 
materials. Int. J. Life Cycle Assess. 28, 800–812 (2023).

 20. Adesina, A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Challenges 1, 100004 (2020).
 21. Akbar, A. et al. Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. J. Build. Eng. 33, 

101492 (2021).
 22. Lin, J. X. et al. Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A 

focus on cracking characteristics. Compos. Struct. 323, (2023).
 23. Rashad, A. M. An investigation on alkali-activated slag pastes containing quartz powder subjected to elevated temperatures. Rev. 

Constr. 19, 42–51 (2020).
 24. Zhou, S., Lu, C., Zhu, X. & Li, F. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant 

with low alkali content. Engineering 7, 1631–1645 (2021).
 25. Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35, 658–670 (2005).
 26. Bouaissi, A., Li, L. yuan, Al Bakri Abdullah, M. M. & Bui, Q. B. Mechanical properties and microstructure analysis of FA-GGBS-

HMNS based geopolymer concrete. Constr. Build. Mater. 210, 198–209 (2019).
 27. Hassan, A., Arif, M. & Shariq, M. Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure 

to elevated temperatures. Arab. J. Sci. Eng. 45, 3843–3861 (2020).
 28. Ding, Y., Shi, C. J. & Li, N. Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr. 

Build. Mater. 190, 787–795 (2018).
 29. Jumaa, N. H., Ali, I. M., Nasr, M. S. & Falah, M. W. Strength and microstructural properties of binary and ternary blends in fly 

ash-based geopolymer concrete. Case Stud. Constr. Mater. 17, e01317 (2022).
 30. Adak, D. & Mandal, S. Strength and durability performance of fly ash-based process-modified geopolymer concrete. J. Mater. Civ. 

Eng. 31, 04019174 (2019).
 31. Fang, G., Ho, W. K., Tu, W. & Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at 

ambient temperature. Constr. Build. Mater. 172, 476–487 (2018).
 32. Jin, M. et al. Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalci-

fication action. Cem. Concr. Res. 172, (2023).
 33. Wang, J. et al. Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete. 

Constr. Build. Mater. 247, 118540 (2020).

https://github.com/Kiranarif001/Paper-data
https://github.com/Kiranarif001/Paper-data


21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4598  | https://doi.org/10.1038/s41598-024-54513-y

www.nature.com/scientificreports/

 34. Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F. & Belarbi, R. Fly ash and ground granulated blast furnace 
slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Constr. Build. Mater. 257, (2020).

 35. Yazdi, M. A., Liebscher, M., Hempel, S., Yang, J. & Mechtcherine, V. Correlation of microstructural and mechanical properties of 
geopolymers produced from fly ash and slag at room temperature. Constr. Build. Mater. 191, 330–341 (2018).

 36. Kumar, S., Kumar, R. & Mehrotra, S. P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly 
ash based geopolymer. J. Mater. Sci. 45, 607–615 (2010).

 37. Hadi, M. N. S., Farhan, N. A. & Sheikh, M. N. Design of geopolymer concrete with GGBFS at ambient curing condition using 
Taguchi method. Constr. Build. Mater. 140, 424–431 (2017).

 38. Noushini, A., Castel, A., Aldred, J. & Rawal, A. Chloride diffusion resistance and chloride binding capacity of fly ash-based geo-
polymer concrete. Cem. Concr. Compos. 105, (2020).

 39. Nath, P. & Sarker, P. K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured 
in ambient condition. Constr. Build. Mater. 66, 163–171 (2014).

 40. Farhan, N. A., Sheikh, M. N. & Hadi, M. N. S. Experimental investigation on the effect of corrosion on the bond between reinforc-
ing steel bars and fibre reinforced geopolymer concrete. Structures 14, 251–261 (2018).

 41. Lokuge, W., Wilson, A., Gunasekara, C., Law, D. W. & Setunge, S. Design of fly ash geopolymer concrete mix proportions using 
Multivariate Adaptive Regression Spline model. Constr. Build. Mater. 166, 472–481 (2018).

 42. Khan, M. A., Zafar, A., Akbar, A., Javed, M. F. & Mosavi, A. Application of gene expression programming (GEP) for the prediction 
of compressive strength of geopolymer concrete. Materials (Basel). 14, 1–23 (2021).

 43. Ahmed, H. U. et al. Compressive strength of geopolymer concrete composites: A systematic comprehensive review, analysis and 
modeling. Eur. J. Environ. Civ. Eng. 27, 1383–1428 (2023).

 44. Ilyas, I. et al. Forecasting strength of cfrp confined concrete using multi expression programming. Materials (Basel). 14, (2021).
 45. Khan, M. A. et al. Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, 

and gene expression programming with K-fold cross validation. Front. Mater. 8, (2021).
 46. Ahmad, A. et al. Compressive strength prediction via gene expression programming (Gep) and artificial neural network (ann) for 

concrete containing rca. Buildings 11, 324 (2021).
 47. Song, H. et al. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. 

Build. Mater. 308, 125021 (2021).
 48. Wu, Z., Huang, B., Fan, J. & Chen, H. Homotopy based stochastic finite element model updating with correlated static measure-

ment data. Measurement 210, 112512 (2023).
 49. Emad, W. et al. Prediction of concrete materials compressive strength using surrogate models. Structures 46, 1243–1267 (2022).
 50. Tang, Y. et al. An experimental investigation and machine learning-based prediction for seismic performance of steel tubular 

column filled with recycled aggregate concrete. Rev. Adv. Mater. Sci. 61, 849–872 (2022).
 51. Xu, L. et al. An upscaling approach to predict mine water inflow from roof sandstone aquifers. J. Hydrol. 612, (2022).
 52. Khan, M. A. et al. Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random 

forest. Adv. Civ. Eng. 2021, (2021).
 53. Ahmad, A., Ahmad, W., Aslam, F. & Joyklad, P. Compressive strength prediction of fly ash-based geopolymer concrete via advanced 

machine learning techniques. Case Stud. Constr. Mater. 16, e00840 (2022).
 54. Peng, Y. & Unluer, C. Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning 

techniques. Constr. Build. Mater. 316, 125785 (2022).
 55. Nazari, A. & Pacheco Torgal, F. Predicting compressive strength of different geopolymers by artificial neural networks. Ceram. Int. 

39, 2247–2257 (2013).
 56. Alkroosh, I. S. & Sarker, P. K. Prediction of the compressive strength of fly ash geopolymer concrete using gene expression pro-

gramming. Comput. Concr. 24, 295–302 (2019).
 57. Aneja, S., Sharma, A., Gupta, R. & Yoo, D. Y. Bayesian regularized artificial neural network model to predict strength characteristics 

of fly-ash and bottom-ash based geopolymer concrete. Materials (Basel). 14, 1729 (2021).
 58. Van Dao, D., Ly, H. B., Trinh, S. H., Le, T. T. & Pham, B. T. Artificial intelligence approaches for prediction of compressive strength 

of geopolymer concrete. Materials (Basel). 12, 983 (2019).
 59. Cao, R., Fang, Z., Jin, M. & Shang, Y. Application of machine learning approaches to predict the strength property of geopolymer 

concrete. Materials (Basel). 15, 2400 (2022).
 60. Ashrafian, A., Panahi, E., Salehi, S. & Taheri Amiri, M. J. On the implementation of the interpretable data-intelligence model for 

designing service life of structural concrete in a marine environment. Ocean Eng. 256, 111523 (2022).
 61. Ashrafian, A., Amiri, M. J. T. & Haghighi, F. Modeling the slump flow of self-compacting concrete incorporating metakaolin using 

soft computing techniques. J. Struct. Constr. Eng. 6, 5–20 (2018).
 62. Chu, H. H. et al. Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) 

for forecasting the compressive strength geopolymer concrete. Ain Shams Eng. J. 12, 3603–3617 (2021).
 63. Ashrafian, A., Hamzehkolaei, N. S., Dwijendra, N. K. A. & Yazdani, M. An evolutionary neuro-fuzzy-based approach to estimate 

the compressive strength of eco-friendly concrete containing recycled construction wastes. Buildings 12, 1280 (2022).
 64. Amin, M. N. et al. Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): 

Optimization and hyper-tuning. J. Mater. Res. Technol. 25, 1495–1536 (2023).
 65. Hu, Y. et al. Strength evaluation sustainable concrete with waste ingredients at elevated temperature by employing interpretable 

algorithms: Optimization and hyper tuning. Mater. Today Commun. 36, 106467 (2023).
 66. Alzara, M. et al. Prediction of building energy performance using mathematical gene-expression programming for a selected 

region of dry-summer climate. Eng. Appl. Artif. Intell. 126, 106958 (2023).
 67. Zaman, A. et al. Forecasting the strength of micro/nano silica in cementitious matrix by machine learning approaches. Mater. 

Today Commun. 37, 107066 (2023).
 68. Ahmad, M. et al. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materi-

als (Basel). 14, (2021).
 69. Nguyen, H., Vu, T., Vo, T. P. & Thai, H. T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. 

Mater. 266, 120950 (2021).
 70. Ahmad, A. et al. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials 

(Basel). 14, 1–21 (2021).
 71. Balf, F. R., Kordkheili, H. M. & Kordkheili, A. M. A new method for predicting the ingredients of self-compacting concrete (SCC) 

including fly ash (FA) using data envelopment analysis (DEA). Arab. J. Sci. Eng. 46, 1–22 (2021).
 72. Ahmad, A., Farooq, F., Ostrowski, K. A., Śliwa-Wieczorek, K. & Czarnecki, S. Application of novel machine learning techniques 

for predicting the surface chloride concentration in concrete containing waste material. Materials (Basel). 14, 2297 (2021).
 73. Farooq, F., Ahmed, W., Akbar, A., Aslam, F. & Alyousef, R. Predictive modeling for sustainable high-performance concrete from 

industrial wastes: A comparison and optimization of models using ensemble learners. J. Clean. Prod. 292, 126032 (2021).
 74. Saha, P., Debnath, P. & Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector 

regression approach. Neural Comput. Appl. 32, 7995–8010 (2020).
 75. Azimi-Pour, M., Eskandari-Naddaf, H. & Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive 

strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 230, 117021 (2020).



22

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4598  | https://doi.org/10.1038/s41598-024-54513-y

www.nature.com/scientificreports/

 76. Al-Mughanam, T., Aldhyani, T. H. H., Alsubari, B. & Al-Yaari, M. Modeling of compressive strength of sustainable self-compacting 
concrete incorporating treated palm oil fuel ash using artificial neural network. Sustain. 12, 1–13 (2020).

 77. Farooq, F. et al. A comparative study of random forest and genetic engineering programming for the prediction of compressive 
strength of high strength concrete (HSC). Appl. Sci. 10, 1–18 (2020).

 78. Aslam, F. et al. Applications of gene expression programming for estimating compressive strength of high-strength concrete. Adv. 
Civ. Eng. 2020, 1–23 (2020).

 79. Selvaraj, S. & Sivaraman, S. Prediction model for optimized self-compacting concrete with fly ash using response surface method 
based on fuzzy classification. Neural Comput. Appl. 31, 1365–1373 (2019).

 80. Asteris, P. G. & Kolovos, K. G. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31, 
409–424 (2019).

 81. Kaveh, A., Bakhshpoori, T. & Hamze-Ziabari, S. M. M5’ and mars based prediction models for properties of selfcompacting 
concrete containing fly ash. Period. Polytech. Civ. Eng. 62, 281–294 (2018).

 82. Prasad, B. K. R., Eskandari, H. & Reddy, B. V. V. Prediction of compressive strength of SCC and HPC with high volume fly ash 
using ANN. Constr. Build. Mater. 23, 117–128 (2009).

 83. Vakhshouri, B. & Nejadi, S. Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing 
280, 13–22 (2018).

 84. Nasir Amin, M. et al. Prediction model for rice husk ash concrete using AI approach: Boosting and bagging algorithms. Structures 
50, 745–757 (2023).

 85. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Int. Jt. Conf. Artif. Intell. 
(1995).

 86. Nguyen, T., Kashani, A., Ngo, T. & Bordas, S. Deep neural network with high-order neuron for the prediction of foamed concrete 
strength. Comput. Civ. Infrastruct. Eng. 34, 316–332 (2019).

 87. Gandomi, A. H., Alavi, A. H., Mirzahosseini, M. R. & Nejad, F. M. Nonlinear genetic-based models for prediction of flow number 
of asphalt mixtures. J. Mater. Civ. Eng. 23, 248–263 (2011).

 88. Golbraikh, A. & Tropsha, A. Beware of q2! in Journal of Molecular Graphics and Modelling vol. 20 269–276 (Elsevier, 2002).
 89. Roy, P. P. & Roy, K. On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 27, 302–313 

(2008).
 90. Rashad, A. M. Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 10, 57–64 (2013).
 91. Aydin, S. & Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B Eng. 57, 

166–172 (2014).
 92. Imbabi, M. S., Carrigan, C. & McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built 

Environ. 1, 194–216 (2012).
 93. Poloju, K. K. & Srinivasu, K. Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient 

curing and oven curing. in Materials Today: Proceedings vol. 42 962–968 (Elsevier, 2020).
 94. Wasim, M., Ngo, T. D. & Law, D. A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and 

infrastructure. Construction and Building Materials vol. 291 123381 (Elsevier, 2021).
 95. Sun, B., Ye, G. & de Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. 

Constr. Build. Mater. 326 (2022).
 96. Kashifi, M. T., Salami, B. A., Rahman, S. M. & Alimi, W. Using explainable machine learning to predict compressive strength of 

blended concrete: A data-driven metaheuristic approach. Asian J. Civ. Eng. https:// doi. org/ 10. 1007/ s42107- 023- 00769-0 (2023).
 97. Zhang, D. W., Sun, X. M. & Li, H. Relationship between macro-properties and amorphous gel of FA-based AAMs with different 

curing conditions after elevated temperature. Ceram. Int. 49, 17453–17467 (2023).

Acknowledgements
The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under 
the Distinguished Research Funding program grant code (NU/DRP/SERC/12/6).

Author contributions
Y.D. conceptualization, methodology, writing—original draft preparation, data curation. K.A. writing; analy-
sis; drafting; modeling, supervision, project administration, writing—review & editing. M.A. data acquisition, 
Software, writing original draft, validation. M.A. data curation, project administration, conceptualization. T.N. 
investigation, methodology, funding acquisition. Y.G. Writing—review & editing, formal analysis, funding acqui-
sition, formal analysis.

Funding
Open access funding provided by Lulea University of Technology.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 54513-y.

Correspondence and requests for materials should be addressed to K.A. or T.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s42107-023-00769-0
https://doi.org/10.1038/s41598-024-54513-y
https://doi.org/10.1038/s41598-024-54513-y
www.nature.com/reprints


23

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4598  | https://doi.org/10.1038/s41598-024-54513-y

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Estimation of compressive strength of waste concrete utilizing fly ashslag in concrete with interpretable approaches: optimization and graphical user interface (GUI)
	Alkali activated-based geopolymer concrete (AA-GPC)
	Data description
	Methodology
	Multilayer perceptron neuron network (MLPNN)
	Hyper-tuning parameters
	Ensemble methods using boosting and bagging approach
	Bagging and boosting algorithm
	Parameter’s tuning for ensemble learner

	K-fold cross-validation method
	Statistical analysis

	Model result
	Ensemble with Adaboost algorithm
	Ensemble with bagging algorithm
	Statistical analysis of model
	Cross-validation of K-folds

	Shapley analysis
	Graphical user interface
	Conclusion
	References
	Acknowledgements


