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Economical‑environmental‑ 
technical optimal power 
flow solutions using a novel 
self‑adaptive wild geese algorithm 
with stochastic wind and solar 
power
Pavel Trojovský *, Eva Trojovská  & Ebrahim Akbari 

This study introduces an enhanced self‑adaptive wild goose algorithm (SAWGA) for solving 
economical‑environmental‑technical optimal power flow (OPF) problems in traditional and modern 
energy systems. Leveraging adaptive search strategies and robust diversity capabilities, SAWGA 
distinguishes itself from classical WGA by incorporating four potent optimizers. The algorithm’s 
application to optimize an OPF model on the different IEEE 30‑bus and 118‑bus electrical networks, 
featuring conventional thermal power units alongside solar photovoltaic (PV) and wind power (WT) 
units, addresses the rising uncertainties in operating conditions, particularly with the integration of 
renewable energy sources (RESs). The inherent complexity of OPF problems in electrical networks, 
exacerbated by the inclusion of RESs like PV and WT units, poses significant challenges. Traditional 
optimization algorithms struggle due to the problem’s high complexity, susceptibility to local 
optima, and numerous continuous and discrete decision parameters. The study’s simulation results 
underscore the efficacy of SAWGA in achieving optimal solutions for OPF, notably reducing overall 
fuel consumption costs in a faster and more efficient convergence. Noteworthy attributes of SAWGA 
include its remarkable capabilities in optimizing various objective functions, effective management 
of OPF challenges, and consistent outperformance compared to traditional WGA and other modern 
algorithms. The method exhibits a robust ability to achieve global or nearly global optimal settings for 
decision parameters, emphasizing its superiority in total cost reduction and rapid convergence.

Keywords Economical-environmental-technical dispatch problem, Electrical networks, Renewable energy 
sources (RESs), Optimal power flow (OPF), Self-adaptive wild geese algorithm (SAWGA), OPF optimization 
functions

Motivation and incitement
The safe, secure, and inexpensive functioning of the electrical network is referred to as the optimum power flow 
(OPF), and this is made possible by properly configuring the system’s control variables. According to the math-
ematical formulation, OPF is a static, nonlinear, large-scale, restricted issue with many discrete and continuous 
decision parameters. OPF is a vital instrument for electrical networks’ cheaper and safer  functioning1,2. OPF is 
used in the power system to achieve various goals, including lowering overall generating costs of thermal units 
(Ths), improving voltage stability, minimizing network losses, cutting CO2 emissions, and preserving the best 
settings for control  variables3,4. This method is often restricted by a number of requirements that must be met, 
including the different technical limitations, transmission line capacity, bus voltage, ability of the power genera-
tor, and several physical  limitations5.
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Power plants using fossil fuels are the focus of the traditional OPF issue. Renewable energy sources (RESs) 
have proliferated over the last 20 years due to factors like rising demand, the urgent need to decrease the emis-
sions of greenhouse gases, favorable pricing for RESs, and triggering and deregulation of the electrical energy 
 market6. The most significant alternatives to fossil fuels for power production seem to be wind and solar  energy7,8. 
The use of improved wind power generating units (WTs) and solar photovoltaic power units (PVs), which lower 
the cost of system installations, has permitted the rapidly expanding RESs  use9. Additionally, it might be claimed 
that solar photovoltaic and wind turbine generating systems are tried-and-true  technology10,11.

Based on economic indicators like the cost of fuel used to produce electrical energy in energy produc-
tion systems, quality indicators of produced electrical energy, and system and transmission network losses, the 
performance of the electrical network operation may be significantly impacted by the locations, quantity, with 
technological features of  RESs12,13. Due to its intermittent power-generating characteristics, adding several RESs 
into an electrical network increases the difficulty of  OPF10,14. Recent research has focused on finding a strong, fast, 
and simple optimization algorithm, considering renewable energies in the electrical networks, multi-objective 
OPF (MOOPF) problems, and considering various objective functions to the OPF  problems15.

Literature review
In recent literature, numerous methods of incorporating RESs into OPF and different solution methodologies for 
the OPF issue have been proposed. Most scholars explored bio-inspired optimization met heuristics for OPF set-
tings in recent studies. To tackle OPF in the electrical networks with RESs, Ullah et al. developed a combination 
of gravitational search algorithm (GSA) and an improved particle swarm optimization (PSO)16, the coronavirus 
herd immunity optimizer (CHIO)17 for the technical-environmental-economical dispatch problem in the two 
standards IEEE electrical networks. The five goals of this investigation were total fuel expenses, active losses, pol-
lution level, stability, and variation of the network’s voltage. Using the analytical hierarchy process and a weighted 
collect method, the multi-objective OPF was reduced to a normalized one-objective OPF. The outcomes showed 
that CHIO outperforms the other EETD problem-solving methodologies. Elattar concentrated on applying 
modified moth swarm optimization (MMSO) to mathematically model the OPF with a hybrid power and heat 
system through stochastic WT, and the resulting methodology was applied to the IEEE 30-bus electrical network 
with different test settings. In contrast to previous algorithms, RESs into OPF and the proposed technique to 
address it generated successful optimal  solutions18. The OPF issue was modeled by a modified colliding bodies 
optimization (ICBO)19, and applications were made using 16 case studies on three IEEE standard electrical net-
works to evaluate the effectiveness and resilience of ICBO. A new, improved chaotic PSO for solving MOOPF in 
a test system with RESs suggested  in20, that this PSO, compared to recent algorithms, generated superior optimal 
 solutions20.  In21, the dynamic OPF (DOPF) has been optimized by a new enhanced honey bee mating algorithm 
while taking into account the valve-point effects (VPEs) in the 14, 30, and 118-bus standard electrical networks. 
Salkuti used a new glowworm swarm algorithm (GSA) that was successfully executed to resolve an MOOPF 
in the IEEE systems incorporating a WT under various operating  circumstances22. A more effective improved 
manta ray foraging algorithm (IMOMRFO)23, twenty-four benchmark tasks of varying sorts and degrees of dif-
ficulty were used to examine the effectiveness of the created approach and compare it to competing methods. 
The analysis’s findings demonstrated that IMOMRFO produced competitive results on several MOOPFs and 
identified the optimum results in the recent studies for MOOPFs that arise in  practice23. Using thermal with RESs, 
Kathiravan et al. studied OPF using a flower pollination algorithm (FPA). In various test situations, FPA has been 
examined on Indian utility 30-bus and IEEE 30-bus electrical  networks24. The suggested solution strategy for the 
OPF issues has been applied to the new IEEE 30-bus electrical network using a hybrid PSO-GWO algorithm, 
which combines PSO with grey wolf optimization (GWO)25. The hybrid PSO-GWO method performed well in 
comparison to other algorithms, according to simulation findings, and showed that it may be a good option for 
solving OPF  issues25. With adjustable WT and PV energy systems, Duman et al. solved the OPF issue using the 
differential evolutionary (DE) PSO (DEPSO). For testing the method under various goal functions, IEEE 30-, 
57-, and 118-bus electrical networks have been  studied26.  In27, a new hybrid firefly-bat algorithm (HFBA-COFS) 
directed to handle the strictly-constrained MOOPF, which the proposed method increased the original system’s 
capacity for population diversity and global exploration of the three different IEEE test systems to demonstrate 
the significant benefits of the HFBA-COFS method, the HFBA-COFS algorithm was capable of producing high-
quality optimal solutions, which is crucial for realizing the secure and efficient operation of massive electrical 
networks. In a different research, they suggested using FACTS devices to address the OPF issue. They used a 
modified chaotic PSOGSA to account for the uncertainty of wind energy  systems28. A unique adaptive Gaussian 
teaching–learning-based optimization (TLBO) (AGTLBO) that enhanced the performance of traditional TLBO 
and addressed the OPF issue was proposed  in29. The results demonstrated that it met the heuristics described in 
the recent studies compared to modern optimization. The AGTLBO was more efficient and successful. TLBO 
augmented with Lévy mutation (LTLBO)30 was examined, assessed, and compared to other approaches using the 
IEEE 30-bus and IEEE 57-bus electrical networks with various OPF functions. A modified population external 
optimization method (CMOPEO) was suggested by Chen et al. as an improved optimizer to OPF with RESs, and 
CMOPEO was evaluated on the IEEE 30-bus electrical network for several test  scenarios31. The goal function of 
the slime mold algorithm (SMA)32 was the system’s total cost, which included a penalty cost for underestimat-
ing RESs and a reserve cost for overestimation. Algeria’s DZA 114-bus and IEEE 30-bus electrical networks 
were used to assess SMA performance. Four optimization strategies were compared to the SMA. According to 
the overall simulation findings, SMA outperformed the other analyzed algorithms over a variety of function 
landscapes. The 5-bus and new IEEE 30-bus electrical networks with and without unified power flow controller 
(UPFC) were used to evaluate the performance of bat optimization algorithm (BA)-based OPF as an effective 
and robust  solution33. The performance of the turbulent flow of a water-based optimizer (TFWO)34 to OPF was 
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demonstrated by a comparison of the statistical indices, convergence trend, and optimal solutions to modern 
optimizers in recent  studies35,36. The study’s findings led the authors to conclude that TFWO was better and 
more successful in solving OPF optimization issues. Compared to other well-known algorithms, it had higher 
convergence rates and made significant technological and financial advancements. The suggested TFWO for the 
large-scale tested system decreases the range from 4.6% to 33.12%. The proposed solution technique resulted 
in a more competitive solution for the evaluated system with a notable improvement in the techno-economic 
aspects. Three separate target functions in OPF, including reducing overall operating costs, carbon pollution with 
tax, and power losses, were taken into consideration by the chaotic bonobo optimizer (CBO)37. To demonstrate 
the potency and advantage of CBO to arrive at the best result, CBO was tested on two standard IEEE electrical 
networks. The founded optimal solutions demonstrated the effectiveness and dependability of CBO for solving 
OPF using stochastic RESs, a hybrid DE, symbiotic organisms search (SOS)38, etc.

In the realm of optimal power flow (OPF) solutions, the landscape has witnessed a surge in innovative meth-
odologies, each striving to address the complex challenges posed by integrating renewable energy sources (RESs) 
into electrical networks. The advantages and disadvantages inherent in the current state-of-the-art optimization 
methods employed for OPF can be summarized as follows:

Advantages of state‑of‑the‑art methods in OPF

1. Versatility in Problem Solving:

•  Advantage: Many state-of-the-art algorithms demonstrate adaptability and effectiveness in addressing 
specific challenges, such as technical-environmental-economical dispatch problems, making them ver-
satile solutions.

2. Improved Performance Metrics:

• Advantage: Several methodologies exhibit superior performance in optimizing key metrics, including 
total fuel expenses, active losses, pollution levels, network stability, and voltage variations, showcasing 
their effectiveness in enhancing system efficiency.

3. Optimal Solutions for Specific Scenarios:

• Advantage: Certain algorithms excel in solving particular OPF scenarios, such as hybrid power and heat 
systems with stochastic renewable sources like wind turbines (WTs), providing tailored solutions for 
specific applications.

Disadvantages of state‑of‑the‑art methods in OPF

1. Limited Scope of Application:

• Disadvantage: Some algorithms may have a narrow focus, limiting their applicability to specific IEEE 
electrical networks or certain types of OPF issues.

2. Reduced Versatility:

• Disadvantage: While effective for targeted challenges, certain methodologies might lack the versatility 
needed to address a broad spectrum of OPF problems, potentially hindering their widespread adoption.

3. Limited Evaluation on Broader OPF Issues:

• Disadvantage: Some algorithms may have limited evaluations beyond specific OPF scenarios, leaving 
uncertainties about their performance in addressing broader optimization challenges.

Contribution and paper organization
Building upon the current state-of-the-art, our work introduces a novel self-adaptive wild goose algorithm 
(SAWGA) to tackle the OPF problem in a modified IEEE 30-bus electrical network with stochastic RESs, includ-
ing photovoltaic (PV) and WT units. With the suggested SAWGA method and a few additional optimization 
techniques, we attempted to solve OPF in a modified IEEE 30-bus and 118-bus electrical  networks9, including 
stochastic RESs in this work. The suggested SAWGA algorithm aimed to enhance the power of basic WGA’s 
exploitation and exploration to resolve various operational test cases of OPF, including stochastic RESs.

We have accomplished this by carefully choosing the control settings and algorithm coefficients. Lognormal 
and Weibull probability distribution functions were applied to stochastic RES irradiation conditions of the 
systems, respectively. The obtained optimal solutions by SAWGA’s five evaluation items, which had been used 
for various OPF functions, were compared to those from the original WGA, thermal exchange optimization 
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algorithm (TEO)39, grasshopper optimization (GOA)40, Harris hawks optimization (HHO)41, and honey badger 
algorithm (HBA)42, which have been recently reported.

The key contributions of our study include:

1. We present SAWGA, an enhanced version of the wild goose algorithm (WGA), demonstrating superior 
performance in real-world optimization problems, particularly in OPF scenarios with high difficulty levels 
and multiple locally optimal solutions.

2. Our proposed SAWGA method is tailored to address various OPF challenges in a modified IEEE 30-bus 
electrical network, accounting for the complexities introduced by stochastic RESs.

3. We conduct a thorough evaluation of SAWGA against benchmark algorithms, including thermal exchange 
optimization algorithm (TEO), grasshopper optimization (GOA), Harris hawks optimization (HHO), and 
honey badger algorithm (HBA), in addition to the original WGA. The evaluation encompasses multiple OPF 
optimization functions, considering diverse power generation operating situations and scenarios, such as 
voltage deviation, emission, and network losses.

Through these contributions, our study advances the field of bio-inspired optimization for OPF, offering a 
novel and efficient solution for practical applications in electrical networks with renewable energy integration.

The remains of this research have been structured as follows. OPF, with its optimization functions in the 
electrical networks with stochastic RESs, is presented in "Formulation of OPF in the electrical network with 
stochastic RESs" section. Models for RES generation power are shown in "Power and uncertainty models in the 
PVs and WTs" section. Two sub-sections of "The proposed algorithm" section each introduce the WGA algo-
rithm and the suggested SAWGA approach. The experimental research conditions and the criteria considered 
are presented in "SAWGA for solving the different OPF problems with stochastic wind and solar power" section 
of the article. Finally, "Multi-objective SAWGA (MOSAWGA) for solving the different classical OPF problems" 
section provides the study’s findings and recommendations for further research.

Formulation of OPF in the electrical network with stochastic RESs
Traditional OPF issue was identified as an essential and vital challenge to analyze, design, and manage the power 
grids and energy production and transmission networks that strive to achieve the affordable and lowest cost of 
energy production and transmission With the condition of complying with the various stipulations and different 
demands, and with inequality and equality limitations of the electrical energy production and transmission sys-
tem and  network9,43. Solving this problem with various optimization functions and considering stochastic RESs 
such as WTs and PVs through a new modified algorithm called self-adaptive wild geese algorithm (SAWGA) has 
been the main goal of this research. The problem’s suggested solution and its broad organization are represented 
below. The definition of the standard OPF issue is as  follows10.

Minimalize:

Subject to:

when fobj(x, u) is the OPFs’ optimization function, u and x show the independent and dependent decision 
parameters and the equality and inequality constraints have been shown through a(x, u) and b(x, u) , respectively.

Dependent parameters
The dependent parameters in OPF have been shown in Eq. (3)10

where PTh1 shows the slack generator’s active power, VL =
[

VL1 , . . . ,VLNPQ

]

 shows the PQ buses’ voltage values, 
QTh =

[

QTh1 , . . . ,QThNTHG

]

 , QWS =
[

QWS1 , . . . ,QWSNW

]

 , and QPV =
[

QPV1 , . . . ,QPVNPV

]

 are the reactive power 
of Ths, WTs, and PVs, and SL =

[

SL1 , . . . , SLNTL
]

 shows the network lines’ transition power; NPQ, NTHG, NW, 
NPV, and NTL show the numbers of the test power system’s PQ buss, Ths, WTs , PVs, and network lines.

Independent decision parameters
These parameters of OPF have been shown  follows10

If VG =
[

VG1 , . . . ,VGNG

]

 denotes the values of all generator buses’ voltage including PVs, Ths, WTs, and also, 
PTh =

[

PTh2 , . . . ,PThNTHG
]

 , PPVS =
[

PPVS1 , . . . ,PPVSNPV
]

 , and PWS =
[

PWS1 , . . . ,PWSNW

]

 denote the active power 
of Th, PV, WT units excluding the slack generator, respectively. The number of Th, PV, WT units is known as 
NG,NPV , and NW , respectively.

(1)fobj(x, u)

(2)
a(x, u) = 0,
b(x, u) ≤ 0,

(3)x =
[

PTh1 ,VL,QTh,QWS ,QPV

]

,

(4)u = [PTh, PWS, PPVS ,VG].
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Modeling of the test electrical network
This part of the study models how Th, PV, and WT power generation units may be integrated into contemporary 
power systems. Table 1 lists the specifications of the studied IEEE 30-bus electrical  network9.

OPF model of Ths
According to the produced output active power, Eq. (5) describes the traditional OPF function in Ths as a quad-
ratic objective function. Also, Eq. (6) contains the OPF model for Ths that includes VPEs, where ri and pi stand 
for the VPEs specifications while oi , ni , and mi are the OPF function specifications for the ith Th  generator10,45.

Pollution level model with carbon tax Ctax

Mathematically, Eq. (7)9,10 describes how to calculate the overall emission value from heat-producing units 
utilizing fossil fuel. Additionally, a carbon tax model was taken into account owing to the increasing threat of 
global warming, and the emission cost value is determined through the addition Ctax to the overall emission 
value that has been given in Eq. (8). In this case, CE and FE stand in for the emission costs, and sum emissions, 
 respectively9,10.

where σi , τi , ωi , βi , and µi are the emission characteristics of the ith Th generator.

Prohibited operating zones (POZs)
The following characteristics of a Th generator that uses fossil fuel and has several  POZs38:

where Z shows the number of POZs, zi shows the sum of POZs, PLThi ,Z , and PUThi ,Z−1 indicate the lower and upper 
bounds of the (Z − 1) th POZ of the ith unit. Figure 1 shows the specification curves of the OPF objective func-
tion without and with VPEs (a), and with the POZs (b) of the Th generators.

Direct objective function models of RESs include PVs and WTs
A linear function of planned power may be used to represent a wind energy source’s direct cost  model9,10. Where 
DCWPi , wshi , and PWSi stand for the ith wind power system’s planned power, the direct objective function of WT, 
and the direct objective function specification.

(5)CF(PTh) =
NTHG
∑

i=1

(

mi + ni·PThi + oi·P2
Thi

)

,

(6)CF1(PTh) =
NTHG
∑

i=1

(

mi + ni·PThi + oi·P2
Thi

+
∣

∣pi · sin
(

ri ·
(

Pmin
THhi

− PThi
))∣

∣

)

.

(7)FE =
NTHG
∑

i=1

(

0.01 ·
(

σi + βi · PThi + τi·P2Thi
)

+ ωi · eµi ·PThi
)

,

(8)CE = FE·Ctax ,

(9)
Pmin
Thi

≤ PThi ≤ PLThi ,1,

PUThi ,Z−1 ≤ PThi ≤ PLThi ,Z
PUThi ,zi ≤ PThi ≤ Pmax

Thi
,

,Z = 2, 3, . . . , zi ,

Table 1.  The specifications of the test electrical network.

Characteristics Size Information

Branches 41 44

Buses 30 44

Slack generators 1 Bus: 1

Ths 3 Buses: 1, 2 and 8

PVs 1 Bus: 13

WTs 2 Buses: 5 and 11

Decision parameters 11 Output real power of the Ths, WTs and PVs (5 numbers); VG (6 numbers)

VAR (volt amperes reactive) sources 2 Buses: 10 and 24

Tap-changers 4 Branches: 11, 12, 15 and 36

VL 24 [0.95–1.05] p.u

Sum reactive and real power demands – 126.2 MVAr, 283.4 MW
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Equation (11) makes a model for the direct objective function of PV. Where DCPVi , pvshi , and PPVSi have been 
recognized as the direct objective function of PV, the direct objective function specification, and the planned 
output power of PVi 9,10.

Uncertainty objective function models of PVs and WTs
The uncertain objective function models of PVs and WTs are characterized as the little-known and underestima-
tion scenarios of these studied energy sources. The uncertainty objective function models of WTs are described 
in Eqs. (12) and (13)9,10.

where  UCWP,i and OCWP,i are the underestimation and overestimation objective function values, COw,i and CUw,i 
have been defined as the uncertainty objective function specification. Also, PWSi and Pwr,i are the available and 
rated power of WTi . A proper technique in Refs.9,10 had been applied to achieve the comprehensive formulation 
of the uncertainty objective functions of a PV, with the over- and under-estimation specifications CWP,i  and 
UCWP,i , have been given in Eq. (3):

where COpv,i and CUpv,i represent the uncertainty objective function specification, and PPVav,i is the available or 
output power in the i th PV (i.e., PVi).

OPF optimization functions
Fuel cost optimization function considering VPEs
Equation (16) models the OPF optimization function that includes the sum of the fuel costs for Ths considering 
VPEs and the cost of operation and transmission of the power of the WT and PV  units9,10.

(10)DCWPi = PWSi · CFWPi = PWSi · wshi .

(11)DCPVi = PPVSi · CFPVi = PPVSi · pvshi .

(12)OCWP,i = COw,i ·
(

PWSi − Pwr,i
)

= COw,i

∫ PWS,i

0

(

PWSi − pw,i
)

fw
(

pw,i
)

dpw,i ,

(13)UCWP,i = CUw,i ·
(

Pwr,i − PWSi

)

= CUw,i

∫ Pwr,i

PWS,i

(

pw,i − PWSi

)

fw
(

pw,i
)

dpw,i ,

(14)
OCPV ,i = COpv,i ·

(

PPVS,i − PPVav,i
)

= COpv,i · fPV
(

PPVav,i < PPVS,i
)

·
[

PPVSi − E
(

PPVav,i < PPVS,i
)]

.

(15)
UCPV ,i = CUpv,i ·

(

PPVav,i − PPVSi
)

= CUpv,i · fPV
(

PPVav,i > PPVS,i
)

·
[

E
(

PPVav,i > PPVS,i
)

− PPVS,i
]

,

(16)Fobj1 = CF1(PTh)+
NW
∑

i=1

(

DCWP,i + OCWP,i + UCWP,i

)

+
NPV
∑

i=1

(

DCPV ,i + OCPV ,i + UCPV ,i

)

.

Objective function 
With VPE

Objective function 

Without VPE

Output power (MW) of  unit gth

(
ts

o
c
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min max
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Figure 1.  OPF objective function curves: (a) without and with VPEs, (b) with POZs.
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Fuel cost optimization function considering pollution level with Ctax

This OPF problem has been modeled in Eq. (17).

Fuel cost optimization function considering POZs
Equation (18), which is the main goal of the mathematical model of this OPF, has been suggested to be the 
conventional OPF objective function in Th generators considering  POZs9,10.

Network losses
The objective function presented in Eq. (19) may be used to explain the minimization of the network power 
 losses9,10.

where δij shows the difference between voltage angles in buses i and j, and Gs(i,j) shows conductance in the sth 
network line between buses i and j . Also, the voltage value at the ith network bus is considered by the letter Vi.

Voltage deviation (V.D.)
In the considered OPF objective function, the V.D. value for the developed energy networks is determined as 
indicated in Eq. (20)9,10.

Considered OPF’s constraints
Equality OPF’s constraints
The suggested OPF problem’s equality restrictions may be formulated as given in Eq. (21) and Eq. (22)9,10:

where PGi shows the output power of the ith unit, PDi shows the demanded power of the ith load bus, the QGi 
shows the output reactive power of the ith generator, and QSHi shows the output reactive power of the ith paral-
lel reactive power compensator. QDi is the demanded reactive power of the ith load bus and Nbus indicates the 
number of network buses. The transmission line’s conductance and susceptance values are denoted by the letters 
Gij and Bij.

Inequality OPF’s constraints

•  Generator limits

As indicated in Eq. (23), there are down and up restrictions on the output power levels as well as the voltage 
magnitudes of the Ths, WTs, and  PVs9,10.

• Security constraints

(17)Fobj2 = Fobj1 + CE .

(18)Fobj3 = CF(PTh)+
NW
∑

i=1

(

DCWP,i + OCWP,i + UCWP,i

)

+
NPV
∑

i=1

(

DCPV ,i + OCPV ,i + UCPV ,i

)

.

(19)Fobj4 = Ploss =
NTL
∑

n=1

Gs(i,j)(n) ·
(

V2
i + V2

j − 2Vi · Vjcosδij

)

,

(20)Fobj5 = VD =
NPQ
∑

i=1

∣

∣VLi − 1
∣

∣.

(21)PGi − PDi − Vi

Nbus
∑

j=1

Vj ·
(

Bijsin
(

δi − δj
)

+ Gijcos
(

δi − δj
))

= 0,

(22)QGi + QSHi − QDi − Vi

Nbus
∑

j=1

Vj ·
(

Gijsin
(

δi − δj
)

− Bijcos
(

δi − δj
))

= 0,

(23)

PThi ,min ≤ PThi ≤ PThi ,max , i = 1, 2, . . . ,NTHG,
PWSi ,min ≤ PWSi ≤ PWSi ,max , i = 1, 2, . . . ,NW ,
PPVi ,min ≤ PPVi ≤ PPVi ,max , i = 1, 2, . . . ,NPV ,
QThi ,min ≤ QThi ≤ QThi ,max , i = 1, 2, . . . ,NTHG,
QWSi ,min ≤ QWSi ≤ QWSi ,max , i = 1, 2, . . . ,NW ,
QPVi ,min ≤ QPVi ≤ QPVi ,max , i = 1, 2, . . . ,NPV ,
VGi ,min ≤ VGi ≤ VGi ,max , i = 1, 2, . . . ,NG.
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Each PQ bus’ voltage magnitude value must fall within certain bounds, and each transmission line’s apparent 
power value may be constrained by its maximum capacity. Where SLi ,max and SLi  indicate the maximum and 
apparent power levels in the i th line; VLi ,min and VLi ,max represent the minimum and maximum voltage levels 
of the ith PQ  bus9,10.

The SCOPFs’ objective function in the studied electrical network, including Ths, PVs, and WTs, is in 
Eq. (25)46–48.

where �VPQ , �Pslack , �QTH , �QWS , �QPV , and �SL represent the penalty  factors9,10 and “limit values’’ Vlim
Li

, PlimTh1,Q
lim
Thi

, 
Qlim
WSi

, Qlim
PVi

, and SlimLi  are defined in the same way as described in the following identity

Power and uncertainty models in the PVs and WTs
Weibull probability density function (PDF), as stated in Eq. (26), identifies the wind speed distribution, where 
ψ , , ξ , and vw indicate the scale factor, and the shape factor, the wind speed,  respectively9,10.

Weibull fittings’ outcomes in wind frequency distributions are shown in Fig. 2 9. They were derived using a 
Monte Carlo simulation with 8000  iterations9,10. WTs’ output power has been modeled as in Eq. (27):

where the rated power, cut-in, cut-out, and rated wind speeds are denoted by pwr , vw,in , vw,out , and vw,r , respec-
tively, according to wind speeds, a wind farm’s electricity is divided into distinct portions, as shown in Eq. (27). 
The probability values are shown between Eqs. (28) to (30) in these  sections9,10.

(24)
SLi ≤ SLi ,maxfori = 1, 2, . . . ,NTL,

VLi ,min ≤ VLi ≤ VLi ,max for i = 1, 2, . . . ,NPQ.

(25)

J = fobj(G,H)+ �VPQ

NPQ
∑

i=1

(

VLi − Vlim
Li

)2

+ �Pslack ·
(

PTh1 − PlimTh1

)2

+ �QTH

NTHG
∑

i=1

(

QThi − Qlim
Thi

)20

+ �QWS

NW
∑

i=1

(

QWSi − Qlim
WSi

)2

+ �QPV

NPV
∑

i=1

(

QPVi − Qlim
PVi

)2

+ �SL

NTL
∑

i=1

(

SLi − SlimLi

)2

,

xlim =







x, xmin ≤ x ≤ xmax;
xmax , x > xmax;
xmin, x < xmin.

(26)fv(vw) =
ξ

ψ

(

vw

ψ

)ξ−1

e
−
(

vw
ψ

)ξ

.

(27)pW (vw) =







0, vw,out < vw< vw,in;
vw−vw,in
vw,r−vw,in

· pwr , vw,in ≤ vw ≤ vw,r;
pwr , vw,r ≤ vw ≤ vw,out ,

(28)fw
(

pw
){

pw = 0
}

= 1− exp

(

−
(

vw,in

ψ

)ξ
)

+ exp

(

−
(

vw,out

ψ

)ξ
)

,

Figure 2.  Wind frequency distributions for wind speed: (a)  WT1 at bus 5, and (b)  WT2 at bus  119.
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Table 2 shows the PDF components of the PVs and WTs. Wind speeds for units had been selected as 
vw,out = 25 m/s, vw,r = 16 m/s, and vw,in = 3 m/s,  respectively9,10, and with selected rated power equal to 3 MW.

The Lognormal PDF was used to characterize the generation power of PV like a mathematical model of 
solar irradiation. According to Eq. (31) and Eq. (32) 9,10, it is possible to identify the generation power and likely 
function of PV mathematically.

where � and ξ show the standard deviation and mean of the Lognormal  PDF9, as shown in Table 2.
By an 8000-generation Monte Carlo simulation, Fig. 3 gives the frequency distribution and lognormal prob-

ability for solar  irradiation9.

where Gpvstd , Gpv and PPVrate are the standard solar irradiance level, the solar irradiance’s probability level, and 
the rated power of PV, respectively, that have been chosen equal to 800 W/m2 and 50 MW at bus 13. RC has been 
set equal to 120 W/m2. The generation power of PV has been shown via the histogram in Fig. 4 9. The line shows 
the anticipated amount of electricity power that this PV will provide to the electrical network. It’s important to 
keep in mind that the value of the anticipated production of solar electricity might alter.

The proposed algorithm
In this chapter, we will focus on the construction of a new SAWGA optimizer, which is based on the improve-
ment of the previously proposed WGA algorithm.

Wild Goose algorithm (WGA)
In49, an effective method for high-dimension complicated and difficult optimization problems was introduced. 
Its name is the WGA, and it is inspired by the lives of wild geese, such as their altogether regular movement, 

(29)fw
(

pw
){

pw = pwr
}

= exp

(

−
(

vw,r

ψ

)ξ
)

− exp

(

−
(

vw,out

ψ

)ξ
)

,

(30)

fw
�

pw
�

=
ξ ·

�

vw,r − vw,in
�

ψξpwr
·
�

vw,in +
pw

pwr

�

vw,r − vw,in
�

�ξ−1

· exp



−

�

vw,in + pw
pwr

�

vw,r − vw,in
�

ψ

�ξ


.

(31)fGpv

(

Gpv

)

=
1

Gpv ·�
√
2π

exp

(

−
(

lnGpv − ξ
)2

2�2

)

for Gpv > 0,

(32)PPV0 =







PPVrate ·
Gpv

Gpv ·RC , 0 < Gpv < RC;
PPVrate ·

Gpv

Gpvstd
, Gpv ≥ RC ,

Table 2.  Specifications of the WT and PV units.

WT1 WT2 PV

Pwr Turbine’s number Weibull variables Pwr Turbine’s number Weibull variables
Lognormal 
parameters

Rated power 
( PPVrate)

75 MW 25 ξ = 2,ψ = 9 60 MW 20 ξ = 2,ψ = 10 ξ = 6,� = 0.6 50 MW

Figure 3.  The Lognormal PDF solar irradiance distribution of  PV9.
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breeding, and development, as well as mortality in a group of geese. In the rest of this subsection, we recap the 
steps of the WGA algorithm.

An altogether regular migration
In PSO, each wild goose has been first identified as a population member; hence, the i th wild goose is equivalent 
to the i th member with the changing location Xi . The migration velocity Xi and individual optimal solution Pi 
are calculated. Then, all Wild Goose populations are ranked according to their intended function, from best to 
worst. The wild goose migration is a collective, organized, and controlled migration that relies on power and 
places the upfront members so that their locations will be regularized from the most optimal solution to the worst 
solution (from 1 to Np ), as f

(

PIteri+2

)

≤ f
(

PIteri+1

)

≤ f
(

PIteri

)

≤ f
(

PIteri−1

)

 . Equations (33) and (34) describe velocity 
and displacement in accordance with the altogether regular motion of the geese. According to Eq. (33), each wild 
goose’s velocity and position changes are dependent on the speed of their front and rear goose, or 

(

VIter
i+1 − VIter

i−1

)

 , 
as well as on their locations, which have been decided through the value of the optimization function of the 
ordered group members f

(

XIter
i

)

 . In other words, the forefront member is the most efficient member of the wild 
goose since they benchmark and navigate their group as a whole as well as coordinate with the whole group. So, 
the migration velocity equation of the ith member  by49 has the following form:

Birds in a flock always travel in the direction of the leader. The leader is in the best position globally, thus if 
the leader deviates, then all other birds will deviate as well. As a result, on the one hand, the best wild goose G 
serves as the group’s leader-member, directing all other wild goose to their objective, and in other words, the 
position changes of these wild goose rely on their velocity.

Therefore, the amounts of displacement and change Xi resulting from wild goose migration, i.e., XV
i  , are 

calculated based on the member’s best local position Pi and migration velocity Vi , as well as the member who is 
in front of them Pi+1 , the group leader G which has been explained in Eq. (34). The geese constantly adjust their 
separation from one another to maintain a safe spacing. The product of two random numbers between 0 and 
1,r7,d · r8,d has been utilized since the quantity is  small49:

Search for food
The ith wild goose (or any other goose) moves toward its upfront wild goose PIteri+1 , and the upfront goose’s walk-
ing and seeking for food has been modelled as its scheme. The i th member imitates the (i + 1) th member and 
attempts to achieve that PIteri+1 − XIter

i  . The wild geese’s XW
i  equation for foraging while on the move is as  follows49

Reproduction and evolution of wild gooses
One part of wild gooses’ living similar to other alive extant has been based on the reproduction and evolution. 
Its modeling has been applied similarly to that of DE algorithm (Eq. (36)), where a combination (crossover 

(33)

vIter+1
i,d = r1,d · vIteri,d + r2,d ·

(

vIteri+1,d − vIteri−1,d

)

+ r3,d ·
(

pIteri,d − xIteri−1,d

)

+ r4,d ·
(

pIteri+1,d − xIteri,d

)

& + r5,d ·
(

pIteri+2,d − xIteri+1,d

)

− r6,d ·
(

pIteri−1,d − xIteri+2,d

)

.

(34)xVi,d = r7,d · r8,d ·
(

vIter+1
i,d +

(

pIteri+1,d + gIterd − 2pIteri,d

)

)

+ pIteri,d .

(35)xWi,d = pIteri,d + r9,d · r10,d ·
(

pIteri+1,d − pIteri,d

)

.
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Figure 4.  Output power (MW) distribution of  PV9.
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operation) between migration equation XV
i  , search for food XW

i  has been applied.  In49, Cr size in the WGA 
algorithm has been considered equal to 0.5.

Regular evolution, migration and death
The algorithm starts out in this phase with the maximum population Npinitial , and as it iterates, the weaker 
individuals in terms of Eq. (37) will be eliminated from the total members (death of the weaker individuals) and 
the act of optimization will continue until the final members in the final generation achieves its final size Npfinal . 
Algorithm 1 illustrates the code for this simple and effective  approach49.

where FEsmax shows the maximum fitness evaluations and FEs shows the recent fitness evaluations.

1: Select the decision variables of the algorithm and the problem. 

2: Create the initial swarm and = 1 = [0,0, … ,0] ( = 1, 2, … , ).  
3: Calculate the objective function of any member.

4: Set the personal optimal location of all individuals in the group and the global best solution .

5: while ≤ do
6: Sort all individuals from the most optimal solution to the worst solution.

7: for = 1 to do
8: Choose the ordered population ( − 1)th, ( + 1)th, and ( + 2)th.

9: for = 1 to do
10: +1 ← Eq. (33);

11: end for
12: for = 1 to do
13: , ← Eq. (34); 

14: end for
15: for = 1 to do
16: , ← Eq. (35);

17: end for
18: for = 1 to do
19: +1 ← Eq. (36);

20: end for
21: if ,

+1 < then
22: ,

+1 ← ;

23: end if
24: if ,

+1 > then
25: ,

+1 ← ;

26: end if
27: Calculate the value of the objective function of +1.

28: if ( +1) ≤ ( ) then
29: +1 ← +1;

30: end if
31: if ( +1) ≤ ( ) then
32: ← +1;

33: end if
34: end for
35: = + ;

36: ← Eq. (37);
37: end while

Algorithm 1.  
In addition, the optimization process of the proposed modified algorithm has been shown in Fig. 5.

(36)xIter+1
i,d =

{

xVi,d , r11,d ≤ Cr;
xWi,d , otherwise.

(37)p = round

(

Npinitial − (Npinitial − Npfinal)
FEs

FEsmax

)

,
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Self‑adaptive decision parameters in WGA: A Self‑adaptive wild geese algorithm (SAWGA)
Choosing appropriate control parameter values is typically a challenge that depends on the type of issue. Mul-
tiple optimization runs are needed since the control settings are tuned by trial and  error50. We provide a self-
adaptive technique for control settings in this section. Values for the parameter are extended to each member 
of the population. For Eqs. (34) to (36), we chose control-based random coefficients and modeled them for this 
investigation. We have recreated the equations once again and identified an appropriate connection for them, 
as indicated in Eqs. (38) to (40).

Cr and F are the control variables that will be modified through evolution. Both are used on an individual 
basis. Superior individuals result from these (encoded) control parameter values because they are more likely to 
live, procreate, and spread these superior parameter values to new individuals.

Start

Select the values of the control
parameters for SAWGA.

Stop condition satisfied

Done
Yes

No

Initialize a random group of
geese.

Evaluate the fitness the initial
wild geese.

Sort all individuals from the
most optimal solution to the

worst solution.

Apply each of Eqs. (33) and (36)
to each population of migratory

wild geese.

Is there a new member in the
group which has evaluate the
fitness better than that of the
best member or head of the
current flock of wild geese?

Yes

Swap the positions of that the
previous best member and new

member.

Evaluate the fitness of the of
wild gooses.

Sort all individuals from the
most optimal solution to the

worst solution.

Apply phase regular evolution,
migration and death

of wild gooses
using equation 37.

No

Figure 5.  Optimization process of the proposed modified algorithm.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4135  | https://doi.org/10.1038/s41598-024-54510-1

www.nature.com/scientificreports/

where rand is a uniform random number from the interval [0, 1].

SAWGA for solving the different OPF problems with stochastic wind and solar power
On the IEEE 30-bus electrical network, as given in Fig. 6, the WGA, GOA, TEO, HHO, HBA, and SAWGA 
approaches were investigated to resolve an OPF issue, including PV and VT units. Additionally, Table 3 provides 
the control settings for the optimization techniques that were collected from references. The system parameters 
for the IEEE 30-bus electrical network have been shown in Table 4 and were derived from  references3,9,10,51.

Table 5 displays the underestimation, overestimation, and direct cost factors for PVs and WTs. The load 
flow framework shown in  MATPOWER51,52 has been applied to this OPF, including Ths, PVs, and WTs. For the 
optimization functions of the suggested OPF, all optimization methods were performed 30 times to statistically 

(38)xIter+1
i,d =











FIteri ·
�

vIter+1
i,d +

�

pIteri+1,d + gIterd − 2pIteri,d

��

+ pIteri,d , CrIteri ≥ rand;

pIteri,d + FIteri ·
�

pIteri+1,d − pIteri,d

�

,
otherwise.

(39)FIter+1
i =







0.1+ rand2 · 0.9, rand < 0.1;
FIteri ,

otherwise.

(40)CrIter+1
i =

{

0.4+ rand · 0.2, rand < 0.1;
CrIteri , otherwise.
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Figure 6.  The IEEE 30-bus electrical network.
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analyze the obtained optimal solutions. The optimization functions of the suggested OPF have been optimized 
in accordance with the different scenarios that follow.

• Case 1: OPF considering total cost in Th units considering VPEs, PVs, and WTs.
• Case 2: OPF considering total cost in Th units considering emission and carbon tax, and PVs and WTs.
• Case 3: OPF considering total cost in Th units considering POZs, PVs, and WTs.
• Case 4: OPF considering power losses of the electrical network.
• Case 5: OPF considering the voltage deviation (V.D.) of the electrical network.

Case 1: Total cost considering VPEs of Th units
OPF’s objective function, considering VPEs of Th units, as well as the cost function of the PVs and WTs, are 
used in Case 1 to optimize for lowering the overall cost. In this instance, produced electric power from all vari-
ous kinds of generation units employed in the redesigned electrical network are optimized to reduce the basic 
power cost to its absolute lowest. Table 6 lists the outcomes of all factors that were ideally determined, including 
reactive powers, total cost, decision parameters, and other variables—values the best, worst, average, and Std. for 
the algorithms and the suggested SAWGA approach after 30 separate runs are shown in Table 6. The simulation 
findings of this case demonstrate the efficacy of SAWGA. SAWGA offers a quick convergence trend and improved 
results quality compared to the traditional WGA, GOA, TEO, HHO, and HBA optimization approaches for OPF. 
SAWGA obtained the lowest overall power cost of 782.0238 $/h among all used algorithms. The convergences 
of used OPF optimization approaches have been given in Fig. 7.

Case 2: Total cost considering emission and carbon tax in Th units
By imposing a set Ctax on Th units due to their CO2 emissions, the case’s goal is to reduce the electricity’s total 
 cost9. The mandated Ctax is set at $20 per  ton9. The simulation findings clearly support the idea that imposing the 
carbon fee would increase the amount of wind and solar energy that is incorporated into the electricity system. 

Table 3.  The control variables of the optimization techniques.

Technique Control variables

HHO E0 ∈ [−1, 1]

TEO

Np = 60

TMs = 3

c1 = c2 = 1

GOA

Np = 60

Attractive length size = 1.5

Value of attraction = 0.5

Cmax = 1

Cmin = 0.00004

HBA

Np = 60

β = 6

C = 2

WGA NPmin = 30,NPmax = 90

SAWGA 
NPmin = 30,NPmax = 90

Initial values ( Iter = 1 ): F1i = (rand)2, Cr1i = 0.5 for i = 1, 2, . . . ,NPmax .

Table 4.  The pollution level and cost factors of Th units in the IEEE 30-bus electrical network.

Thermal generator Bus no. n m R p o σ μ ω τ B POZs

Th1 1 2 0 0.037 18 0.00375 4.091 6.667 0.0002 6.49  − 5.554 [55 66] [80 120]

Th2 2 1.75 0 0.038 16 0.0175 2.543 3.333 0.0005 5.638  − 6.047 [21 24] [45 55]

Th3 8 3.25 0 0.045 12 0.00834 5.326 2 0.002 3.38  − 3.55 [25 30]

Table 5.  The cost factors of the PVs and WTs of the electrical network.

WT1 WT2 PV

Bus no CUw,1 COw,1 wsh, 1 Bus no CUw,2 COw,2 wsh, 2 Bus no CUpv,1 COpv,1 pvsh, 1

5 1.5 3 1.60 11 1.5 3 1.75 13 1.5 3 1.60
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Table 6.  The obtained optimal decision parameters for Case 1. Significant values are in bold.

Variables WGA GOA TEO HHO HBA SAWGA 

PTh1 (MW) 134.90791 134.90791 134.90791 134.90791 134.90791 134.90791

PTh2 (MW) 27.5394 29.1664 29.1839 29.0028 26.8694 27.7761

PWS1 (MW) 43.2401 44.1165 44.1506 44.0164 42.823 43.3368

PTh3 (MW) 10 10 10 10 10 10

PWS2 (MW) 36.4904 37.2214 37.2336 37.1532 36.1747 36.5999

PPV (MW) 37.1045 33.755 33.7839 34.089 38.422 36.566

V1 (p.u.) 1.0734 1.0718 1.0738 1.0718 1.072 1.0715

V2 (p.u.) 0.95 1.0569 0.9675 1.0568 1.0569 1.0565

V5 (p.u.) 1.0376 1.035 1.0382 1.0349 1.0348 1.0345

V8 (p.u.) 1.1 1.066 1.043 1.0428 1.0396 1.0464

V11 (p.u.) 1.0998 1.0992 1.1 1.0999 1.0999 1.0989

V13 (p.u.) 1.0639 1.0486 1.0631 1.0488 1.0557 1.0495

QTh1 (MVAR) 16.5841 −2.22675 16.7964 −2.31606 −1.96676 −2.40918

QTh2 (MVAR) −20 11.7839 −20 11.8166 13.1232 11.7019

QWS1 (MVAR) 30.1073 22.4293 30.1335 22.4292 23.2508 22.4298

QTh3 (MVAR) 40 40 40 40 34.8876 40

QWS2 (MVAR) 30 30 30 30 30 30

QPV (MVAR) 20.7435 15.0147 20.4621 15.0742 17.7668 15.3163

Fuelvlvcost ($/h) 437.3882 442.7895 442.8482 442.2433 435.1854 438.1692

Wind gen cost ($/h) 242.9330 248.4681 248.6292 247.8849 240.4334 243.6381

Solar gen cost ($/h) 102.1602 91.2926 91.4006 92.0410 106.9016 100.2165

Total Cost ($/h) 782.4813 782.5502 782.8780 782.3692 782.5204 782.0238

Emission (t/h) 1.76232 1.76193 1.76192 1.76196 1.76249 1.76226

Power losses (MW) 5.8823 5.7672 5.8599 5.7694 5.7969 5.7866

V.D. (p.u.) 0.49643 0.45370 0.49452 0.45400 0.46508 0.45505

Mean 782.9547 783.8471 784.2549 783.4879 783.6828 782.1907

Max 783.2486 785.3005 785.8745 784.6940 785.0236 782.3373

Std 1.04 3.62 2.95 1.76 2.45 0.49

Time (s) 20 25 21 15 23 18
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Figure 7.  Convergences of the optimization techniques for Case 1.
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Figure 8.  Convergences of the optimization techniques for Case 2.

Table 7.  The obtained optimal decision parameters for Case 2. Significant values are in bold.

Variables WGA GOA TEO HHO HBA SAWGA 

PTh1 (MW) 123.90712 123.68049 122.98256 123.15774 123.73478 123.22507

PTh2 (MW) 34.1193 33.4781 31.6383 31.7003 33.6271 32.2519

PWS1 (MW) 46.5768 46.2435 45.2817 45.4877 46.321 45.6065

PTh3 (MW) 10 10 10 10.0061 10 10

PWS2 (MW) 39.197 38.938 38.1574 38.0722 38.9908 38.4111

PPV (MW) 34.8778 36.3406 40.6216 40.3586 36.0031 39.1813

V1 (p.u.) 1.0709 1.0701 1.0695 1.0692 1.0708 1.0704

V2 (p.u.) 1.0574 1.0566 1.056 0.9567 1.0573 1.0569

V5 (p.u.) 1.0364 1.0356 1.0349 1.0385 1.0362 1.0357

V8 (p.u.) 1.0405 1.1 1.0517 1.0438 1.0404 1.0403

V11 (p.u.) 1.0991 1.0982 1.0999 1.0985 1.0985 1.0986

V13 (p.u.) 1.0551 1.0503 1.0516 1.0956 1.0555 1.0566

QTh1 (MVAR) −2.60697 −3.06275 −3.25719 11.6126 −2.62087 −2.74585

QTh2 (MVAR) 12.4289 10.9399 10.6912 −20 12.3734 12.2339

QWS1 (MVAR) 22.9514 22.2315 22.2344 30.5365 22.9545 22.9783

QTh3 (MVAR) 35.4048 40 40 40 35.3368 35.1783

QWS2 (MVAR) 30 30 30 28.9583 30 30

QPV (MVAR) 17.4826 15.5674 16.0543 25 17.6094 18.0251

Fuelvlvcost ($/h) 434.1073 431.3640 423.4359 424.0774 432.0042 426.0933

Wind gen cost ($/h) 264.1178 261.9972 255.8144 256.2487 262.4630 257.8581

Solar gen cost ($/h) 94.6553 100.2372 114.6302 113.5536 98.7041 109.2680

Emission (t/h) 0.91105 0.89932 0.86428 0.87299 0.90211 0.87627

Carbon tax ($/h) 18.221 17.9864 17.2856 17.4598 18.0422 17.5254

Total Cost ($/h) 811.1014 811.5848 811.1662 811.3395 811.2135 810.7448

Power losses (MW) 5.2781 5.2808 5.2817 5.3826 5.2767 5.2758

V.D. (p.u.) 0.46771 0.46010 0.46261 0.53792 0.46835 0.47047

Mean 811.4573 812.4095 812.3281 812.6439 812.2931 810.8538

Max 811.7822 813.7250 813.8394 814.0215 814.2465 810.9647

Std 0.66 2.06 2.61 3.82 3.23 0.26

Time (s) 22 30 25 23 23 20
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Similar to scenario 1, Fig. 8 compares the convergence of the SAWGA, WGA, GOA, TEO, HHO, and HBA 
algorithms, and Table 7 lists the best results for OPF as Table 6. SAWGA outperforms WGA and all other used 
approaches based on overall cost reduction and the convergence of the beast result since it achieves a minimum 
value of 810.7448 $/h.

Case 3: OPF considering POZs in Th units
According to the OPF problem stated in Eq. (9), optimization of the overall cost while taking POZs has been 
explored. Like instances 1 and 2, Fig. 9 compares the convergence of the SAWGA, WGA, GOA, TEO, HHO, 
and HBA algorithms, and Table 8 lists the optimum attained results for the reactive powers, total cost, decision 
parameters, and other variables. The suggested SAWGA algorithm produced a simulation result of 781.9047 $/h, 
which was superior to that of the WGA and other approaches.

Case 4: OPF considering power losses of the electrical network
In this instance, the considered algorithms suggested optimizing the power losses of the electrical network 
updated by utilizing PVs and WTs. The SAWGA method produced a result of 2.1037 MW for this scenario, less 
than the optimization results from the other methods. Also, Table 9 shows this case’s findings at the simulation 
research’s conclusion. For scenario 4, Fig. 10 compares the convergence of the SAWGA, WGA, GOA, TEO, 
HHO, and HBA algorithms.

Case 5: OPF considering the voltage deviation (V.D.)
In Case 5, the goal was to optimize V.D. of the electrical network using PVs and WTs. The outcomes of the WGA, 
GOA, TEO, HHO, HBA, and SAWGA algorithms were, respectively, 0.37658, 0.41849, 0.39531, 0.38066, 0.38570, 
and 0.37576, as shown in Table 10. Table 10 makes it quite evident that the SAWGA method produced a worse 
outcome than the other algorithms. Figure 11 displays the convergence patterns for all optimization techniques.

Multi‑objective SAWGA (MOSAWGA) for solving the different classical OPF 
problems
To address the multi-objective problem (MOP), we utilize the Pareto method, elaborated upon in the subsequent 
section:

Pareto optimization method
In the realm of multi-objective problems (MOPs), the optimization process encompasses the simultaneous 
optimization of multiple independent objective functions (OFs), all while adhering to a spectrum of equality 
and inequality constraints. The formulation of these problems is as  follows39,40:

The Pareto method endeavors to identify a collection of solutions that takes into account all OFs and strikes 
a balance among them. The ultimate outcome of this process is identifying of Pareto optimal points—solutions 
that are not surpassed by any other solutions. In a broader sense, solution X1 is considered to dominate solution 
X2 if the following conditions are satisfied:

(41)minJ(x, u) = [J1(x, u), J2(x, u), . . . , Jn(x, u)]
T .
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Figure 9.  Convergences of the optimization techniques for Case 3.
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The group of solutions not dominated by other solutions is termed “dominant solutions.” To manage the size 
of this set, the paper employs the fuzzy grouping method.

Fuzzy grouping method
In certain MOPs, there is a need to standardize OFs to bring their values into a comparable range. Subsequently, 
the normalized values of OFs are merged. The fuzzy grouping method introduces a membership function (MF) 
for each OF, characterized by:

where Jmin
i  and Jmax

i  show the minimum and maximum values of the i th OF, respectively, these values are cal-
culated by optimizing each OF as a single objective problem.

For available solutions in the stored set, the normalized value of MF is computed using (44):

where q shows the number of non-dominated solutions and φh is the weighing factor pertaining to the h-th OF.

MOSAWGA to solve multi‑objective OPF problems
To solve multi-objective OPF problems using MOSAWGA, the subsequent procedure is followed:

(42)
∀i ∈ {1, 2, . . . , n}, Ji(X1) ≤ Ji(X2)

∃h ∈ {1, 2, . . . , n}, Jh(X1) < Jh(X2)

(43)σJi (X) =











1, Ji(X) < Jmin
i ;

0, Ji(X) > Jmax
i ;

Jmax
i −Ji(X)

Jmax
i −Jmin

i
, Jmin

i ≤ J i(X) ≤ Jmax
i ,

(44)Nσ (i) =
∑n

h=1 φh · σJh(Xi)
∑q

i=1

∑n
h=1 φh · σJh(Xi)

,

Table 8.  The obtained optimal decision parameters for Case 3. Significant values are in bold.

Variables WGA GOA TEO HHO HBA SAWGA 

PTh1 (MW) 134.90790 134.90850 134.90814 134.90809 134.90802 134.90804

PTh2 (MW) 28.6119 30.242 28.9972 29.0366 29.0567 28.2065

PWS1 (MW) 43.8509 44.8314 44.1742 43.9827 43.9828 43.6865

PTh3 (MW) 10 10.0193 10.0001 10.0001 10.0001 10.0003

PWS2 (MW) 36.9721 37.8204 37.3252 37.2498 37.1606 36.877

PPV (MW) 34.9236 31.3305 33.7572 33.9922 34.063 35.4969

V1 (p.u.) 1.0737 1.0722 1.0719 1.0716 1.0718 1.0716

V2 (p.u.) 0.9548 1.0564 1.057 1.0567 1.0569 1.0567

V5 (p.u.) 1.0381 1.034 1.0344 1.0348 1.035 1.0349

V8 (p.u.) 1.0417 1.0942 1.088 1.0779 1.058 1.0879

V11 (p.u.) 1.1 1.0999 1.0989 1.0992 1.0983 1.098

V13 (p.u.) 1.064 1.0511 1.0483 1.05 1.0483 1.0488

QTh1 (MVAR) 16.8049 −0.28789 −2.26905 −2.48558 −2.28611 −2.49022

QTh2 (MVAR) −20 9.71985 12.5211 11.6477 11.9056 11.8111

QWS1 (MVAR) 30.2971 21.5993 21.822 22.3699 22.5011 22.634

QTh3 (MVAR) 39.5107 40 40 40 40 40

QWS2 (MVAR) 30 30 30 30 30 29.9958

QPV (MVAR) 20.7866 15.9995 14.9279 15.482 14.8925 15.0588

Fuelvlvcost ($/h) 440.9404 446.4787 442.2255 442.3571 442.4240 439.5956

Wind gen cost ($/h) 246.6879 253.0467 249.0266 248.0990 247.7929 245.7918

Solar gen cost ($/h) 94.5294 83.2327 91.3001 91.7759 91.9761 96.5174

Total Cost ($/h) 782.1578 782.7581 782.5522 782.2321 782.1931 781.9047

Emission (t/h) 1.76205 1.76174 1.76199 1.76197 1.76196 1.76217

Power losses (MW) 5.8664 5.7521 5.7619 5.7695 5.7712 5.7752

V.D. (p.u.) 0.49687 0.45719 0.45268 0.45669 0.45307 0.45409

Mean 782.6849 783.5542 783.6004 783.2400 783.2576 781.9862

Max 783.1025 784.9218 784.4879 784.6198 784.3775 782.2004

Std 0.95 1.76 2.07 1.65 2.38 0.44

Time (s) 19 22 23 17 22 20
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Table 9.  The obtained optimal decision parameters for Case 4. Significant values are in bold.

Variables WGA GOA TEO HHO HBA SAWGA 

PTh1 (MW) 50.01016 50 50 50.00520 50.01259 50.00007

PTh2 (MW) 30.8297 29.6365 33.5344 31.0493 31.1131 26.4672

PWS1 (MW) 74.9993 75 75 74.971 74.9965 74.9997

PTh3 (MW) 24.9873 24.995 24.995 24.979 24.9946 34.9998

PWS2 (MW) 59.9967 60 60 59.994 59.9868 59.9983

PPV (MW) 44.7663 45.9704 45.1225 44.5924 44.4865 40.3606

V1 (p.u.) 1.0587 1.0558 0.9956 1.0585 1.0586 1.025

V2 (p.u.) 1.0535 1.0507 1.0551 1.0534 1.0534 1.0547

V5 (p.u.) 1.0438 1.0413 1.0455 1.0433 1.0444 1.0454

V8 (p.u.) 1.0481 1.0984 1.0579 1.0492 1.0486 1.0834

V11 (p.u.) 1.0987 1.0995 1.0983 1.0962 1.0984 1.0987

V13 (p.u.) 1.0608 1.0999 1.0645 1.0584 1.059 1.0628

QTh1 (MVAR) −5.14494 −7.1348 −20 −5.6223 −5.23928 −20

QTh2 (MVAR) 7.05482 3.03437 19.0167 7.14925 6.3457 19.1593

QWS1 (MVAR) 20.9941 19.3565 20.7818 20.2086 21.5572 20.7092

QTh3 (MVAR) 37.6769 40 40 39.7903 38.5714 40

QWS2 (MVAR) 30 30 30 30 30 30

QPV (MVAR) 19.483 25 20.2871 18.5296 18.8021 19.4471

Fuelvlvcost ($/h) 280.3009 276.2794 289.5516 280.9959 281.2985 306.6375

Wind gen cost ($/h) 464.6118 464.6296 464.6295 464.4749 464.5561 464.6208

Solar gen cost ($/h) 130.3026 135.3708 131.5669 129.5661 129.6609 113.4794

Total Cost ($/h) 875.2153 876.2797 885.7481 875.0370 875.5155 884.7377

Emission (t/h) 0.09832 0.09857 0.09779 0.09827 0.09826 0.09856

Power losses (MW) 2.1895 2.2019 2.2191 2.1909 2.1901 2.1037

V.D. (p.u.) 0.51452 0.58045 0.54504 0.50839 0.50964 0.54543

Mean 2.3512 3.4109 3.5379 3.8471 3.7853 2.2447

Max 2.5460 5.6310 6.8116 5.4972 6.0025 2.3769

Std 0.46 1.71 2.93 2.55 3.84 0.09

Time (s) 22 29 22 20 32 21
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Figure 10.  Convergences of the optimization techniques for Case 4.
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Table 10.  The obtained optimal decision parameters for Case 5. Significant values are in bold.

Variables WGA GOA TEO HHO HBA SAWGA 

PTh1 (MW) 85.57691 82.95199 126.35970 115.13293 107.29577 75.29884

PTh2 (MW) 75.6244 57.2661 52.7137 60.8624 26.8608 80

PWS1 (MW) 70.0387 65.138 46.6673 65.1588 71.3622 75

PTh3 (MW) 33.7984 17.118 28.1129 28.0727 33.6943 35

PWS2 (MW) 22.6919 45.1453 24.5383 18.3631 39.0337 22.548

PPV (MW) 0.5356 26.9636 12.0993 1.5673 9.8616 0

V1 (p.u.) 1.0584 0.9818 1.022 1.05 1.0619 1.0532

V2 (p.u.) 1.0931 1.0689 1.0381 1.0741 1.0959 1.0918

V5 (p.u.) 0.9904 0.998 1.0459 0.9965 0.9689 0.9961

V8 (p.u.) 1.056 1.0737 1.0595 1.0992 1.0915 1.0322

V11 (p.u.) 1.0961 1.0696 1.0964 1.0932 1.0992 1.1

V13 (p.u.) 1.0913 1.0512 1.0641 1.076 1.0583 1.0646

QTh1 (MVAR) −14.4845 −20 −20 −20 −7.86506 −20

QTh2 (MVAR) 60 60 9.08326 60 60 60

QWS1 (MVAR) −23.7824 −13.0033 35 −15.6104 −30 −19.623

QTh3 (MVAR) 40 40 40 40 40 40

QWS2 (MVAR) 30 24.4989 30 30 30 30

QPV (MVAR) 25 21.7706 25 25 23.8183 25

Fuelvlvcost ($/h) 592.0660 443.8770 580.9108 585.8586 466.3532 585.2897

Wind gen cost ($/h) 309.4195 359.8614 219.6178 279.0695 363.9070 330.7898

Solar gen cost ($/h) 44.9266 71.9106 47.8197 45.2999 46.6644 45.1197

Total Cost ($/h) 946.4122 875.6491 848.3482 910.2280 876.9247 961.1992

Emission (t/h) 0.16822 0.15360 1.04732 0.55693 0.37526 0.13551

Power losses (MW) 4.8659 4.0261 5.9212 5.7282 4.7084 4.4532

V.D. (p.u.) 0.37658 0.41849 0.39531 0.38066 0.38570 0.37576

Mean 0.38853 0.52405 0.48743 0.45954 0.47150 0.37925

Max 0.39607 0.63921 0.55459 0.53006 0.51993 0.38264

Std 0.075 0.24 0.13 0.18 0.20 0.015

Time (s) 17 26 18 20 22 19
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Figure 11.  Convergences of the optimization techniques for Case 5.



21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4135  | https://doi.org/10.1038/s41598-024-54510-1

www.nature.com/scientificreports/

Step 1: Enter the necessary data for the algorithm and system
Step 2: Embedding constraints into objective functions using the penalty functions method
Step 3: Initialization of the wild goose population
Step 4: Evaluate the objective function for the wild gooses
Step 5: Putting non-dominated solutions in a repository
Step 6: Sorting population considering the normalized values of the objective function of the previous step
Step 7: Applying the altogether regular migration, search for food, and reproduction and evolution of wild gooses
Step 8: Regular evolution, migration, and death
Step 9: Swapping wild gooses’ positions and refreshing dominant solutions in the repository
Step 10: Repeating steps 7 to 9 until finishing the total number of iterations
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Figure 12.  One-line representation of the IEEE 30-bus system.

Table 11.  The best results of Case 1 by different algorithms.

Algorithm PG1 (MW) PG2 (MW) PG5 (MW) PG8 (MW) PG11 (MW) PG13 (MW) Losses (MW) Cost ($/h)

EGA–DQLF6 – 49.5 30.06 34.98 23.96 21.374 5.613 822.87

FPSO17 – 59.88 34.62 33.4 30 23.56 5.6658 847.011

NSGA-II15 134.5544 46.2891 32.936 30.1163 18.735 26.5392 5.7699 823.8875

MOHS15 118.5673 51.5253 27.855 34.9822 28.6026 27.1048 5.3143 832.6709

MOWGA 131.2 59.821 36.347 29.3022 19.2264 13.5948 6.0907 827.8943

MOSAWGA 128.23 51.6756 29.8891 35 24.4712 19.6843 5.55 822.0989



22

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4135  | https://doi.org/10.1038/s41598-024-54510-1

www.nature.com/scientificreports/

760 780 800 820 840 860 880
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Cost ($/h)

)
W

M(sessoL

MOWGA
MOSAWGA

Figure 13.  Final non-dominated solutions obtained for Case 1.

Table 12.  Best values for decision variables and the minimum fuel costs for different cases using MOSAWGA.

Variables

Limits

Case 1 Case 2 Case 3Min Max

PG1 (MW) 50 200 128.23 176.22 96.43

PG2 (MW) 20 80 51.6756 48.9725 61.7513

PG5 (MW) 15 50 29.8891 21.6661 32.6168

PG8 (MW) 10 35 35 22.3661 34.1582

PG11 (MW) 10 30 24.4712 12.198 28.1513

PG13 (MW) 12 40 19.6843 12 35.1393

VG1 (p.u.) 0.95 1.1 1.1 1.0335 1.0674

VG2 (p.u.) 0.95 1.1 1.0879 1.0196 1.0561

VG5 (p.u.) 0.95 1.1 1.0624 1.0195 1.0260

VG8 (p.u.) 0.95 1.1 1.0713 1.0057 1.0371

VG11 (p.u.) 0.95 1.1 1.0881 1.0039 1.0312

VG13 (p.u.) 0.95 1.1 1.076 1.0107 1.0326

T6–9 (p.u.) 0.9 1.1 1.0729 1.0179 0.9845

T6–10 (p.u.) 0.9 1.1 0.9344 0.9 0.9685

T4‑12 (p.u.) 0.9 1.1 1.0186 0.9848 0.9920

T28–27 (p.u.) 0.9 1.1 0.9958 0.9737 0.9616

Qc10 (p.u.) 0.0 0.05 0.03 0.05 0.03

Qc12 (p.u.) 0.0 0.05 0.03 0.03 0.04

Qc15 (p.u.) 0.0 0.05 0.04 0.05 0.03

Qc17 (p.u.) 0.0 0.05 0.05 0.0 0.03

Qc20 (p.u.) 0.0 0.05 0.04 0.05 0.03

Qc21 (p.u.) 0.0 0.05 0.05 0.05 0.03

Qc23 (p.u.) 0.0 0.05 0.03 0.05 0.02

Qc24 (p.u.) 0.0 0.05 0.05 0.05 0.03

Qc29 (p.u.) 0.0 0.05 0.03 0.04 0.02

Cost ($/h) 822.0989 804.35 862.923

Losses (MW) 5.55 10.0247 5.8433

VD (p.u.) 1.2827 0.0965 0.5027

Emission (ton/h) 0.262 0.3635 0.2244
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Numerical results and comparison
To evaluate the performance and efficacy of MOSAWGA, it is examined on the IEEE 30-bus power system, 
demonstrated in Fig. 12 1,2,6.

This system has six generating units located at buses 1, 2, 5, 8, 11, and 13 and four tap-adjusting transformer 
units at branches 6–9, 6–10, 4–12, and 28–27. The total system power demand is 2.834 p.u. with base power 
equal to 100 MVA base. The lower limits of voltage magnitudes of generator buses, voltage magnitudes of load 
buses, VAR compensation, and transformers’ tap settings are set to 0.95, 0.95, 0.0, and 0.95 p.u., respectively. 
Also, their higher limits are set to 1.1, 1.05, 0.3, and 1.1 p.u., respectively.

Setting the parameters of the algorithms is the same as in the fifth section. To demonstrate the efficiency of 
the proposed algorithm, the following three cases were taken into account:

Case 1: Minimization of fuel cost and real power transmission losses.
Case 2: Minimization of fuel cost and voltage magnitudes’ deviance (voltage profile improvement).
Case 3: Minimization of fuel cost and emissions.

Case 1: Minimization of fuel cost and real power losses
The best fuel costs and power losses of the best compromise solution (BCS) achieved by MOSAWGA and those 
of other algorithms are presented in Table 11. The best fuel costs and real power losses achieved by MOSAWGA 
are 822.0989 $/h and 5.55 MW, respectively.

The final non-dominated solutions of different algorithms are demonstrated in Fig. 13 (only 20 points are 
presented).

Table 13.  The best results of Case 2 by different algorithms. Significant values are in bold.

Algorithm PG1 (MW) PG2 (MW) PG5 (MW) PG8 (MW) PG11 (MW) PG13 (MW) VD (p.u.) Cost ($/h)

DE2 183.1277 47.4435 18.7281 16.1515 11.8855 16.505 0.1357 805.2619

BBO11 173.4298 49.06 21.77 23.27 13.84 11.98 0.102 804.9982

MOWGA 172.4 6.3816 3.9732 3.0121 14.3573 13.0979 0.1416 805.9642

MOSAWGA 176.22 48.9725 21.6661 22.3661 12.198 12 0.0965 804.35
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Figure 14.  Final non-dominated solutions found for Case 2.

Table 14.  The best results of Case 3 by different algorithms. Significant values are in bold.

Algorithm PG1 (MW) PG2 (MW) PG5 (MW) PG8 (MW) PG11 (MW) PG13 (MW) Emission (ton/h) Cost ($/h)

MSFLA25 97.55027 60.42367 31.6343 35 30 35.21483 0.2247 867.713

MPSO-SFLA31 97.11 61.19 31.47 35 30 35.11 0.2246 868.372

MOWGA 94.29 66.7893 33.8824 32.1805 27.791 33.445 0.2245 866.7013

MOSAWGA 96.43 61.7513 32.6168 34.1582 28.1513 35.1393 0.2244 862.923
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Case 2: Minimization of fuel cost and voltage magnitudes deviation
Table 12 gives the summarized optimization results obtained by MOSAWGA, and Table 13 compares the best 
result of MOSAWGA with that of other metaheuristic methods mentioned in the introductory part of the article.

The Pareto optimal solutions acquired by WGA-based methods are presented in Fig. 14. It is observed in the 
figure that MOSAWGA gives well-distributed solutions compared with other algorithms.

Case 3: Minimization of fuel cost and emissions
The best solutions found by MOSAWGA in 50 trials for Case 3 are shown in Table 12. Also, Table 14 yields a 
comparison of all algorithms. It is deduced by investigating these tables that MOSAWGA found a solution with 
fuel cost equal to 862.923 $/h and emission equal to 0.2244 ton/h, which are less than those of other algorithms. 
The non-dominated solutions of this case are given in Fig. 15.
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Figure 15.  Final non-dominated solutions found for Case 3.

Table 15.  Optimal results for Case 1. Significant values are in bold.

Method Min Mean Max Std. Time (s)

SAWGA 129,522.5891 129,528.3342 129,532.0716 5.19 598

WGA 130,027.7312 130,124.9829 130,370.8430 83.85 607

FHSA65 132,138.3 132,138.3 132,138.3 0.0 –

ETFWO36 129,542.8215 129,550.8843 129,561.7019 7.13 723.76

GWO66 139,948.1 142,989.3 145,484.6 797.8 1766.2

SSO65 132,080.4 – – – –

IABC67 129,862.0 129,895.0 – 40.8 4157.8

MFO51 129,708.1 – – – –

Rao-165 131,817.9 – – – 808.0

PSOGSA44 129,733.6 – – – –

Rao-265 131,490.7 – – – 804.6

MRao-265 131,457.8 – – – 1160.3

ICBO19 135,121.6 – – – –

MCSA68 129,873.6 – – – –

Rao-365 131,793.1 – – – 806.7

EWOA69 140,175.8 – – – –

MSA51 129,640.7 – – – –

FPA51 129,688.7 – – – –

CS-GWO64 129,544.0 129,558.9 129,568.8 10.7 4252.5



25

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4135  | https://doi.org/10.1038/s41598-024-54510-1

www.nature.com/scientificreports/

IEEE 118 bus test network
The effectiveness of the proposed SAWGA in addressing larger power systems is assessed using the IEEE 118-
bus test  system53–64 in the field of electrical engineering. This test network features 54 generators, 2 reactors, 
12 capacitors, 9 transformers, and 186 branches. A total of 129 control variables are considered, encompassing 
54 generator active powers and bus voltages, 9 transformer tap settings, and 12 shunt capacitor reactive power 
injections. Voltage limitations for all buses are maintained between 0.94 and 1.06 p.u. The shunt capacitors offer 
reactive powers from 0 to 30 MVAR, and transformer tap settings are assessed within the range of 0.90–1.10 p.u.26.

Case 1: The quadratic cost function for conventional generators in OPF, excluding solar and 
wind energy sources, can be expressed as follows:
In Table 15, the performance of the proposed SAWGA is juxtaposed with outcomes from alternative algorithms 
explored in the field of electrical engineering. A comprehensive literature review also includes various techniques 
utilized for solving large-scale OPF problems. The comparative analysis in these tables showcases the superiority 
of SAWGA over other optimization methodologies in achieving optimal OPF solutions. The simulation results 
reveal a noteworthy reduction in cost, with SAWGA achieving a minimum cost of $129,522.5891 per hour, 
surpassing the outcomes produced by alternative algorithms.

Case 2: OPF incorporating a quadratic cost function for conventional generators, along with 
the integration of solar and wind energy sources, can be articulated as follows:
Addressing the OPF challenge involves formulating a quadratic cost function for traditional generators, account-
ing for their operational costs. Additionally, the inclusion of solar and wind energy sources in this scenario intro-
duces complexities related to their intermittent nature and variable outputs. The overarching goal is to optimize 
the power flow in the system while considering the unique characteristics and cost implications associated with 
both traditional and renewable energy sources.

This system is similar to the previous case study, incorporating renewable energy sources at various buses. 
Wind energy sources are placed at buses 18, 32, 36, 55, 104, and 110, while solar energy generation units are 
located at buses 6, 15, and 34.

The optimal solution for this case, obtained through the proposed SAWGA algorithm, is presented in Table 16 
with a comparative study between the results of the algorithms WGA and the solutions obtained in  reference26. 
These results demonstrate that SAWGA is a highly capable algorithm for optimizing and efficiently distributing 
loads in large, realistic power systems.
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Discussion
In the final discussion, the study has successfully implemented and assessed the enhanced Self-Adaptive Wild 
Goose Algorithm (SAWGA) in optimizing Economical-Environmental-Technical Optimal Power Flow (OPF) 
problems within traditional and modern energy systems. Leveraging adaptive search strategies and robust diver-
sity capabilities, SAWGA, integrating four powerful optimizers, proves its efficiency. Applied to OPF models on 
IEEE 30-bus and 118-bus electrical networks featuring conventional thermal power units, solar photovoltaic 
(PV), and wind power (WT) units, SAWGA addresses the complexities introduced by renewable energy sources 
(RESs). The algorithm demonstrates superior performance in optimizing various objective functions, effectively 
managing OPF challenges, and consistently outperforming traditional WGA and other modern algorithms. 
Noteworthy attributes include its robust ability to achieve global or nearly global optimal settings for decision 
parameters, resulting in significant reductions in overall fuel consumption costs with faster and more efficient 
convergence. The findings highlight the substantial contributions of SAWGA in navigating the intricate landscape 

Table 16.  Optimal results for Case 2. Significant values are in bold.

Method Min Mean Max Std Time (s)

SAWGA 103,376.7409 103,495.5482 103,572.1029 44.60 623

WGA 103,389.1573 103,507.1996 103,588.2463 104.70 625

BSA26 117,149.9833 120,443.2982 123,385.1256 1638.0949 –

DS26 110,992.4249 112,680.2902 114,787.7786 953.6529 –

DEEPSO26 103,407.6296 103,889.1446 104,507.4884 292.8782 –

MSA26 107,695.0619 111,205.0554 116,303.6361 1857.2167 –
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of OPF problems in the presence of RESs, reinforcing its role as a potent tool for the sustainable and efficient 
operation of power systems. On the one hand, considering the simulation times in the tables, especially based 
on Table 15, which represents simulation results for a large-scale energy system, it is evident that the proposed 
method exhibits a suitable optimization speed and time, particularly compared to the original WGA algorithm. 
The proposed SAWGA method significantly improves the final optimal results without introducing any specific 
complexity or additional simulation time compared to the original WGA algorithm.

Conclusions
In conclusion, this study introduces the self-adaptive wild geese algorithm (SAWGA) as a novel and practical 
approach for addressing various optimal power flow (OPF) problems. We conducted a comprehensive compari-
son with four modern optimization algorithms (GOA, TEO, HHO, and HBA) and the traditional WGA, as well 
as the optimal results in the recent papers, showcasing SAWGA’s superior efficiency. Our evaluation considered 
different objective functions within two different IEEE 30-bus and IEEE 118-bus electrical networks, incorporat-
ing wind turbine units (WTs) and solar photovoltaic units (PVs).

SAWGA demonstrates remarkable capabilities in optimizing diverse objective functions and effectively man-
aging OPF challenges. The algorithm consistently outperforms traditional WGA and other modern algorithms, 
achieving global or nearly global optimal settings for decision parameters. The comparison of optimization results 
emphasizes SAWGA’s superiority in total cost reduction and fast convergence.

Our future work will focus on developing a stochastic multi-objective model for the OPF problem in the pres-
ence of renewable power generations. This avenue promises to further enhance the applicability and robustness 
of optimization algorithms in addressing evolving challenges in power system management.

Data availability
All data generated or analyzed during this study are included directly in the text of this submitted manuscript. 
There are no additional external files with datasets.
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