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Creating an atlas of normal 
tissue for pruning WSI patching 
through anomaly detection
Peyman Nejat 1, Areej Alsaafin 1, Ghazal Alabtah 1, Nneka I. Comfere 2, Aaron R. Mangold 3, 
Dennis H. Murphree 2,4, Patricija Zot 5, Saba Yasir 5, Joaquin J. Garcia 5 & H. R. Tizhoosh 1*

Patching whole slide images (WSIs) is an important task in computational pathology. While most of 
them are designed to classify or detect the presence of pathological lesions in a WSI, the confounding 
role and redundant nature of normal histology are generally overlooked. In this paper, we propose 
and validate the concept of an “atlas of normal tissue” solely using samples of WSIs obtained from 
normal biopsies. Such atlases can be employed to eliminate normal fragments of tissue samples and 
hence increase the representativeness of the remaining patches. We tested our proposed method by 
establishing a normal atlas using 107 normal skin WSIs and demonstrated how established search 
engines like Yottixel can be improved. We used 553 WSIs of cutaneous squamous cell carcinoma to 
demonstrate the advantage. We also validated our method applied to an external dataset of 451 
breast WSIs. The number of selected WSI patches was reduced by 30% to 50% after utilizing the 
proposed normal atlas while maintaining the same indexing and search performance in leave-one-
patient-out validation for both datasets. We show that the proposed concept of establishing and using 
a normal atlas shows promise for unsupervised selection of the most representative patches of the 
abnormal WSI patches.

Pathology is the field of studying the cause, development, and effects of diseases. This field involves examining 
sampled tissues, cells, or bodily fluids to diagnose pathologic disorders or help with determining the prognosis of 
a disorder’s progression. In examining tissue samples of solid tumors, microscopes have been the most commonly 
used tool in this field before the introduction of digital  scanners1 to convert glass slides with mounted processed 
and fixed tissue samples into digital images. This digitization introduced a new concept to the field commonly 
referred to as digital pathology2. While digital pathology is the general term used to describe integrating innovative 
digital tools into pathology, computational pathology describes a field that uses computational techniques and 
algorithms to analyze and interpret pathology data with the goal of improving the diagnosis, prognosis, and 
treatment of  diseases3.

As tissue glass slides constitute a major source of information in pathology, whole slide imaging and whole 
slide image (WSI) analysis comprise a major and new subset of computational pathology. The current market 
of digital scanners is very diverse with most of the commercially available digital scanners being able to capture 
whole slide images at magnifications as high as 40X, generating extremely large image  files4. While storing and 
leveraging the information in such a huge amount of data can be challenging, the stored retrospective data 
can be effectively used to introduce assistive tools into digital pathology increasing the speed and accuracy 
of pathologists hence reducing the workload. Artificial intelligence (AI) has shown promise in utilizing mass 
medical archives.

Deep learning uses artificial neural networks to learn complex patterns in any type of  data5. In contrast to 
conventional machine learning which mainly uses structured data, e.g. tabular data, the so-called deep models 
(deep artificial neural networks) can take in unstructured data including text, sound, and image, without pre-
processing or pre-extraction of features. This makes deep networks extremely useful in real-life applications, 
including medicine. Deep models are mainly composed of multiple layers of connected artificial neurons. The 
general workflow of training and using a deep model in a supervised manner includes presenting the model with 
enough samples so the model can be properly trained to perform the desired task on new  cases5.
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It has been shown that searching in an indexed dataset with image-level labels may provide a base for 
computational  consensus6–9. An index dataset can be called an “atlas” of medical information where previously 
established knowledge is stored and can be retrieved for patient matching. In such an atlas, newly encountered 
cases, i.e., new patients, are indexed using the same methods and are matched against all the atlas cases to find 
the most similar patients. Diagnosis, staging, prognosis, and any other decision or prediction can be then inferred 
from the top similar atlas patients for which all outcomes are known.

Indexing visual content as generating a vector is the major task for atlas creation. While deep networks 
are mainly used as classifiers to provide definite labels on the input data, it has been shown that the numerical 
representations of some pre-decision layers of the network, also called embeddings or deep features, contain 
important information about the content of the input  data10,11. The concept of image retrieval in an atlas using 
deep features has been used in both radiology and  pathology7,8,12. Any deep network can be used to obtain 
deep features, but the architecture of the network and the data it has been trained on can greatly affect the 
representativeness of the features for the task at hand. For instance, KimiaNet is a dense convolutional neural 
network fine-tuned using all diagnostic histopathology images from the TCGA  repository13. Vision transformers 
have also shown a promising ability to capture the details in a given  image14,15.

While deep networks are widely used for generating deep features from images, they also impose limitations 
regarding image size. State-of-the-art graphical processing units (GPUs) which are commonly used in deep 
learning can process up to a certain size of the image in each iteration. Therefore, any whole slide image (WSI) 
processing requires the image to be broken down into many smaller images, also known as patches16. While 
patching gigapixel WSIs is a crucial step in computational pathology, one WSI can generate several hundred and 
even several thousands of patches of ordinary size, say 224 by 224 or 512 by 512 pixels, depending on the size of 
the WSI, magnification, and the biopsy type. One approach would be to feed all the patches into the deep network 
and use the output for the downstream tasks. Such a brute-force approach would require massive computational 
power, a factor that would limit the adoption of the technology.

Processing WSIs is a difficult problem that requires a divide & conquer approach. Patching is generally the 
divide and extracting deep features is the conquer part. Various methods have been proposed to select a smaller 
subset of WSI patches as representative ones for downstream tasks. One approach as described in Yottixel is 
clustering patches based on color distribution or RGB histogram and proximity of patches in WSI to select a 
diverse but smaller set of patches from all morphological structures within a  WSI7. This is called a mosaic of WSI. 
The Yottixel mosaic concept is simple and reliable and has been adopted by other  works17,18. Still, patch selection 
remains one of the open fields for research because it can greatly affect the performance of the downstream 
analyses. Yottixel’s mosaic ignores normal histology and selects normal and malignant patches based on their 
frequency in the clustering space.

As pathologists have been trained to recognize normal histologies and disregard them when focusing on the 
pathology, it can be helpful for a better patching strategy to remove normal histology specific to the site. One way 
to formulate this task is by integrating anomaly detection into the patching scheme. Provided WSIs depicting 
entirely normal tissue are available, one-class  classifiers19 could learn the typical features of normal histology. 
The trained classifiers can then accompany the mosaic generation, i.e., the patching, to remove normal patches.

In this paper, we propose and validate an “atlas of normal tissue” solely using samples of WSIs obtained from 
normal tissue biopsies. The proposed method leverages a weakly supervised multiple-instance learning method 
using one-class classifiers to exclude the normal patches and focus on clinically important parts of any given 
WSI. We argue that this method will reduce the number of patches selected, hence removing redundancy, from 
each WSI while maintaining the representativeness of the patches for downstream tasks.

Experiments setup
Datasets
Two datasets from two different organs were used to test the proposed atlas of normal tissue and the one-class 
classifier for normal patch detection.

• One dataset included a total number of 660 skin tissue WSIs of patients diagnosed with cutaneous squamous 
cell carcinoma (cSCC) which were pulled from the internal Mayo Clinic database (REDCap). The cases 
were first identified through enterprise-wide internal search engines which identified patients with a 
histopathologic diagnosis of cSCC or metastatic cSCC from pathology reports of archived tissue specimens. 
These cases subsequently underwent chart review to confirm the primary tumor as part of the inclusionary 
criteria. Samples were either taken at Mayo Clinic locations (Minnesota, Arizona, Florida) or outside facilities 
and shared with Mayo Clinic for consultation. The tissue may be from either biopsy (punch, shave, etc.) 
or subsequent excision. All tissue included in the pilot underwent both initial review and re-review by a 
dermatopathologist at one of the Mayo Clinic sites. The purpose of the re-review was to confirm cSCC, tumor 
characteristics (depth, differentiation, PNI, etc.), and tumor stage, and to select cases most appropriate for 
scanning and sequencing.

• Selected cases included 386 well-differentiated, 100 moderately differentiated, and 67 poorly differentiated 
cSCC. There were also 107 normal WSIs selected to represent the normal skin tissue. The only associated 
label used is the degree of differentiation or being normal. A total number of 10 slides were randomly selected 
from well-differentiated and poorly differentiated cases for internal validation of the normal atlas at the patch 
level. A pathologist selected the regions with the most prominent abnormal morphology in these slides. The 
annotations were later used to generate normal and abnormal patches for validation purposes only.

• The second collected dataset included 21 breast tissue WSIs obtained from 8 patients with no prior diagnosis 
of breast cancer at the Mayo Clinic. For validation purposes, 78 WSIs from cases with lobular carcinoma 
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of the breast and 354 WSIs from cases with ductal carcinoma of the breast were obtained from the TCGA 
Research Network. These were all the diagnostic WSIs available on the repository for the two selected medical 
conditions at the time of collecting the data. Tissue samples from cases with no prior malignancy and no 
treatment at the time of sampling were selected to imitate the diagnostic pipeline of a deployed model. After 
data curation and data exploration, 2 WSIs were excluded from the ductal carcinoma class due to not having 
an object power attribute recorded in their file metadata.

Normal atlas creation
The idea of the normal atlas relies upon leveraging anomaly detection algorithms used in machine learning to 
detect outliers in a dataset. One-class classifiers are best suited for this task. Due to the complex nature of the data, 
we selected Isolation  Forest20 and one-class  SVM21 as the abnormality detection mechanisms in this study. Isola-
tion Forest isolates anomalies by constructing a random forest of decision trees. It identifies outliers by measuring 
how easily instances can be isolated in the tree structures, where anomalies are expected to require fewer splits 
to be separated from the majority of the data. One-class SVM, on the other hand, builds a model based on the 
characteristics of the majority class and then classifies instances as either belonging to that class or being outli-
ers, making it particularly useful when dealing with imbalanced datasets. Both methods were presented with a 
series of deep features obtained from normal patches. The fitted classifiers were then used to classify normal and 
abnormal in a given set of deep features they had not seen before. Data preprocessing included tissue segmen-
tation, patching, and color normalization. The tissue segmentation was carried out using an in-house trained 
U-NET segmentation model. This model is trained on low magnification thumbnails of WSIs only to segment 
the tissue vs background. This model is not intended to differentiate normal and abnormal parts of the tissue. 
After removing parts of the WSI with background only, patching was done at 20 × magnification with a patch 
size of 1024 by 1024 and an overlap of 30% between adjacent patches, both in height and width. A minimum 
of 75 percent patch area coverage was selected as the criteria for excluding patching with insufficient tissue. All 
patches were separately fed to three different deep networks to obtain the deep features. These networks included 
one convolutional neural network with the architecture of DenseNet121 specifically trained on pathology patches 
named  KimiaNet13, one pre-trained vision transformer using a method named DINO, and another convolutional 
neural network with the architecture of ResNet50 trained using the same DINO  approach15.

When training the one-class classifiers with the normal data, the sample was assumed to be contaminated with 
some abnormal data. In the context of normal WSIs, this may include artifacts, tissue folds, stain sedimentation, 
pen markings, and out-of-focus slide areas. Both Isolation Forest and one-class SVM use methods to incorporate 
this assumption. One-class SVM utilizes a factor called ν to set an upper bound on the fraction of margin errors 
and a lower bound on the fraction of support vectors relative to the total number of training  examples22. We 
set ν = 5% of the total cases according to the expert’s opinion and let the Isolation Forest classifier deduct this 
parameter automatically according to the method described in the original  paper20. The pseudocode of creating 
and using the normal atlas is outlined in algorithms 1 and 2. The pipeline of creating the normal atlas is also 
visually shown in Fig. 1. We used the Python library SciKit Learn for the implementation of Isolation Forest 
and one-class  SVM23. All the experiments were executed on a Linux-based server with two AMD EPYC 7413 
CPUs and one NVIDIA A100 GPU with 80GB memory. The GPU was used for inferring deep features from 
the patches. Training One-class classifiers and using them as predicted were handled on the CPUs along with 
index and search.

Algorithm 1.  Pseudocode for creating the normal atlas given a set of normal WSIs IN.
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Algorithm 2.  Pseudo-code for using the normal atlas given a patch P and fitted one-class classifier MF.

Index and search workflow
To demonstrate the role of removing the normal patches from the WSI, we have used the general workflow for 
indexing and searching WSIs for retrieval of similar cases as previously explained in Yottixel with some minor 
 adjustments7. The tissue segmentation and patching follow the same method used to obtain the normal patches. 
To reduce the computational and storage cost, a subset of patches is then selected from each WSI using the 
patch selection method of  Yottixel7. This method involves clustering patches into 9 clusters using a histogram 
of their RGB values and then selecting 15% of the patches from each cluster in a spatially homogenous manner. 
This results in selecting almost 15 percent of the total patches from each WSI, collectively called mosaic. The 
deep features for the patches of each WSI are used as an indexed version of that WSI. The median of minimum 
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Figure 1.  The general workflow of creating the normal atlas: (a) Normal WSIs are generated by scanning slides 
of known normal tissue biopsies, (b) Deep features of normal WSIs are obtained by passing the patches from 
each WSI through a deep network; the resulting deep features are stored in the normal atlas, (c) The constructed 
normal atlas is used to differentiate normal vs. abnormal deep features from unknown patches obtained using 
the same preprocessing and feature extraction method.
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one-to-one Euclidean distances between all the patches of the two WSI is used to find the most similar indexed 
WSIs to any given WSI. The same approach for obtaining similarity is used in Yottixel with the difference being 
the Hamming distance for barcoded  features7 instead of the Euclidean between deep features which was used in 
our study. The schematic workflow of indexing and searching WSIs is shown in Fig. 2.

Internal and external validation
The performance of the normal atlas at the patch level was tested by obtaining normal and abnormal patches 
from 10 randomly selected cSCC test slides which were annotated by a pathologist. Having a minimum of 50 
percent surface area of the patch annotated as the abnormal region was set as the threshold to label the patch 
as abnormal. The rest of the patches were considered normal. The patches were obtained in the same size and 
magnification as the original datasets used, i.e., 1024 by 1024 at 20X. This process yielded 6479 normal and 9352 
abnormal patches. Precision, recall, and F1 score were selected as performance metrics for this classification task.

Three different setups of indexing and search pipeline were examined to test the effect of the normal atlas at 
the WSI level. The base setup included the original indexing and search pipeline for the WSIs as described in the 
Yottixel  paper7. Two other setups were almost the same with one added step of excluding normal patches using an 
atlas of normal tissue after applying the Yottixel’s mosaic to acquire patches. One setup used the Isolation Forest 
as the method of anomaly detection and another one used the one-class SVM. The resulting patches were also 
used to perform indexing and search in the same manner as the base setup. WSIs with all patches excluded as 
normal patches were labeled as normal. Performance of the indexing and search pipelines were measured using 
a leave-one-patient-out validation for all included patches by taking the output attached to top-1 and a majority 
vote among top-3 and top-5 most similar WSIs. Performance metrics such as precision, recall, and F1 score were 
calculated for each label inference. The overall performance of each configuration was also reported using the 
weighted F1 score of all the labels in the dataset according to their number of occurrences. To show the effect of 
using the normal atlas on computational time, We also measured the average time needed for a query search in 
the indexed WSI of the three selected setups. The added time for selection using the normal atlas per WSI was 
also recorded to determine the added overhead of using the one-class classifier.
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Figure 2.  General workflow of index and search: (a) Deep features of known slides are obtained via passing 
the preprocessed patches through a deep network and are stored with their corresponding labels, (b) The deep 
features of a new (diagnostically unknown) slide are obtained through the same process, and (c) Stored deep 
features of the known slides are searched to find the closest matches to the newly generated deep features to 
extract the most probable label through a majority vote among the top-n closest labels.
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Results
Normal Atlas patch-level validation
The patch-level internal validation for the normal atlases was carried out using the 10 previously randomly 
selected skin WSIs which were annotated for abnormal and normal regions by a pathologist. The performance 
varied based on the deep network used to obtain the deep features and the anomaly detection method used. 
KimiaNet’s features showed the best performance both using Isolation Forest and one-class SVM, with F1 
scores of 0.82 and 0.80, respectively. Among the networks trained with natural images, the DINO-trained vision 
transformer combined with one-class SVM showed the best results with an F1 score of 0.79. The detailed patch-
level validation results for normal skin atlases are shown in Fig. 3. One visual example of how patch-level 
classification of different deep networks and anomaly detection algorithms comply with pathologist annotations 
is shown in Fig. 4 for a cSCC WSI and in Fig. 5 for a breast cancer WSI.

Indexing and search results
Indexing and search were carried out on both datasets of cSCC and breast cancer WSIs using the three previously 
described experiment setups. The detailed performance results of the indexing and search experiments are 
reported in Tables S1 and S2 in the supplementary section. As the confusion matrices for the leave-one-
patient out classification depicted in Fig. 6 for the skin dataset show the two mostly mislabeled classes are 
’well-differentiated’ and ’moderately differentiated’. While this is true for the indexing and search using the deep 
features from all three deep networks, KimiaNet (trained specifically on pathology  images13) shows the best 
performance. The classification, regardless of the network used to obtain the deep features, shows almost the 
same level of performance in all three setup configurations of using no normal atlas, using a normal atlas with 
Isolation Forest, and using a normal atlas with one-class SVM. To show this in the skin dataset, the F1 score for 
different experimental setups of the top-5 consensus is illustrated in Fig. 9. Confusion matrices of the indexing 
and search leave-one-patient-out validation for the breast dataset are shown in Fig. 7. Indexing and searching for 
breast carcinoma cases using deep features from all three models also show suboptimal performance for lobular 
carcinoma and infiltrating ductal carcinoma. However, the performance stays almost the same in three setups of 
not using the normal atlas, using one with Isolation Forest, and using one with a one-class SVM. This is shown in 
the F1 scores plot of the top-5 consensus of the corresponding experiments in Fig. 10. While the performance of 
the classification using the indexing and search stays almost the same in both skin and breast datasets, the number 
of average patches selected per WSI in the whole dataset to represent the WSIs is reduced by at least 12% and at 
most 86% of the original number of patches as shown in Table 1. The same table also depicts the average total 
time of search per WSI, which follows the same pattern seen in the number of patches. Supplementary Table S3 

Figure 3.  Normal atlas performance at patch-level demonstrated using validation results for 10 manually 
annotated WSIs by a pathologist shown as confusion matrices using normal atlases established using Isolation 
Forest (a–c) and one-class SVM (d–f) on deep features extracted by KimiaNet (a,d), ViT-DINO (b,e), and 
ResNet50-DINO (c,f).
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provides a breakdown of the selection, search, and total time for each experiment setup. The exact level of patch 
and search time reduction depends on the deep network used to obtain the deep features and on the anomaly 
detection algorithm used in the normal atlas. Figure 8 provides a visual representation of the reduction in the 
average number of patches and total search time per WSI.

Discussion
The urgent need for novel WSI patching is an important aspect of current works in the field of computational 
pathology. Patching involves dividing an image into smaller regions or patches and using these patches to repre-
sent the tissue in the image. While most of the computational pathology tasks are designed to classify or detect 
the presence of pathological lesions in gigapixel WSIs, the presence of computationally redundant normal tis-
sue in WSIs is often ignored. While a large body of scientific work has been done in the field of WSI retrieval 
systems to address the numerical representation of the  WSI13,24–26 and WSI search  engines7,8,27,28, no study has 
addressed the effect of normal tissue in the indexing and search pipeline. Therefore, removing normal tissue is 
not an established practice in this field. While some works have used normal tissue exclusion as part of their 
 workflow29, the potential effect of redundant normal tissue in WSI retrieval is an unknown area. In this work, 
we tested the use of two anomaly detection algorithms as a means of excluding abnormal patches from Yottixel’s 
indexing and  search7. Our methods included no WSI-level annotation and used multiple instance learning for 
known normal WSIs.

Our results show that removing the areas with normal histology during the patching process helps with select-
ing a smaller set of representative patches for each WSI, therefore decreasing the computational and storage cost 
of the search engine, while maintaining the overall retrieval performance of the search engine.

As shown in Fig. 9, by using a one-class SVM to detect and exclude the normal patches in the cSCC dataset 
using features from KimiaNet, the classification performance for all three classes was either maintained at the 
same level or even improved. At the same time, as Table 1 depicts, the number of patches for selected cases was 
reduced by 67% after excluding the normal tissue, followed by a reduction in the total search time. Contrary 
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Figure 4.  Visual results in a cSCC case: (a) Pathologist ground-truth, (b) Yottixel’s mosaic, (c) KimiaNet and 
Isolation Forest, (d) ViT-DINO and Isolation Forest, (e) ResNet50-DINO and Isolation Forest, (f) KimiaNet and 
one-class SVM, (g) ViT-DINO and one-class SVM, (h) ResNet50-DINO and one-class SVM. Yellow regions 
depict the pathologist ground truth annotation for the tumor region. The green and purple areas show patches 
labeled normal and abnormal by the normal atlas, respectively. Red boxes show the patches selected for indexing 
and search within each WSI.
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to this improvement, the performance for correctly classifying the normal cases decreases, with a decrease 
in the F1 score from 0.97 to 0.79. This drop can be attributed to the fact that excluding patches that look 
normal from a normal WSI will leave it with patches mainly containing artifacts and distortions. This shift in 
the representation patches increases the chances of mismatch when searching. In contrast to the improvement 
seen for the experiments with deep features obtained by KimiaNet, those done on deep features obtained using 
DINO-trained ViT and ResNet50 show rather mixed results.

The results for the breast dataset show almost the same pattern as the results for the cSCC dataset. As Fig. 10 
shows, the classification performance for ductal carcinoma has shown minor changes regardless of the anomaly 
detection method selected and the network used to obtain the deep features. However, excluding normal tissue 
inflicts varying changes to the lobular carcinoma classification performance based on the network and anomaly 
detection method. Excluding normal tissue from breast WSIs also decreased the number of patches selected by 
12% to 47%, followed by a reduction in the total search time as depicted in Table 1. The same effect of decreased 
performance in normal cases for the cSCC dataset can also be observed in the breast dataset.

The changes in indexing and search performance seen in the skin dataset are also in concordance with the 
patch-level classification performance seen for annotated validation cases which is shown in Fig. 3. The validation 
results show that using Isolation Forest and one-class SVM classifiers on deep features obtained from KimiaNet 
are the best combination with an F1 score of 0.82 and 0.80, respectively. The same configurations also showed 
the best results in indexing and search as shown in Fig. 9. Applying one-class SVM on DINOtrained ViT and 
Isolation Forest on DINO-trained ResNet50 also resulted in acceptable performance with an F1 score of 0.79 and 
0.52, respectively. These two configurations also showed mediocre performance in indexing and search. Even 
though these two pairs of combinations showed good results, combining them the other way around does not 
show promising performance. These figures are in concordance with the visual demonstration of the normal 
versus abnormal region selection and the pathologist-approved ground-truths shown for two sample cases in 
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Figure 5.  Visual results of a breast carcinoma case: (a) Pathologist ground truth, (b) Yottixel’s mosaic, (c) 
KimiaNet and Isolation Forest, (d) ViT-DINO and Isolation Forest, (e) ResNet50-DINO and Isolation Forest, 
(f) KimiaNet and one-class SVM, (g) ViT-DINO and one-class SVM, and (h) ResNet50-DINO and one-class 
SVM. Yellow regions depict the pathologist ground truth annotation for the tumor region. The green and purple 
areas show patches labeled normal and abnormal by the normal atlas, respectively. Red boxes show the patches 
selected for indexing and search within each WSI.
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Figs. 4 and 5. These findings prove that patch-level classification performance is an indicator of how a normal 
atlas would perform in an indexing and search pipeline. This calls for the need to validate the performance of 
the normal atlas at the patch level before applying it in the pipeline.

There are some limitations to this study. As previously stated, the indexing and search performance for some 
cases was suboptimal before applying the normal atlas. Examples of such cases include moderately versus dif-
ferentiated cases of cSCC and lobular versus ductal carcinoma of the breast. We speculate that this is an active 
research area involving WSI representation. Improving the performance of WSI search engines and pathology-
specific deep networks is not in the scope of this study. We selected the currently established pipeline of Yottixel 
as the state-of-the-art search engine for our experiments.

Looking toward future research, other studies have shown the role of vision transformers in the area of 
anomaly  detection30–32. These approaches mainly rely on using the reconstruction score of a previously trained 
vision transformer encoder and decoder to extinguish normal versus abnormal image features. This approach 
hypothesizes that a coupled encoder and decoder trained only on images of normal phenomena would struggle to 
reconstruct an image of an ab-normal instance. This approach holds promise for training unsupervised anomaly 
detection models in medical imaging and should be further investigated in future studies.
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Figure 6.  Indexing and searching confusion matrices for leave-one-patient-out validation for top-5 consensus 
predictions in the skin dataset. Columns represent the indexing and search using deep features from KimiaNet, 
DINO-trained vision transformer, and DINO-trained ResNet50, respectively. Rows represent results in three 
experimental setups using no normal atlas, using a normal atlas with Isolation Forest, and using a normal atlas 
with one-class SVM, respectively.
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Figure 7.  Indexing and searching confusion matrices for leave-one-patient-out validation for top-5 consensus 
predictions in the breast dataset. Columns represent the indexing and search using deep features from 
KimiaNet, DINO-trained vision transformer, and DINO-trained ResNet50, respectively. Rows represent results 
in three experimental setups using no normal atlas, using a normal atlas with Isolation Forest, and using a 
normal atlas with one-class SVM, respectively.
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Table 1.  Average number of patches and total time per WSI in three different experimental setups including 
no normal atlas, normal atlas with Isolation Forest, and normal atlas with one-class SVM for skin and breast 
WSIs. For each setup, the numbers have been reported for deep features obtained from all three networks. The 
percentage and arrow in the parenthesis indicate the increase or reduction in each experiment compared to the 
base configuration where no normal atlas was used. All times are reported in milliseconds.

Experiment setup Average per WSI No normal Atlas
Normal Atlas via Isolation 
Forest

Normal Atlas via one-class 
SVM

Skin

KimiaNet
Patches 66.4 33 (↓ 50%) 21.6 (↓ 67%)

Total time 3112 2853 (↓ 8%) 2502 (↓ 20%)

ViT DINO
Patches 66.5 11.7 (↓ 82%) 33.8 (↓ 49%)

Total time 2929 1489 (↓ 49%) 3309 (↑ 13%)

ResNet50 DINO
Patches 66.4 13.4 (↓ 80%) 9.4 (↓ 86%)

Total Time 3872 845 (↓ 78%) 2433 (↓ 37%)

Breast

KimiaNet
Patches 248.5 216.5 (↓ 13%) 199.1 (↓ 20%)

Total time 8957 6995 (↓ 22%) 5840 (↓ 35%)

ViT DINO
Patches 248.5 132.8 (↓ 47%) 219.3 (↓ 12%)

Total time 6628 2463 (↓ 63%) 5293 (↓ 20%)

ResNet50 DINO
Patches 248.4 144.9 (↓ 42%) 134.6 (↓ 41%)

Total time 17,932 6390 (↓ 64%) 5591 (↓ 69%)

Figure 8.  Average number of patches (a) and search time (b) per WSI. Measurements are reported for the base 
configuration of not using a normal atlas, using Isolation Forest and one-class SVM. For each configuration, the 
measurements are also categorized based on the dataset and network used.
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Figure 9.  Indexing and search F1 score for leave-one-patient-out validation for top-5 consensus predictions 
in skin dataset plotted for each class, deep network, and experimental setup separately (WD well-differentiated, 
MD moderately differentiated, PD poorly differentiated, NL normal, B base configuration of using no atlas, 
IF using normal atlas based on Isolation Forest, OS using normal atlas based on one-class SVM).
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Figure 10.  Indexing and search F1 score leave-one-patient-out validation for top-5 consensus predictions in 
breast dataset plotted for each class, deep network, and experimental setup separately (DC infiltrating ductal 
carcinoma, LC lobular carcinoma, NL normal, B base configuration of using no atlas, IF using normal atlas based 
on Isolation Forest, OS using normal atlas based on one-class SVM).
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Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to privacy 
concerns and ethical considerations. Access to the data can be requested by qualified researchers and institutions 
for purposes of replication, verification, and further research. Interested parties may request access to the data by 
contacting the corresponding author at Tizhoosh.Hamid@mayo.edu or the institution at Mayo Clinic, 200 First 
St. SW Rochester, MN 55905. Requests for data access will be subject to review and approval to ensure compliance 
with all relevant ethical and legal standards regarding patient data privacy and confidentiality.
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