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Visual acuity prediction on real‑life 
patient data using a machine 
learning based multistage system
Tobias Schlosser 1*, Frederik Beuth 1, Trixy Meyer 1, Arunodhayan Sampath Kumar 1, 
Gabriel Stolze 2, Olga Furashova 2, Katrin Engelmann 2 & Danny Kowerko 1*

In ophthalmology, intravitreal operative medication therapy (IVOM) is a widespread treatment for 
diseases related to the age‑related macular degeneration (AMD), the diabetic macular edema, as 
well as the retinal vein occlusion. However, in real‑world settings, patients often suffer from loss 
of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) 
and the earliest possible detection of deterioration under real‑life conditions is challenging due to 
heterogeneous and incomplete data. In this contribution, we present a workflow for the development 
of a research‑compatible data corpus fusing different IT systems of the department of ophthalmology 
of a German maximum care hospital. The extensive data corpus allows predictive statements of the 
expected progression of a patient and his or her VA in each of the three diseases. For the disease 
AMD, we found out a significant deterioration of the visual acuity over time. Within our proposed 
multistage system, we subsequently classify the VA progression into the three groups of therapy 
“winners”, “stabilizers”, and “losers” (WSL classification scheme). Our OCT biomarker classification 
using an ensemble of deep neural networks results in a classification accuracy (F1‑score) of over 98%, 
enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more 
precise VA modelling process. Our VA prediction requires at least four VA examinations and optionally 
OCT biomarkers from the same time period to predict the VA progression within a forecasted time 
frame, whereas our prediction is currently restricted to IVOM/no therapy. We achieve a final prediction 
accuracy of 69% in macro average F1‑score, while being in the same range as the ophthalmologists 
with 57.8 and 50± 10.7 % F1‑score.

Keywords Ophthalmology, Ophthalmology diseases, Treatment progression, OCT biomarkers, Computer 
vision and pattern recognition, Predictive statistics, Machine learning, Deep learning

High-resolution imaging of the central retina utilizing optical coherence tomography (OCT) plays a key role in 
the diagnosis and monitoring of the most common macular diseases such as age-related macular degeneration 
(AMD), diabetic macular edema (DME), and retinal vein occlusion (RVO)1,2. OCT biomarkers are specific 
properties of measurements that are extracted from the OCT images to provide information about the condition 
of the tissues and tissue layers within the human eye. Furthermore, detailed analysis of different biomarkers on 
OCT scans is now the basis for treatment decisions as several biological markers provide not only information 
on diagnosis of these particular eye conditions, but also play an important role in predicting the treatment 
response. With the increasing amount of available data for therapeutic strategies, the identification of biomarkers 
with predictive values, as well as different medication options such as intravitreal operative medication 
therapies (IVOM) for macular edema or diabetic retinopathy patients, it is challenging for ophthalmologists to 
individualize the therapy for each patient. Artificial intelligence (AI) based algorithms should, in the future, help 
to find optimal individual therapeutic strategies for each patient. Real-world studies have already demonstrated 
how important the early treatment begin and the compliance with the therapy  are3–5. Yet, real-world studies need 
more attention, where we can contribute with a settings of real-world study data. The study group of Gerding 
et al.6 was one of the first ones to classify patients with AMD into three treatment success groups based on 
visual acuity (VA) and central retinal thickness: therapy “winners”, “stabilizers”, and “losers” (WSL classification 
scheme). This interdisciplinary cooperation between IT specialists and ophthalmologists aims at analyzing the 
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patients’ data according to the WSL classification scheme while identifying predictive values for several OCT 
biomarkers. The results should help ophthalmologists to better define their therapy strategy for each patient 
in everyday practice. Moreover, Schmidt-Erfurth et al. recently reported the potential of AI-based approaches 
for targeted optimization of diagnosis and therapy for eye  diseases7. In their contributions, they furthermore 
describe the impact of deep learning (DL) for the prediction of patient progressions in the earlier stages of AMD 
utilizing OCT  biomarkers8,9. Whereas current state-of-the-art research also explores the explainability as well 
as the related nomenclature when reporting AMD-related  diseases10,11, AMD such as exudative AMD as well as 
DME and RVO can be seen as the three most prevalent investigated eye diseases within the context of  AI11–14.

Related work
In the following sections, we discuss ophthalmic research on data mining from clinical IT systems 
(Section “Availability of ophthalmic data in research”), text and OCT image processing (Section “Ophthalmic 
text and OCT image processing”), and the use of the processed data for patient progression modelling 
(Section “Patient progressing modelling”).

Availability of ophthalmic data in research
In recent years, more and more ophthalmic data sets are being  released15,16. A recent review article identified 94 
open access data sets containing 507,724 images and 125 videos from 122,364 patients with diabetic retinopathy, 
glaucoma, and AMD being disproportionately over-represented in comparison to other eye diseases. However, 
the documentation of demographic characteristics such as age, sex, and ethnicity was reported to be of poor 
data quality even at the aggregate  level17. In 2017, we proposed a prototypical workflow to aggregate ophthalmic 
text and image data of all patients from the Department of Ophthalmology of the maximum care hospital 
Klinikum Chemnitz gGmbH in Chemnitz, Germany. We combined data mining and basic natural language 
(NLP) processing utilizing the interface of the clinic’s practice management software Turbomed (CompuGroup 
Medical) and extracted a set of preliminary diagnostic patient data in order to determine the ratio of patients 
with VA improvement, stabilization, and  deterioration18.

Ophthalmic text and OCT image processing
While widely being used for general text processing, NLP systems have recently been demonstrated to 
robustly extract medication information from clinical notes to study VA, intraocular pressure, and medication 
outcomes of cataract and glaucoma  surgeries19,20 to develop predictive models for low-vision  prognosis21 as 
well as to predict glaucoma  progressions22. Following De Fauw et al.23, especially machine learning (ML) and 
deep learning based approaches enable a more precise progression modelling as recent advances prove their 
applicability and capabilities within the domain. Moreover, recognition of OCT  biomarkers24 allows further VA 
and treatment based medical forecasts, including ensemble-based solutions to OCT  segmentation25 that enable 
the completion of incomplete OCT documentations. However, automated thresholding algorithms can yield an 
improved reproducibility of OCT parameters while allowing a more sensitive diagnosis of pathologies when, 
e.g., discriminating between healthy and impaired macular  perfusion26.

Patient progressing modelling
Schmidt-Erfurth et al.8 investigate the influence of hyperreflective foci as OCT biomarkers during the progression 
of geographic atrophy within the context of AMD. While utilizing deep neural networks (DNN) for OCT 
 segmentation27, they identify and localize occurrences given a data set of 87 eyes from 54 different patients. 
Following Schmidt-Erfurth et al.’s contribution, Waldstein et al. propose a further developed system while 
evaluating it with 8529 OCT volumes of 512 different  patients9. Moreover, time-dependent sequence modelling 
using recurrent neural networks (RNN)28 constitutes a promising approach to treatment  prediction29. At this 
point it is also noted that approaches to patient progression modelling exist that explore conventional models. 
These include mathematical models, e.g., to determine the effect of the anti-vascular endothelial growth factor 
on VA via medication concentration and  tolerance30, as well as regression-based approaches, e.g., to predict VA 
in diabetic retinopathy via the foveal avascular zone  area31.

Contribution of this work
In this contribution, we present an IT system architecture that aggregates patient information for more than 
49,000 patients from different categories of various multimedia data in the form of text and images within 
multiple heterogeneous ophthalmic data resources. The resulting data corpus enables predictive statements 
to be made about the expected progression of a patient’s visual acuity after at least four VA examinations in 
each of the three diseases—AMD, DME, and RVO. A more fine-grained analysis is conducted to reveal the 
influence of medical co-existing factors such as other diseases in this real-world setting. Within our proposed 
multistage system, an ensemble of deep neural networks allows the completion of incomplete or missing OCT 
documentations. In order to conduct a patient progression modelling, we define a fundamental use case for the 
prediction of the VA by aggregating different patient information as input of the subsequent VA forecast after 
a given time period. We present an evaluation formalism and discuss the resulting predictions in comparison 
to those of a human annotator such as experienced ophthalmologists. In order to enable ophthalmic doctors to 
annotate their predictions regarding the patient-wise expected VA progression, our proposed patient progression 
visualization and modelling dashboard gives an overview of our aggregated data with patient-wise information 
of, i.a., general patient information and VA, OCT biomarkers, diagnosis, and medication information (Fig. 1).
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Methods and implementation
This section provides the methods and their implementation related to the patient progression modelling. Firstly, 
the proposed system’s architecture for data acquisition, preprocessing, analysis, and prediction is introduced 
(Section “System architecture”). To allow a unified data processing, the role of the related terminologies for medi-
cal application (ophthalmic ontology) is addressed (Section “Text processing and ontology”), whereas the data 
fusion and cleaning is introduced (Section “Text processing and ontology”). Subsequently, descriptive statistics 
are derived (Section “Category-centered data organization and descriptive statistics”). Finally, the principles 
of the patient progression modelling within the context of our ML- and DL-based approaches are introduced 
(Section “Patient progression modelling”).

The related implemented models and approaches to patient progression modelling as well as OCT biomarker 
classification are provided via open science with the machine learning framework  Hexnet32 and can be found 
on its project page and repository under https:// github. com/ TSchl osser 13/ Hexnet (see also _ML/models/
contrib). The framework Hexnet provides the functionality that mainly allows for the utilization of out-of-
the-box ML- and DL-based methods and models, including common routines for data storage management, 
preprocessing, model training and testing, as well as evaluation. It was originally developed for hexagonal image 
processing and deep learning, while it has been recently further developed for classical machine learning. Its 
machine learning module (directory _ML/) is based on the machine learning library TensorFlow with its front 
end Keras, whereas scikit-learn is deployed for all machine learning based models and evaluation procedures. 
Within the current research work, Hexnet’s machine learning module has been extended to enable the process-
ing of ophthalmic imagery, the data handling of our data vectors, as well as our ophthalmic evaluation through 
models such as, e.g., statistical, moving average (MA), and weighted MA estimators as well as recurrent neural 
networks (RNN). These new contributions can be found under models/contrib/ via ophthalmol-
ogy_evaluation.py and RNNs.py). In comparison, already existing ML and DL models are also present 
within models/ and models/contrib/, covering regressors and our multilayer perceptron approaches as 
well as DenseNet201 and ResNet152V2 that are based on Keras or scikit-learn.

The present study was approved by the Institutional Review Board of Saxony (Dresden, Germany) under the 
number EK-BR-102/20-2. We confirm that all research was performed in accordance with relevant guidelines 
and regulations. Informed patients’ consent was waived because of the retrospective anonymous design and 
because no study-related investigations were necessary.

System architecture
Our ophthalmic core data set obtained from data as well as text mining is based on the categories of general 
patient information (G), VA-based patient information (V), OCT scans and biomarkers (O), diseases (D), as 
well as treatments and medications (T). These categories are obtained from different base systems, the electronic 
health record system (EHR system, Turbomed), the clinical information system (CIS system, SAP), and an OCT 
system (Heidelberg Eye Explorer) (see also Fig. 2). While all three systems contain basic patient information, 
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Figure 1.  Patient progression visualization and modelling dashboard developed with medical doctors 
for medical doctors as well as researchers. Visualized are general patient information, visual acuity, OCT 
biomarkers, diagnoses, and medications. It is possible to annotate the expected course of the VA on site at the 
position of the red question mark. The shown data set is inspired by real patients and is synthesized to avoid 
re-identification. The distance between two adjacent vertical guide lines is 50 days.
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the OCT system provides first and foremost OCT scans (categories G and O). The EHR system consists of one 
large database which contains all relevant patient information within the categories of G, V, D, and T. As the 
treatment and medication information within the EHR system is not always complete, the clinic’s CIS system is 
additionally utilized in order to retrieve missing medication and therapy information (category CIS). Following 
the retrieved data of all three base systems in the form of BDT (EHR system), CSV (CIS system), and E2E files 
(OCT system), all relevant information are merged in a patient-centered way. This includes a chronological 
synchronization of all patient information, whereas sensitive patient information has to be furthermore pseudo-
anonymized due to patient data privacy and protection laws. These results are then presented via our patient 
progression visualization and modelling dashboard (Fig. 1).

Text processing and ontology
The challenge of the ophthalmic text processing is given by the heterogeneity and incompleteness of the under-
lying data itself, which are in turn documented by many different medical doctors. For text processing and 
ontology creation, the programming language Python with the Natural Language Toolkit (NLTK)33 was utilized.

In order to harmonize our weakly-structured medical texts present within our different databases extracted 
from electronic health records from over 10 years ranging from 2010 to 2020, we applied a general stemming 
approach using a snowball stemmer for the German language, also known as the Porter stemming  algorithm34. 
Within computer linguistics, this approach enables an automatic tracing and finally a reduction of words to their 
stem or root word to allow for a unified text representation. To this end, a set of rules is applied until the current 
word’s stem is  extracted34, for which NLTK provides our language-specific rules. When processing, the stemmer 
is applied iteratively to every word given within the current medical text. Following the obtained stems, specific 
ophthalmic and medical rules are applied for further processing.

These rules encompass a set of category-specific rules handling abbreviations, negations, and synonyms as 
well as orthography and grammar variants and mistakes. For this purpose, recognized medical and ophthalmic 
text strings are mapped into a unique ontology. In the following, we demonstrate some arbitrary strings from the 
EHR system’s diagnosis with customized (German) abbreviations and how they are mapped to diseases, whereby 
“ ∗ ” denotes a placeholder for any string that is not handled otherwise. The mapping is case-insensitive and was 
specifically adjusted for German doctors (Table 1). The results have been qualitatively inspected for reliability 
and plausibility. A thorough quantitative evaluation of our text processing algorithms is still subject to further 
investigations and will be part of our future research. Therefore, it is beyond the scope of this contribution to 
further explain the underlying (German) text processing in detail.

Figure 2.  Proposed medical text and image data mining workflow for the following descriptive statistics and 
VA modelling based on our three base systems of the electronic health record system (EHR or Turbomed 
system), the clinical information system (CIS system), and the OCT system. Our patient progression 
visualization and modelling dashboard is shown in Fig. 1. Currently, the classification and prediction step of 
treatment adjustment is still in development. However, given all data, a treatment recommendation can be 
realized.
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Data fusion and cleaning
Our practice management software supports database exports via the BDT file format. Here, we extracted elec-
tronic health records from over 10 years ranging from 2010 to 2020, including over 49,000 patients and more 
than 130,000 examinations. Our six main categories (G, V, O, D, T, and OP) currently span a total of more than 
30 subcategories. These include, among others, medication-related information such as information on apoplexy 
and blood thinning as well as biomarker-related information such as information on central retinal thickness 
and intraretinal fluid. More than 18,000 IVOMs are available from 2013 to 2020 after a fusion of the EHR and 
CIS systems’ data. All data were linked to the over 12,000 OCT volumes exported from the OCT system via the 
patient ID (see also Fig. 2, patient-based data merging).

Subsequently, the obtained merged data table is further processed and cleaned. Firstly, it is cleaned by mapping 
the arbitrary text strings present in the medical letters to diseases. The medical letters contain several terms and 
abbreviations for specific diseases as different letters stem from several different doctors (see previous section, 
Table 1). Secondly, unspecific and invalid terms are revised. For example, the entry “eye side” of treatments is 
only allowed to have the entries “left” or “right”, while invalid entries such as “-” are removed.

Category‑centered data organization and descriptive statistics
After the data fusion and cleaning, the data are focused towards the description of (i) anamnesis, (ii) intravitreal 
operative medications (IVOMs), (iii) diseases, as well as (iv) visual acuity (Fig. 2). The merged main table is 
changed towards a patient-centered description. The aim is to record the start and the end dates of anamnesis 
entries (if available), the diseases, and the IVOM therapy cycles for each patient. We designed our tables via 
two lines per patient since the diseases are to a large degree eye independent, for which we include both eyes 
as separate lines in our tables. For the medical doctors, the category-centered tables allow an easier filtering, an 
easier sorting, and a more compact view of the data for a particular medical information.

Finally, all tables are visualized in the statistical-description module that illustrates for example a single data 
set. In addition, the tables can also be combined to show cross-table-referenced data correlations. From all avail-
able visualizations, including up to 30 combinations of visual acuity and disease statistics, we illustrate in this 
work due to space limitations the statistics of the aforementioned three diseases, and a disease statistic under 
the influence of a second disease. As statistical tests, we employ two-sample Student’s t-tests. Furthermore, we 
quantify the strength of the effect—the increase or decrease in visual acuity—via the standard Cohen’s d  metric35. 
Cohen’s d measures it in standard units, where 0.2 stands for a small, 0.5 for a medium, and ≥ 0.8 for a large 
effect  size35. It is calculate via Eq. 1.

where x̄1 and x̄2 are the means of the two data sets (patient populations) and s is the standard deviation for the 
data.

Patient progression modelling
For the OCT biomarker classification and patient progression modelling via visual acuity prediction, a set 
of prominent as well as conventional approaches from machine learning and deep learning are adapted. The 
machine learning library TensorFlow with Keras as its front end is utilized, while furthermore, scikit-learn is 
deployed for all machine learning based models and evaluation procedures. As the extracted medical data from 
the electronic health records of our patients originates from the documentations of ophthalmologists, these data 
will be defined as our ground truth. Data are extracted from the documentations as described in Section “Text 
processing and ontology” and will therefore serve as our training and test data set.

For this purpose, our patient progression visualization and modelling dashboard depicted within Fig. 1 is 
utilized to enable the annotation of the expected course of the visual acuity on site by ophthalmologists. These 
annotations are in turn used to obtain a comparison for the prediction capabilities based on our combined data 
corpus.

Classification definitions and terminology
For evaluation, we deploy the macro average F1-score. The macro average F1-score is calculated via the 
class-wise F1-scores f, where F denotes the set of all class-wise F1-scores following our WSL classification 
scheme: macro average F1-score = 1/|F| ·

∑
f ∈F f  , whereas the class-wise F1-scores are in turn calculated via 

(1)d =
x̄1 − x̄2

s

Table 1.  Exemplary (German) ophthalmic text processing rules for exudative AMD, DME, and RVO.

Disease Rules

AMD
‘feucht’, ‘feuchte’, ‘exsudativ’, ‘exsudative’, * → True

‘trocken’, ‘trockene’ → False

DME
‘diabetisch’, ‘diabetisches’ → True

* → False

RVO
‘ast’, ‘retinal’, ‘zentral’ → True

* → False
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F1-score = 2 · (precision · recall)/(precision+ recall) with precision = TP/TP+ FP and recall = TP/TP+ FN 
(TP = classification true positives, FP = false positives, and FN = false negatives).

Training and test setup
Our training setup for visual acuity prediction furthermore includes: the Glorot  initializer36 for weight initiali-
zation with the Adam optimizer as well as a batch size of the same parameterization. Over all experiments, we 
conducted our test runs with a randomized data set split ratio of 80/10/10 for training, validation, and test set.

OCT biomarker classification
Within our proposed approach, OCT biomarkers are firstly classified using the provided OCT B-scan images 
(local, slice-wise classification). These B-scan images are slices through the three-dimensional, scanned back of 
the eye produced by the OCT scan. The local, slice-wise classifications are then combined in order to classify the 
whole OCT scan (global, scan-wise classification). To complete incomplete OCT biomarker documentations, our 
multistage system consists of an ensemble of different models for the local, slice-wise OCT classification, which 
in turn therefore enables the global, scan-wise OCT biomarker classification. For the scan-wise OCT biomarker 
classification, the beforehand obtained slice-wise classifications are combined via a random forest classifier as 
based on our classification scheme. For this combination purpose, the slice-wise obtained classification confi-
dences are utilized and fused to a scan-wise, global class.

Our 6 OCT biomarkers of interest are separated into two states, physiological and pathological, defining two 
distinct classes. These take the values interrupted (pathological) versus preserved (physiological) for external 
limiting membrane (ELM) and ellipsoid zone (ellipsoid), as well as present (pathological) versus not present 
(physiological) for foveal depression, retinal pigment epithelium (RPE), scars, and subretinal fibrosis, respectively. 
An OCT biomarker data set overview with the available OCT B-scans per OCT biomarker and related classes is 
shown in Table 2, resulting in a total of 12 data subsets, for which a classification into pathological versus physi-
ological OCT scans is conduced. For our OCT biomarker OCT slice extraction, we determined an intermediate 
subset of slices with a slice range of 8 to 18 from 25 in total (8..18 out of 1..25). This range has been selected as, 
in our experience, most information is present within this slice range. Since different OCT scans may possess 
different original image resolutions, their image resolution was scaled to an initial size of 256× 256 pixels for 
ML models and DNNs.

Based on the obtained OCT biomarker classifications, the subsequent VA modelling is realized as a time series 
prediction using, among others, different ML- and DL-based models such as multilayer perceptrons (MLP)37 
and recurrent neural  networks38,39, also shown in Table 6. For our classical multilayer perceptron classifier as 
baseline model, the following parameters were chosen as its configuration: one input, one hidden, and one output 
layer with a hidden layer size of 100. We utilize the ReLU activation  function40,41, the Adam  optimizer42 with a 
standard learning rate of 0.001 and exponential decay rates of 0.9 and 0.999, as well as a batch size of 32. For all 
remaining parameters, standard values as provided by scikit-learn are applied.

Visual acuity prediction
To allow a WSL-based grouping of VA values, the logMAR score of each VA value is derived via 
VAlogMAR = − log10 VAdec

43. We define a decimal VA range of 0.04 to 2.0, corresponding to a logMAR range of 
1.4 to −0.3 . The visual acuity delta ( �VAi ) of the examination i is calculated by comparing two adjacent logMAR 
VA values via �VAi = VAi − VAi−1 . A threshold of 0.1 logMAR units divides examination i depending on its 
progression: �VAi < −0.1 is considered a progression winner, −0.1 ≤ �VAi ≤ 0.1 a progression stabilizer, 
and �VAi > 0.1 a progression losers (see also Fig. 3). The threshold of 0.1 logMAR units has been selected in 
order to to enable a reliable categorization of progression winners, stabilizers, and losers where an improvement, 
stabilization, or aggravation in visual acuity is apparent.

Table 3 gives an overview of our ophthalmic data set with its data organization for VA prediction as it is 
provided to our predictive models. In Table 3, the data organization of an exemplary time window of 4 VA 
measurements is shown in (a) for the first 10 of 24 lines of the feature data vector, while (b) explains in details all 
24 lines of medical features associated with each VA’s feature vector, including “treatment”, “OCT biomarker”, as 
well as “additional data”. The full data feature vector is then translated to numerical values and feed to the ML/DL 
models, illustrated with an example in (c). In (c), “ −1 ” denotes the numeric placeholder when no information 
is present within the respective data fields. To predict the VA at a given date, machine learning models typically 
require a fixed data input size, i.e., a matrix or vector of fixed dimensions. In (a), shown are the values for the 
first time window of size 4 in Fig. 1. Our analyses currently include only IVOM therapies, while within our data 
vectors, no information on therapeutic interventions such as operations is present currently.

In order to make predictions for time windows of different sizes, we define a matrix with predefined 
dimensions of 24 rows (see medical feature vector in Table 3b) and 10 columns, which corresponds to 10 time 
steps or date entries with available information. The minimum time window size is 4, which means that the first 
4 of in total 10 columns of the matrix are filled with patient data as exemplary shown in Table 3b. The remaining 
6 columns are set to “ −1 ”, especially when no more temporal information is available. The window is—as far as 
more temporal data are available—iteratively increased by one, i.e., in each iteration, one column more is filled 
with values. The subsequent VA is modelled, for which it is determined whether the VA improves, remains 
constant, or deteriorates (WSL classification scheme). However, at maximum, 10 time steps (columns) are used 
given that the visual acuity for the 11th time step is known. Formally, all models in Table 6 require a vector as 
input. Thus, the matrix was reshaped into a 1 × 240 vector to be used in model training and testing. The MLP 
model described in Section “OCT biomarker classification” with its configuration is again utilized as baseline 
model. Given our MLP model for visual acuity prediction, a meta model is realized that classifies the predicted 
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VA values via our WSL classification scheme. Since the MLP predicts the VA values, our so-called MLP-LDA 
model utilizes these predictions by further classifying them via a linear discriminant analysis (LDA)44 into our 
WSL-based classes. To this end, the shown data vectors in Table 3c are extended with the visual acuity predictions 
of our MLP model in each time step. MLP-LDA processes these extended data vectors while correcting the 
previously obtained visual acuity prediction of MLP.

Figure 3.  Visual acuity (VA) modelling and evaluation principles. Given a set of past visual acuity 
examinations, we predict the visual acuity value at the next time step. Top: Visual acuity progression of 
our exemplary patient from Fig. 1. Predictions of the visual acuity are conducted by our MLP-LDA model 
starting with the 5th VA value. In addition, we asked an ophthalmologist to predict the VA. As shown in 
our visualization, both the predictions the ophthalmologist as well as our proposed model lie close to each 
other, which in turn emphasizes their prediction capabilities within the context of our ground truth data. 
Middle: Difference of the visual acuity from the previous to the current data point, showing the improvement, 
stabilization, or aggravation of the VA from the last examination. A threshold of 0.1 logMAR units divides 
the patient into three groups: �VAi < −0.1 into winners (W), −0.1 ≤ �VAi ≤ 0.1 into stabilizers (S), and 
�VAi > 0.1 into losers (L), whereby i denotes the data point with �VAi = VAi − VAi−1 . The first four data 
points of the ground truth are omitted within the visualization. Bottom: Prediction quality of our model 
and the ophthalmologist. Shown are the predictions of the patient for our approach to VA prediction and 
the ophthalmologist, whereas correct ( ) and incorrect ( ) WSL predictions are highlighted. The underlying 
ophthalmic feature vector data organization for VA prediction is depicted in Table 3.

Table 2.  Ophthalmic data set overview of our 6 different OCT biomarkers. Listed are the available OCT slices 
per OCT biomarker with their related classes of physiological as well as pathological image samples.

OCT biomarker

Class

Class ratio [ phys./path.]Physiological Pathological

ELM 7660 407 18.8

Ellipsoid 7377 308 24.0

Foveal depression 40,087 10,923 3.7

RPE 7866 10,635 0.7

Scars 9088 4687 1.9

Subretinal fibrosis 8481 5261 1.6
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For our ophthalmologists’ study, two different sets of ophthalmologist(s) were recruited for a first evaluation 
study: our main ophthalmologist (ophthalmologist I) and eight other ophthalmologists to further validate the 
results of ophthalmologist I (ophthalmologist set II). Our motivation was to provide the main ophthalmologist 
with the full test data set, while group II received randomized subsets of our test set. We also aimed at choosing 
multiple participants, yet time and effort were limiting factors. All participants were selected from the Depart-
ment of Ophthalmology at the Klinikum Chemnitz gGmbH in Chemnitz, Germany and they have all subspecialty 
training in eye diseases. Training of our ophthalmologist I is fellowship-level. The participant group II has a span 
of training levels (four fellow level, three specialist, and one senior specialist for retinal surgery). Their experi-
ence is assumed based on their respective training levels. The main ophthalmologist is author of this study, he 
has thus potentially a notably higher experience in the field of AMD/DME/RVO as his training level otherwise 
implies, and the senior specialist is author as well. Within our experiment, the ophthalmologists utilized our 
dashboard for their predictions (Fig. 1), for which the task was to predict the visual acuity value for the next 
point in time. The test data set for ophthalmologist I contained 1494 samples, while the eight additional doctors 
received randomized subsets of the test set of ophthalmologist I, whereby each subset contained between 50 and 
100 samples. Participants were presented with the following medical information, which is also visible from our 
dashboard: the past visual acuity values, central retinal thickness, OCT biomarker documentation, diagnoses 

Table 3.  Ophthalmic data set overview with utilized data organization for VA prediction. To predict the VA 
at date i, a window of maximum window size 10 is utilized where j is the first date of the current window 
( j − i − 1 ). (a) Essential design: For this purpose, the shown data organization from lines 1 to 10 is deployed, 
whereas the data within the fields “treatment”, “OCT biomarkers”, and “additional data” cover multiple entries as 
detailed in (b). (b) Detailed data organization, outlining the fields from (a). Here, “l/r” denotes the availability of 
data for both eyes (left/right). In Fig. 1, two entries for RPE exist, RPE (availability) and RPE detachment (state, 
physiological or pathological), which have been combined into one entry. (c) When translating the information 
from text strings in (a) and (b) via numerical translation to values in (c), value-based data vectors are obtained 
that are applied to the models’ learning and evaluation procedures. In (c), “ −1 ” denotes a numeric placeholder 
when no information is present within the respective data fields. For the sake of simplicity, the processing step 
of numerical translation was omitted. For example, the data entry of a patient’s sex can result in three different 
values: 0 for male, 1 for female, and 2 for patients of diverse sex. Shown are the values for the first window of size 
4 in Fig. 1.

1 da t e _ { j } , d a t e _ { j +1} , d a t e _ { j +2} , . . . , d a t e _ { i }

2 age_ { j } , age_ { j +1} , age_ { j +2} , . . . , age_ { i }

3 VA_{ j } , VA_{ j +1} , VA_{ j +2} , . . . , VA_{ i }

4 t r e a tm e n t _ { j } , t r e a tm e n t _ { j +1} , t r e a tm e n t _ { j +2} , . . . , t r e a tm e n t _ { i }

5 OCT b iomarke r_ { j , 1 } , OCT b iomarke r_ { j +1 ,1} , OCT b iomarke r_ { j +2 ,1} , . . . , OCT b iomarke r_ { i , 1 }

6 OCT b iomarke r_ { j , 2 } , OCT b iomarke r_ { j +1 ,2} , OCT b iomarke r_ { j +2 ,2} , . . . , OCT b iomarke r_ { i , 2 }

7 OCT b iomarke r_ { j , 3 } , OCT b iomarke r_ { j +1 ,3} , OCT b iomarke r_ { j +2 ,3} , . . . , OCT b iomarke r_ { i , 3 }

8 . . . , . . . , . . . , . . . , . . .

9 OCT b iomarke r_ { j , n } , OCT b iomarke r_ { j +1 , n } , OCT b iomarke r_ { j +2 , n } , . . . , OCT b iomarke r_ { i , n}

10 a d d i t i o n a l d a t a _ { j } , a d d i t i o n a l d a t a _ { j +1} , a d d i t i o n a l d a t a _ { j +2} , . . . , a d d i t i o n a l d a t a _ { i }

(a) Data organization. The x-axis denotes the time (examination date) and the y-axis the data entries.

Entry Explanation

1. Current date in days since the patient’s birth

2. The patient’s year of birth

3. The patient’s sex

4. VA (l/r)

Treatments

5. Medication (l/r): Eylea or Lucentis

6.–8.
Related information: apoplexy, blood thinning,

and myocardial infarction

OCT biomarkers

9.–14.
OCT biomarkers (l/r): ELM, ellipsoid, foveal

depression, RPE, scars, and subretinal fibrosis

15.–

17.

Related information (l/r): central retinal thickness

as well as intraretinal and subretinal fluid

Additional data

18.–

24.

Diseases (l/r): AMD, DME, and RVO as well as

cataract, diabetic retinopathy, ERM, and

pseudophakia

(b) Data explanations.

1 20177 , 20239 , 20396 , 20519

2 1965 , 1965 , 1965 , 1965

3 0 , 0 , 0 , 0

4 0 . 8 , 0 . 5 , 0 . 5 , 0 . 5

5 −1 , 0 , −1 , −1

6 −1 , −1 , −1 , −1

7 −1 , −1 , −1 , −1

8 −1 , −1 , −1 , −1

9 −1 , −1 , −1 , −1

10 −1 , −1 , −1 , −1

11 1 , 0 , −1 , −1

12 −1 , −1 , −1 , −1

13 −1 , −1 , −1 , −1

14 −1 , −1 , −1 , −1

15 306 , 437 , −1 , −1

16 −1 , −1 , 1 , −1

17 −1 , −1 , −1 , −1

18 −1 , −1 , −1 , −1

19 1 , 0 , −1 , −1

20 0 , 2 , −1 , −1

21 −1 , −1 , −1 , −1

22 −1 , −1 , −1 , −1

23 −1 , −1 , −1 , −1

24 −1 , −1 , −1 , −1

(c) Data vectors. The x-axis
denotes the time and the y-axis the

data entries.
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(AMD, DME, RVO, and also others), general information (gender and age), IVOMs, and additional medical 
data. The AI models were provided with precisely the same information (cf. Table 3).

Test results, evaluation, and discussion
The following sections provide first our evaluation regarding the predictive statistics of therapy winners, 
stabilizers, and losers (Section “Predictive statistics”). To allow the inclusion of OCT biomarkers into the 
patient progression and VA modelling process, incomplete or missing OCT documentations are completed 
(Section “OCT biomarker classification”). Given each patient’s medical data, the following patient progression 
and VA prediction utilizes the resulting OCT biomarker completions (Section “Visual acuity prediction”).

Predictive statistics
For the following predictive statistics, a statistical analysis was conducted for our diseases exudative AMD, RVO, 
and DME. The progression of the VA was classified into therapy winners, stabilizers, and losers (WSL classifica-
tion scheme) based on the first and the last VA measurement of each patient (Section “Category-centered data 
organization and descriptive statistics”). The size of our data corpus and its harmonization as described in Sec-
tions “System architecture”, “Text processing and ontology”, and “Data fusion and cleaning” allows different kinds 
of statistical surveys, e.g., separated according to disease, time periods, and comorbidities. The data originate 
from a large- and daily-operating medical hospital (German hospital of maximum care level) and thus indicate 
effects of real-world scenarios.

Our statistical investigations consequently allow us to make statistical predictions under real-life conditions 
for questions such as “If a patient has exudative AMD, what are the future prognoses for this patient?”. For the 
three aforementioned diseases, the outcomes are shown in Fig. 4. Especially for AMD, at average, a deterioration 
of the visual acuity over time is observable. A more fine-grained analysis reveals effects over time since we split 
the data of a disease into patients with short and longer progression. The time course refers to the time difference 
(in years) between the first and the last VA measurement of individual patients. The total data of N = 1050 eyes of 
AMD is now divided into 4 substatistics with different time windows, whereby, for example, the data in the first 
time bin of under 1 year is about 25%. We found, with regard to longer disease time courses, the proportion of 
losers increases further till ≥ 60 % for time courses of > 6 years and longer. Note that our WSL group definition 
using �VAlogMAR thresholds of 0.1 is fixed for all time windows, which might be regarded as a somewhat harsh 
criterion for long time scales. We perform two-sample Student’s t-tests to analyze the statistical significance 
of the deterioration of the visual acuity, shown in Table 4. To avoid thresholding effects, we perform the tests 
directly at the raw delta logMAR values. We found a strong significant effect for the disease AMD ( p ≤ 0.0001 ), 
no significance for RVO ( p = 0.0607 ), and a weak significant effect for DME ( p = 0.0016 ). A full combination of 
all statistical tests can be found in Table 7. In addition, we employed the Cohen’s d measurement that shows the 
normalized strength of the effect, i.e., the amount of the increase in the therapy loser fraction (Section “Category-
centered data organization and descriptive statistics”). We observed a deterioration of the visual acuity in AMD 
with a large/medium effect (Table 4), while the other diseases arouse smaller effects. This means that more and 
more patients are experiencing deterioration of vision over longer periods of time, especially for AMD.

The representation of our diseases in combination with medical co-factors (comorbidities) is shown in Fig. 4d 
and can be performed as a proof of concept. It illustrates the influence of an epiretinal membrane (ERM) on the 
disease DME. Yet, if DME and epiretinal membrane occur simultaneously, it becomes apparent that only about 
12–25 patients are included in each substatistic and the direct comparison with the DME-only group would not 

Figure 4.  (a–c) Real-world winner, stabilizer, and loser distribution (WSL classification scheme) for exudative 
AMD, RVO, and DME. (d) Distribution for the disease DME under exemplary medical co-factor of an epiretinal 
membrane. The shown results are based on our disease statistics (Fig. 2), whereas N denotes the number of eyes 
for the given number of patients.
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yet stand up to statistical tests (Table 4). For such substatistics, more data will be needed in the future, e.g., by 
merging several ophthalmic hospitals into a common research data infrastructure.

OCT biomarker classification
Table 5 shows our classification results for the slice-wise and the scan-wise OCT classification using different 
prominent approaches from machine learning and deep learning averaged over five runs. In comparison, the 
selected models DenseNet-20145 and ResNet-152V246 show the best classification accuracies in F1-score with 
mean classification accuracies of 81.8 and 82.3% for our 6 OCT biomarkers. While the biomarkers RPE and 
subretinal fibrosis are best classified with the network DenseNet-201, the best results for the four other biomarkers 
ELM, ellipsoid, foveal depression, and scars are shown by the ResNet-152V2 network. When comparing the 
results for the different OCT biomarkers, ELM and ellipsoid show the best accuracies to classifying them given the 
OCT slices, whereas RPE and subretinal fibrosis represent the more challenging OCT biomarkers with reduced 
accuracies. For the following scan-wise OCT classification, a random forest  classifier44 was sufficient in order to 
achieve high classification accuracies over all biomarkers with single scores of up to 99.9%. These scores were 
obtained for the biomarkers ELM, ellipsoid, and foveal depression. Finally, we obtain the best resulting mean 
classification accuracies in F1-score over all OCT biomarkers of 82.3 (slice-wise, ResNet-152V2), and of 98.2% 
(scan-wise, random forest classifier).

Visual acuity prediction
The principles of VA prediction are illustrated in Fig. 3 for an exemplary patient whose first diagnosis was 
cataract in both eyes and DME in the right eye in 02/2014. Shown is the VA progression over a timespan of 1 
year, in which the patient had 6 IVOMs with Eylea and Lucentis. For visual acuity prediction, we consider the 
subsequences of measured visual acuity values with their additional data for each patient, for which the future 
visual acuity value is predicted. Our model predicts the (i + 4) th VA value from a time window of the previous 
four VA measurements, whereby we use a growing time window of size 4 up to a size of 10 VA measurements, 
e.g., the minimum interval [i, i + 3] with i = 0, 1, . . . , imax − 4 . This approach has been selected to account 
for the different sizes of visual acuity sequences. A minimum window size is enforced in order to enable a 
more reliable prediction, whereby patients with an insufficient amount of measurements are not considered. 
Additionally, a maximum window size was defined as, in our experience, larger window sizes can lead to reduced 

Table 4.  Summary of the statistical test results regarding the significant deterioration of the visual acuity. The 
deterioration is expressed by an increase in the loser fraction. For each condition tested, t-tests were conducted 
using an alpha parameter of 0.05 (false discovery rate). For example, the first row compares the amount of 
losers in under 1 year time passed for the disease AMD with the condition of 1–3 years passed. The values 
refer to the t, p, and Cohen’s d value. Cohen’s d measures the magnitude of the effect (effect size). A value of 0.2 
stands for a small, 0.5 for a medium and ≥ 0.8 for a large effect, whereby medium and large effects are marked 
in bold.

Condition Significant? t p value Cohen’s d

AMD, < 1y compared to 1–3y 1 3.09 0.0020 0.30

AMD, < 1y compared to > 3y 1 6.49 < 0.0001 0.70

RVO, < 1y compared to > 3y 0 1.89 0.0607 0.38

DME, < 1y compared to > 3y 1 3.19 0.0016 0.40

DME compared to DME+ERM, > 6y 0 1.16 0.2477 0.32

Table 5.  OCT biomarker classification results for the slice-wise as well as the scan-wise OCT biomarker 
classification. We conducted our test runs with a randomized data set split ratio of 80/10/10 for training, 
validation, and test set averaged over five runs. For our OCT biomarker data set overview, see Table 2. Best 
results are highlighted in bold.

OCT biomarker

Slice-wise F1-score [%] Scan-wise F1-score [%]

Logistic  Regression44 Random Forest  Classifier44
Multilayer Perceptron 
 Classifier37 DenseNet20145 ResNet152V246 Random Forest  Classifier44

ELM 85.4± 2.1 92.1± 1.4 95.3± 0.9 96.2± 0.6 98.3± 0.5 99.9± 0.1

Ellipsoid 82.7± 1.7 93.8± 1.4 96.1± 0.7 97.3± 1.2 98.7 ± 1.1 99.9± 0.1

Foveal depression 56.0± 3.4 69.4± 0.9 77.3± 2.5 75.9± 2.3 77.5± 2.4 99.9± 0.1

RPE 50.4± 1.4 63.6± 0.9 64.0± 1.1 69.0± 1.0 67.3± 0.9 94.8± 0.5

Scars 63.8± 0.9 72.2± 1.0 74.5± 1.3 77.2± 1.2 77.6± 1.0 98.3± 1.2

Subretinal fibrosis 69.3± 1.5 70.6± 0.6 74.5± 0.4 75.1± 0.2 74.6± 0.3 96.2± 0.9

Mean 67.9 77.0 80.3 81.8 82.3 98.2
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prediction scores. The last documented VA measurement is defined to be imax . The model uses medical patient 
with the aforementioned growing window size, which is reformatted as data input matrix as shown in Table 3b. 
For instance, the 5th VA value will be predicted based on the time interval provided by the 1st to the 4th VA 
measurement, whereas the 6th VA value will be predicted via the 1st to the 5th measurement. For evaluation, the 
horizontal lines indicate our thresholds for therapy winners, stabilizers, and losers (see also Section “Predictive 
statistics”). Finally, a classification based on our WSL classification scheme is carried out for our predicted 
visual acuity values. The obtained WSL-based classification is then compared to the original classification of 
our ground truth.

Evaluation principles
Out of 49,000 patients, 7878 patients with VA series of length imax ≥ 5 exist within our data, resulting in over 
100,000 separate VA series of length 5. This minimum sequence length of 5 VA measurements has been selected 
as, in our experience, shorter sequences may not allow for a reliable data for the visual acuity prediction. With 
the three diseases AMD, DME, and RVO, 1496 patients with VA series of length ≥ 5 exist, resulting in 14,026 
separate VA series of length 5. For evaluation, all visual acuity values with their time steps are considered. Thus, 
all predictions as shown in Fig. 3 are utilized, for which all time steps are evaluated regarding their resulting 
WSL-based classification. The VA-based prediction accuracy is calculated via all VA predictions and related local 
�VAi . For the modelling process, the completed OCT documentations (Section “OCT biomarker classification”) 
and the related additional data are retrieved. For this purpose, Table 3 gives an extensive overview of the lever-
aged data set as well as the related data organization.

Visual acuity prediction results
Table 6 shows our prediction results using different statistical approaches as well as prominent approaches from 
machine learning and deep learning averaged over five runs. These approaches encompass estimators such as 
statistical estimators and moving average estimators (MA), regressors, recurrent neural networks, and multilayer 
perceptrons. Our statistical estimator predicts visual acuity progressions utilizing the statistical distribution of 
our WSL classification scheme within our train set. The MA estimator averages the given window of VA values, 
whereas the weighted MA estimator weights recent VA values more strongly. We consider the statistical estimator, 
MA estimator, and the weighted MA estimator in order to formulate a baseline prediction(s).

Whereas our baseline approaches, our estimators and regressors, result in prediction accuracies of up to 
40.8% in macro average F1-score (bagging  regressor44), a more realistic setting includes the completed OCT 
documentations with the additional data shown in our data organization table such as OCT biomarkers. Our 
MLP-based predictor results in the second highest prediction accuracy, whereas the addition of OCT biomarkers 
allows their inclusion in the VA modelling process, resulting in an accuracy of 44.6% with an improvement by 

Table 6.  Visual acuity modelling results overview of our approaches with feature vectors containing visual 
acuity values only/additional medical data in the form of our completed OCT biomarker documentations 
(Table 3b), and our annotations (ophthalmologists). All results are averaged over five runs. “–” denotes model 
predictions without additional medical data and VA values only. The three best model prediction results are 
highlighted each in bold. Note, we reported the results for both sets of ophthalmologists. For our VA modelling 
data set overview with data explanations and vectors, see Table 3. Figures 5 and 6 as well as Table 8 show our 
evaluation results in further detail.

Model

Macro average F1-score [%]

Feature vectors containing VA values only
Feature vectors containing additional 
medical data

Model predictions

 Statistical estimator 32.8± 0.4 –

 MA estimator 29.6± 0.3 –

 Weighted MA estimator 22.6± 0.4 –

 Bagging  regressor44 40.8± 0.2 41.3± 0.5

 Random forest  regressor44 39.9± 0.1 40.7± 0.4

 RNN with  LSTM28,38 37.6± 0.3 39.0± 0.3

 RNN with GRU 28,39 38.1± 0.3 39.1± 0.1

  MLP37 40.2± 0.4 44.6± 0.6

 MLP-LDA37,44 44.9± 4.5 69.0± 5.2

Model predictions: control experiments

 MLP without annotated OCT biomarkers – 42.9± 0.4

 MLP without classified OCT biomarkers – 42.7± 0.6

 MLP-LDA without annotated OCT biomarkers – 63.1± 4.7

 MLP-LDA without classified OCT biomarkers – 62.8± 3.1

Annotations

 Ophthalmologists 57.8 and 50.0± 10.7
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+4.4 % (Table 6). Therefore, the inclusion of OCT biomarkers allows their modelling as crucial information and 
influential visual factors when no OCT classifications are provided.

With MLP-LDA, we obtain a final prediction accuracy of 69% (Table 6), which corresponds to an improve-
ment by +24.4 % for MLP-LDA in comparison to MLP. The ophthalmologist reaches a score of 57.8%. Figure 5 
gives an overview of our obtained main results in precision and recall for therapy winners, stabilizers, and losers. 
Considering the class-wise scores, MLP-LDA strikes a balance between all three progression groups, whereas 
a trade-off between therapy winners and losers with therapy stabilizers is observable in comparison to MLP. 
Finally, Table 8 shows an extensive VA modelling results overview with confusion matrices and class-wise recall 
and precision results of all VA modelling experiments with MLP, MLP-LDA, and the human reference annota-
tion results from the ophthalmologist. We conclude that treatment winners and losers are predicted within the 
same range as the ophthalmologist in both recall and precision, which is a promising result. However, treatment 
stabilizers are predominantly present when observing the visual acuity values of adjacent time steps. For this 
reason, an improvement of the VA prediction for stabilizers has to be enforced to realize a (semi-)automated 
recommender system.

Finally, in order to further validate the annotations of the ophthalmologist, we evaluated the annotations 
of eight different additional ophthalmic doctors given randomized subsets of our test set. Table 9a shows their 
mean and standard deviations for precision, recall, and F1-score as well as their overall macro average F1-score. 
Additionally, their confusion matrices are depicted (Table 9b). We obtain a prediction accuracy in macro average 
F1-score of 50.0± 10.7 %. The minimum and maximum scores are 37.7 and 69.4%, resulting in a range of 31.7%.

Figure 5.  VA modelling results’ precision (P) and recall (R) plot for our annotations (main ophthalmologist) as 
well as our approaches to VA prediction with MLP and MLP-LDA based on our WSL classification scheme (see 
also Table 8).

Figure 6.  VA modelling results’ normalized confusion matrices for our annotations (main ophthalmologist) 
as well as our approaches to VA prediction with MLP and MLP-LDA based on our WSL classification scheme, 
respectively. Note, each confusion matrix shows a single, randomly selected run.
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Discussion
Better performance due to the completion of OCT biomarkers. In our work, we developed a multistage system that 
completes previously incomplete OCT biomarker documentations by means of learning-based approaches, which 
are then utilized for the following visual acuity prediction. This approach enabled us to provide additional data 
that were previously not available to be included into the AI modelling process, therefore achieving an improved 
model performance. The OCT biomarker classification recognizes OCT biomarkers based on the OCT B-scan 
images for patients where OCT biomarkers were previously not available within the electronic health records, 
resulting in completed OCT biomarkers (Section “OCT biomarker classification”). Subsequently, these completed 
OCT biomarkers documentations are exploited in our MLP-LDA system, together with the already existing OCT 
biomarker information, the visual acuity, and other medical data, to predict the visual acuity (Section “Visual 
acuity prediction”). The ophthalmologists had therefore only access to the already existing OCT biomarker 
documentations. They could only utilize these data. Moreover, in larger hospitals, different ophthalmologists 
are included in the diagnosis. They often have to rely on previous documentations, including previous OCT 
biomarker diagnoses. In addition, fellow-level ophthalmologists are often included in the diagnosis to create 
OCT biomarker documentations. Thus, even the existing data might not have the best quality. Some specialists 
work around these weaknesses by directly analyzing the OCT B-scan images, too. We have performed control 
experiments to conduct the magnitude of the influence effect from our novel, completed OCT biomarker docu-
mentations. The full system achieves a performance of 69.0% F1-score (Table 6). When excluding the completed 
OCT biomarker documentations, we obtain an accuracy of 62.8%. Hence, the OCT biomarker completion is 
valid for a noticeable improvement of ca. +6 % F1-score. Within our (semi-)automated context, we therefore 
see the ability to complete OCT biomarker documentations as a major benefit of our system. Finally, out of over 
49,000 patients with overall more than 130,000 examinations, we identified approximately 1500 AMD/DME/
RVO patients with about 15,000 relevant examinations. It can be assumed that a learning-based approach such 
as ours leverages the latent knowledge within our data corpus.

Differences in therapy winner/stabilizer/loser classification. In Table 8, it is shown that our test set consists of 
mostly patients with progressions of the category therapy stabilizers given the visual acuity values of adjacent 
time steps (ca. 80%). For this reason, the MLP model has learned that at average a stabilizer is to be expected. 
Therefore, most classifications for therapy winners and losers are incorrectly assigned to the class of therapy 
stabilizers. Analogous, our trained ophthalmologist knows of this general distribution within our classification 
scheme. The MLP-LDA approach has learned a more fine-grained classification than MLP due to the subsequent 
correction/control stage, for which we observe a shift from mostly classified therapy stabilizers towards therapy 
winners and losers (Fig. 5 and Table 6). This allows us to achieve a generally improved classification performance 
in macro average F1-score, which explains the mechanism and possible benefits of our correction stage using 
MLP-LDA. Subsequently, all ophthalmologists show a sizeable advantage in classifying stabilizers with improved 
precision, recall, and F1-scores (Tables 8 and 9). In comparison to MLP, it is evident that MLP-LDA excels at 
differentiating between therapy stabilizers as well as winners and losers, demonstrated by an improvement in 
macro average F1-score and class-wise precision/recall. Future work could thus focus on therapy loser modelling 
as therapy losers are the relevant subgroup where a better treatment handling would be important. However, this 
requires that further therapy options can be reliably modelled for this group to recommend a potentially better 
therapy option. As mostly therapy stabilizers are present, the ophthalmologist obtains the best accuracy in true 

Table 7.  Full statistical test results. See Table 4 for details. Medium and large effects are highlighted in bold.

Condition Significant? t p value Cohen’s d

AMD, < 1y compared to 1–3y 1 3.09 0.0020 0.30

AMD, 1–3y compared to 3–6y 1 4.51 < 0.0001 0.35

AMD, 3–6y compared to > 6y 0 0.59 0.5562 0.05

AMD, < 1y compared to > 3y 1 6.49 < 0.0001 0.70

Condition Significant? t p value Cohen’s d

RVO, < 1y compared to 1–3y 0 0.57 0.5692 0.07

RVO, 1–3y compared to 3–6y 1 2.56 0.0110 0.34

RVO, 3–6y compared to > 6y 0 0.52 0.6048 0.11

RVO, < 1y compared to > 3y 0 1.89 0.0607 0.38

Condition Significant? t p value Cohen’s d

DME, < 1y compared to 1–3y 0 0.45 0.6500 0.05

DME, 1–3y compared to 3–6y 1 4.98 < 0.0001 0.45

DME, 3–6y compared to > 6y 0 0.79 0.4277 0.09

DME, < 1y compared to > 3y 1 3.19 0.0016 0.40

Condition Significant? t p value Cohen’s d

DME compared to DME+ERM, < 1y 0 0.54 0.5860 0.15

DME compared to DME+ERM, 1–3y 0 0.36 0.7178 0.06

DME compared to DME+ERM, 3–6y 0 0.12 0.9002 0.02

DME compared to DME+ERM, > 6y 0 1.16 0.2477 0.32
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Table 8.  VA modelling results overview of the ophthalmologist, MLP, and MLP-LDA. MLP and MLP-LDA 
operate with additional data of our completed OCT biomarker documentations. Note, these values show each a 
single run. Best results are highlighted in bold.

Ophthalmologist

Predictions Total Ratio [%] Precision Recall

Winner Loser Stabilizer

 Ground truth

  Winner 30 2 110 142 9.5 51.7 21.1

  Loser 3 76 101 180 12.1 73.8 42.2

  Stabilizer 25 25 1122 1172 78.5 84.2 95.7

  True positives 1228 ( 82.2%) 1494 Mean 66.3 54.2

Macro average F1-score 57.8

MLP

Predictions Total Ratio [%] Precision Recall

Winner   Loser   Stabilizer

 Ground truth

  Winner 45 10 87 142 9.5 22.1 31.7

  Loser 3 99 78 180 12.1 28.4 55.0

  Stabilizer 156 240 776 1172 78.5 82.5 66.2

  True positives 920 (61.6%) 1494 Mean 45.8 46.7

Macro average F1-score 45.6

MLP-LDA

Predictions

  Winner   Loser   Stabilizer Total Ratio [%] Precision Recall

 Ground truth

  Winner 70 0 25 95 33.3 87.5 73.7

  Loser 0 80 15 95 33.3 84.2 84.2

  Stabilizer 10 15 70 95 33.3 63.6 73.7

  True positives 220 (77.2%) 285 Mean 78.4 77.2

Macro average F1-score 77.5

Table 9.  VA modelling results overview of our control experiment with eight different additional ophthalmic 
doctors given randomized subsets of our test set. (a) Precision, recall, and F1-score comparison for our WSL-
based classes. (b) Confusion matrices, normalized via mean and standard deviations over all doctors (left), and 
single confusion matrices for each doctor with absolute results (right).

Precision Recall F1-score

Winner 27.3±17.6 23.7±16.0 22.3±14.4
Loser 47.6±25.7 49.0±24.9 46.0±24.6

Stabilizer 83.6± 3.1 80.1± 8.5 81.2± 4.2

True positives 70.1± 5.9
Macro average F1-score 50.0±10.7
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positives with 82.2% in comparison to MLP-LDA with 77.2% (see also Table 8). The other eight ophthalmologists 
score 70.1± 5.9 % in true positives, which signals results within the same range. We conclude that, depending on 
the evaluated progression group as well as the related evaluation metrics, different advantages and disadvantages 
in prediction accuracies can be observed.

The influence of medical features on the visual acuity prediction accuracy. To understand the influence of single 
components, we have performed experiments to include or to omit particular medical features. In Table 6, we 
have chosen a 3-step approach. Firstly, we started with an input of visual acuity values only to our system, where 
a performance of 40–45% F1-score shows that time and visual acuity history already have a certain prediction 
potential. To give an idea of the scale, the annotating ophthalmologists achieve 57.8% and 50± 10.7 % F1-score 
given a constant IVOM therapy scheme. Secondly, we added all medical features (cf. Table 3c) to our models, 
whereby two of our models, MLP and MLP-LDA, benefited from it distinctly. The performances led to a score 
of about 45% and 69% F1-score, respectively. In the last step, we omitted the OCT biomarker documentations, 
which resulted in a decrease in prediction accuracy of a few percentage points, thus highlighting the influences 
of OCT biomarkers. The analyses were conducted separately for the existing OCT biomarkers and for the com-
pleted OCT biomarkers (Table 6). The omission/inclusion of OCT biomarkers in combination with the tracking 
of the evaluation metrics is aiding in quantifying their predictive potentials. However, we did not yet explore 
the full potential of biomarkers such as DRIL and hyperreflective materials, which are relevant for DME. This 
will be a part of our future work. The omission/inclusion of particular medical features is similarly relevant for 
understanding the cues of medical features, and by means of AI technology, deepen the understanding of the 
field of ophthalmology.

Differences between the AI and ophthalmologists. Although we have tried to create the same starting conditions 
for the comparison of ophthalmologists and AI, this is not always achievable. In the following, we highlight some 
of the occurring difficulties and differences. The proposed learning-based system completes OCT biomarkers 
during its evaluation process, whereas the ophthalmologist does not have access to them. For a fairer compari-
son, we have to compare the performance of MLP-LDA without the completed OCT biomarkers (62.8% macro 
average F1-score) with the ophthalmologists (58 and 50± 10.7 % F1-score). This is possible since we have also 
benchmarked MLP-LDA without the completed OCT biomarkers (see also Table 6). Furthermore, the ophthal-
mologists were not trained on the same number of data vectors as our AI system beforehand, which was trained 
on about 1200 patients with at least five visual acuity examinations (80% train set out of 1496 total patients). 
A daily clinical routine might provide some of the highly-experienced ophthalmologists with such numbers 
of patients, while freshly-educated ophthalmologists might not have seen such a number of patients yet. Our 
ophthalmologists have different experience and education levels. On the other hand, the ophthalmologists have 
a medical school or university study over several years, which the AI system, logically, does not have. Patient 
data in the dashboard view were not provided to them for training but instead only for their visual acuity predic-
tion. As the training levels of the ophthalmologists are heterogeneous, their varying results were also expected 
to vary in addition to the already expected variety when working with human subjects, accordingly. AI models 
and ophthalmologists both had to deal with data incompleteness. Humans may experience high performance 
variability even on the same task in behavioral experiments depending on factors such as their form on the day, 
attentional state in their mind, motivational level, and mental workload. Finally, the ophthalmologists do have 
background knowledge on how to interpret time series data. For example, they could calculate or estimate the 
duration of diabetes from DME diagnoses as a risk factor, which was not directly provided in our case as we 
provided some information but no duration of diabetes. For longer time series, this knowledge could prove to 
be an advantage for ophthalmologists. However, background knowledge might also bias ophthalmologists to 
predict more stabilizers, assuming the distribution within our test set, whereby stabilizers are the largest progres-
sion group for our experimental setting (comparing t and t − 1 to determine the resulting WSL classification). 
However, no ophthalmologist was informed about this distribution within our test set.

Explainable AI and training of human raters. To quote from “Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI” by Arrieta et al.: “... in Machine Learning, 
the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques 
brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype 
of AI (namely, expert systems and rule based models).”47. We understand that comprehensibility could foster 
theoretical improvements in the field, which requires to represent our models’ learned knowledge in a human-
understandable fashion. However, in the context of MLP and LDA as well as high-dimensional data vectors, we 
believe this to be a distinct effort, which is not trivial in nature, hence beyond the scope of this work. A training 
of physicians by using the cues that the models use is therefore not possible at the moment. Even decisions trees 
who give comprehensible rules can be too complex to derive straightforward rules given high-dimensional data 
such as ours. An approach to determine the possible influence of single components, i.e., medical features, via 
their omission/inclusion has been performed in our experiments (Section “Visual acuity prediction”), which gives 
some comprehensibility on levels. For the image classification of OCT biomarkers using deep neural networks 
on the other hand, a gradient-weighted class activation mapping (Grad-CAM) could be  applied48,49 to reason 
the regions of interest within the OCT images where neurons were especially active. This will be a part of our 
future studies. However, the aggregated visualization within a dashboard such as ours could be already utilized 
to train physician (i) with more patient progressions, (ii) more specific information such as the present type of 
a disease or treatment, or (iii) lengthy progressions that would be rarely seen otherwise.
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Conclusion and outlook
In this contribution, we developed an IT system architecture that aggregates patient-wise information for more 
than 49,000 patients from different categories of various multimedia data in the form of text and images within 
multiple heterogeneous ophthalmic data resources originating from a German hospital of maximum care. As the 
prediction of a patient’s progression is challenging within this real-world setting, our realized workflow allows 
a first processing of medical patient data to enable an OCT biomarker classification, a visual acuity prediction, 
as well as a general statistical evaluation and visualization. For this purpose, our developed patient progression 
visualization and modelling dashboard enables the visualization, annotation, and assessment of patient progres-
sions with a focus on their visual acuity.

The resulting data corpus allows predictive statements of the expected progression of a patient and his or 
her visual acuity in each of the three diseases AMD, DME, and RVO. Our data reveal that especially exudative 
AMD results in a notable high amount of therapy “losers” (60% regarding a time span of 3 to 6 years). The result 
for AMD is significant. Furthermore, we found a weakly significant deterioration of visual acuity for DME, 
while we found no significant deterioration for RVO. A more fine-grained analysis is able to reveal the influence 
of medical co-existing factors such as other diseases. As a proof of concept, we exemplary show DME with an 
epiretinal membrane. Yet, the data situation is still too weak to derive reliable correlations for statistical surveys 
of comorbidities in combination with different observation time windows.

For the following visual acuity based treatment progression modelling, incomplete OCT documentations are 
completed by classifying the OCT scans’ slices (OCT B-scans), which in turn allows the classification of OCT 
scans when only single OCT slices are provided. Based on the obtained OCT slice classifications, a scan-wise OCT 
classification of the OCT biomarkers ELM, ellipsoid zone, foveal depression, RPE, scars, and subretinal fibrosis 
resulted in an overall classification accuracy of over 98% in F1-score. Finally, the completed OCT documentations 
are combined with additional medical data, defining our ophthalmic feature vectors for visual acuity prediction. 
In comparison to different approaches from machine learning and deep learning, we achieve a final prediction 
accuracy of 69% in macro average F1-score with 77.2% true positives, while our main ophthalmologist shows a 
macro average F1-score of 57.8% with 82.2% true positives. In order to further validate these results, we evalu-
ated the annotations of eight different additional ophthalmic doctors given randomized subsets of our test set, 
resulting in an overall macro average F1-score of 50.0± 10.7 % and with 70.1± 5.9 % true positives.

However, as the influence of the OCT biomarkers is not yet fully understood, further investigations have to be 
conducted, for which additional OCT biomarkers as well as their influence for the visual acuity modelling process 
have to be evaluated. Future contributions can build on these initial results in order to determine an optimal 
time for a change in medication or therapy. This also encompasses treatment options such as laser coagulation, 
pars plana vitrectomy, or phacoemulsification with posterior chamber lens implantation. We furthermore aim at 
extending our approach to include a larger data corpus through distributed analysis across multiple ophthalmic 
sites. Thus, data quality needs to be ensured via comprehensive evaluations of our medical texts structured by 
rule- and learning-based NLP methods, which requires further harmonization of the underlying medical ter-
minology. Patient-related data of the different categories available and their relevance for the modelling process 
have to be further investigated in order to increase the evidence of AI-based modelling approaches to enable 
future realizations of a (semi-)automated recommender system.

Data availability
The data that support the findings of this study are available from the Department of Ophthalmology at the 
Klinikum Chemnitz gGmbH in Chemnitz, Germany but restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not publicly available. Data are however available 
from the authors upon reasonable request and with permission of the Data Integration Center of the Klinikum 
Chemnitz gGmbH. Inquiries on this matter should be addressed to Danny Kowerko (danny.kowerko@cs.tu-
chemnitz.de).
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