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Construction and implementation 
of wide range parameter 
switchable chaotic system
Minxiu Yan *, Xindi Liu , Jingfeng Jie  & Yue Hong 

Research on switchable chaotic systems with a large range of parameters is scarce. To explore the 
chaotic characteristics of such systems, this paper proposes new switchable methods by modifying 
the nonlinear term in the system, resulting in a chaotic system with different nonlinear terms. 
The unknown parameters in the nonlinear term exhibit different numerical relationships under 
various combined conditions, and some parameters may tend towards positive infinity. The chaos 
characteristics are verified by applying a specific switching method to the unified chaotic system. The 
pseudo-randomness of the random sequence generated by the dissipative system is verified using the 
NIST test. Finally, the circuit simulation of the system under various switching conditions is performed 
by selecting different circuit components and adjusting the resistance values.The switching chaotic 
system is implemented physically on FPGA and breadboard, and the effectiveness of the system is 
verified.

Keywords  Chaotic system, Switching method, Unified chaotic system, Multisim circuit simulation, Physical 
implementation

In recent years, chaotic systems with different order1–4 chaotic attractors and various switching chaotic systems5–7 
have chaotic characteristics, which have attracted wide attention in various fields. Due to the uncertainty of the 
switched system, it usually shows the coexistence of multiple scrolls8 or multiple periodic attractors9 of the chaotic 
system under the same initial condition10. Therefore, switchable chaotic systems have more complex topologies, 
which makes chaotic systems of great value in security fields such as secure communication11.

Many scholars have achieved fruitful results in exploring chaotic systems, the application and synchronization 
of parameter switching systems and switching systems have also been developed12,13. Zhang et al.14 successfully 
extended the Hilnikov criterion to the switching system, and obtained the feasible method of the heteroclinic 
orbit according to the heteroclinic loop criterion.Nitish et al.15 designed a controller that could achieve synchro-
nization in a variety of complex states, and realized the synchronization of multiple non-homogeneous systems. 
It could produce more complex and rich dynamic evolution than a single drive system. Due to the powerful 
computing power and high flexibility of FPGA, it is often used as a hardware implementation platform for chaotic 
systems. Dong et al.16 used sine function to construct a controllable multivortex conservative chaotic system, 
and implementing the system under FPGA17. In practical application, due to device error and other reasons, 
the simulation results cannot be guaranteed to be consistent with the actual experiment. Therefore, it is neces-
sary to verify the physical circuit of the chaotic system. Gong et al.18 used breadboard physically implemented 
a four-dimensional chaotic system. The physical realization of complex and diverse chaotic systems and the 
verification of the feasibility and effectiveness of the systems are of great significance to the application of chaos 
in various fields19.

Inspired by the previous literature, this paper studies a new method to adjust the nonlinear term of the sys-
tem. Different switching forms will lead to changes in the dynamic behavior of the system. It is verified that the 
nonlinear parameters of the system under the switching term are close to positive infinity. In order to verify the 
feasibility of the proposed switching chaotic system, the circuit simulation and physical implementation of the 
system are carried out in this paper. The research results of this paper provide ideas and methods for the applica-
tion of switching chaotic systems, and have potential application value in the fields of information encryption20,21.
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Dynamics analysis of chaotic system
System model and equilibrium poin
Based on the classical Lorenz system, the system model is obtained by modifying the nonlinear term and 
unknown parameters:

Where system (1) contains seven terms and a constant term, x, y, z are the state variables of the system and a, 
b, c are the unknown parameters of the system. When the unknown parameters are a = 5, b = 8, c = 1 and the 
initial values are (0.1, 0.1, 0.1), the attractor diagram and the timing diagram are shown in Fig. 1.

System (1) remains unchanged under the coordinate transformation of (x, y, z) → (−x,−y, z) , and the system 
is rotationally symmetric for z axis.

By calculating the dissipation degree of system (1), the dissipation degree ∇V  can be obtained:

Equation (2) shows that ∇V < 0 and unknown parameter is a > −1 , system (1) is a dissipative system. At this 
time, the system is a three-dimensional nonlinear dynamic system. The trajectory of the system will shrink 
and fold according to the negative exponential rate of V(0)e−δt = V(0)e−6t , and finally will be in an invariant 
attractor set.

Analyze the equilibrium point of system (1), set the left side of the equation equal to zero, and solve the 
equilibrium point of system E1 , E2 and E3 . The stability of the equilibrium point was analyzed according to the 
Routh-Hurwitz stability criterion, and the eigenroots corresponding to the equilibrium point of the system were 
obtained, as shown in Table 1.

The Lyapunov exponent, dimension and power spectrum
When the unknown parameters are selected as a = 5, b = 8, c = 1 and the initial values are (0.1, 0.1, 0.1), the 
Lyapunov exponent of system (1) are �L1 = 0.4306, �L2 = 0, �L3 = −6.4349 as shown in Fig. 2a. Fig. 2b shows 
the power spectrum of the system is continuous and there is no obvious peak.
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ẋ = −ax + yz
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Figure 1.   Attractor and timing diagram. (a) Attractors with unknown parameters a = 5, b = 8, c = 1 . (b) Time 
series diagram.

Table 1.   System equilibrium stability.

Equilibrium points Characteristic roots Equilibrium type

E1 = (0, 0, 1)

�11 = 1.14,
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�13 = −6.14;

The saddle-focus equilibrium point with index 1
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, b)
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�22 = 0.36− 4.07i,
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Under the premise of selecting the initial conditions, the Lyapunov exponent of system (1) in Fig. 2a contains 
positive real numbers and the Lyapunov dimension satisfies the condition of fractional dimension, indicating 
that system (1) exhibits chaotic properties. In Fig. 2b, the power spectrum image of system (1) is continuous and 
there are no obvious spikes, indicating that system (1) contains chaotic attractors, further proving the chaotic 
nature of system (1).

System dynamics analysis under variable parameters
To further explore the chaotic characteristics of the system, unknown parameters are selected 
a ∈ [1, 10], b = 8, c = 1 . The Lyapunov exponent diagram and bifurcation diagram of system (1) in Fig. 3.

Figure 3 shows system (1) is in a periodic state when parameters are a ∈ [2, 2.32] ; when choose param-
eters a ∈ [2, 2.32] , a ∈ [7, 7.5] and a ∈ [8.15, 10] , system (1) is in a period-doubling state; when parameters are 
a ∈ [2.32, 7] and a ∈ [7.5, 8.15] , system (1) is in a chaotic state. Figure 4 depicts the motion trajectory of system 
(1) when taking values of different specific parameters through phase diagrams and timing diagrams. Table 2 
describes the dynamic behavior trajectories in the corresponding period.

Chaotic systems with symmetric characteristics generally have the phenomenon of attractor coexistence22. 
To explore the coexistence of attractors in system (1), a = 2, b ∈ [2, 8], c = 1 and the initial values 
x01 = (1, 1, 1), x02 = (−1,−1, 1) are selected. The red is used to represent x01 and blue is used to represent x02 . 
The bifurcation diagram of the system is shown in Fig. 5a. Fig. 5 and Table 3 show the coexistence of attractors 
in different periods.

By observing Fig. 5, system (1) has obvious attractor coexistence phenomenon under the selection of different 
initial values, and the dynamic behavior of system (1) is obviously different. By selecting specific value param-
eters, the static point coexistence phase diagram, chaotic attractor coexistence phase diagram and periodic attrac-
tor coexistence phase diagram of system (1) are obtained, and obvious coexistence phenomena can be observed.

Variable structure characteristics of the system
On the basis of system (1), by changing the system structure, a new system model is obtained:
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Figure 2.   The Lyapunov exponent diagram and power spectrum diagram. (a) The Lyapunov exponent diagram 
for unknown parameters a = 5, b = 8, c = 1 . (b) Power spectrum.
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Figure 3.   The Lyapunov exponent diagram and bifurcation diagram. (a) The Lyapunov exponent diagram for b 
= 8, c = 1. (b) Bifurcation diagram with b = 8, c = 1.
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In Eq. (3), f (·) is a variable function body, which can occur the following possibilities:

(3)

{

ẋ = −ax + yz
ẏ = bx − xz
ż = −z + f (·)+ c

Table 2.   System equilibrium stability.

Parameter State Location

a = 1 Periodic Fig. 4a, e

a = 4 Chaos Fig. 4b, f

a = 7.8 Chaos Fig. 4c, g

a = 9.5 Period-doubling Fig. 4d, h
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Figure 5.   Coexistence of attractors under different parameter values. (a) The bifurcation diagram when the 
parameters are a = 2, c = 1, b ∈ [2, 8], and the initial values are x01 = (1, 1, 1), x02 = (−1,−1, 1) . (b) Attractor 
coexistence phenomenon when b = 2 . (c) Attractor coexistence phenomenon when b = 4 . (d) Attractor 
coexistence phenomenon when b = 5.5.

Table 3.   Coexistence of attractors in different periods.

Parameter State Location

b = 2 Stable point coexistence Fig. 5b

b = 4 Coexistence of chaos attractors Fig. 5c

b = 5.5 Cycle doubling coexistence Fig. 5d
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Among them, x, y are system state variables, k, p and m are system unknown parameters. The values of k, p and 
m have the possibility of approaching positive infinity and the quantitative relationship in the Eq. (5) of k, p and 
m. When select f (·) = pxx , to further show the influence of the values of variable p on the dynamic behavior of 
system (3), a wide range of intervals and unknown parameters a =5, b = 8, c = 1 and initial values (0.1, 0.1, 0.1) 
are selected to obtain the Lyapunov exponent diagram, bifurcation diagram, attractor diagram and Poincare 
section diagram of the system shown in Fig. 6.

The Lyapunov exponent diagram and bifurcation diagram in Fig. 6a and b show that system (3) has main-
tained chaotic characteristics in a large range. By comparing the attractor diagram at p = 1 with the Poincare 
section of xy plane at p = 100, z = 4, the parameter p will change the existence range of chaotic attractor. With 
the increase of parameter p, the volume of attractor in xy plane will decrease. Fig. 6b and c show the images of 
corresponding periods.

When the nonlinear term is selected f (·) = kxy + pxx , Eq. (5) shows that there are three possibilities of f (·) 
at this time, and these three situations are compared and expounded. When the relationship between k and p is 
k > p , p = 1, k ∈ [1, 20] are selected to obtain the blue part in Fig. 7a of the bifurcation diagram of the system; 
when the relationship between k and p is k = p , the value ranges are selected as k, p ∈ (1, 20) , and the red parts 
in Fig. 7a and b are obtained. When k < p, k = 1, p ∈ (1, 20) are selected, the blue parts of the system bifurcation 
diagram in Fig. 7b are obtained. By comparing Fig. 7a and b to show the bifurcation diagrams in different periods.

To clearly show the difference of attractors in different periods, the numerical relation of k and p is k > p . 
The red chaotic attractor in Fig. 8a with k = p = 7 and the blue chaotic attractor in Fig. 8a with p = 1, k = 7 
are obtained. The numerical relation of k and p is k < p . The red chaotic attractor in Fig. 8b with k = p = 7 and 
the blue chaotic attractor in Fig. 8b with p = 7, k = 1 are obtained. When k = p = 10 and k = p = 100, z = 14 
are selected, the Poincare section of system (3) on the xy plane is shown in Fig. 8c; when k < p, k = 1, p = 7 
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Figure 6.   Related dynamic behavior. (a) The Lyapunov exponent diagram. (b) Bifurcation diagram. (c) Phase 
diagram. (d) Poincare section diagram.
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and p = 700, z = 14 are selected, the Poincare section of system (3) on the xy plane is shown in Fig. 8d. The 
attractor diagram and Poincare section diagram have obvious changes when the values of k and p are different.

When the selections of f (·) are changed, the dynamic behaviors of system (3) are also constantly changing. 
There is a possibility that the values of nonlinear parameter in three-dimensional chaotic systems tend to be 
positively infinite. When the selections of f (·) are selected as other cases, system (3) will exhibit similar dynamic 
characteristics, which will not be further elaborated in this paper.

Figure 7.   Comparison of bifurcation diagrams with different values of k and p. (a) Bifurcation diagram when 
k > p and k = p . (b) Bifurcation diagram when k < p and k = p.

-5 0 5

x

0

5

10

15

20

25

z

(a)

-6 -4 -2 0 2 4 6

x

0

5

10

15

20

25

30

35

z

(b)

-4 -2 0 2 4

x

-4

-2

0

2

4

y

p=10
p=100

(c)

-5 0 5

x

-4

-2

0

2

4

y

p=7
p=700

(d)

Figure 8.   The cross sections of attractors and Poincare in different periods. (a) k > p, p = 1, k = 7 and 
k = p = 7 attractor coexistence diagram. (b) k < p, k = 1, p = 7 and k = p = 7 attractor coexistence diagram. 
(c) k = p = 10 and k = p = 100, z = 14 Poincare section diagram. (d) k < p, k = 1, p = 7 and p = 700, z = 14 
Poincare section diagram.
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Spectral entropy complexity analysis
Complexity measurement provides a certain analysis basis for studying the dynamic behavior of the system. 
In this paper, the frequency domain complexity measurement algorithm C0 and SE algorithm23,24 are used to 
explore the system complexity when the switched system (3) is at f (·) = kxy + pxx , 0 < k, p < +∞ . When the 
initial conditions of system (3) are selected as a ∈ [1, 10] , b = 8, c = 1 and the initial value of (0.1, 0.1, 0.1), the 
quantitative relationship between k and p is compared, and the comparison of complex dynamic characteristics 
of the system are shown in Fig. 9a. When the switched system (3) is at f (·) = kxy + pxx and f (·) = pxx and 
k = p = 7 , the parameters a = 5, b ∈ [2, 8], c = 1 are selected, and the comparison of dynamic complex charac-
teristics of the system are shown in Fig. 9b.

Figure 9a shows the values of parameter k and p are different in the complex characteristic curve of system 
(3), the complexity of the system is significantly different. Figure 9b shows that the complexity of system (3) 
varies considerably with the selection of f (·).

NIST test
To verify the pseudo-randomness of the random sequence of the chaotic system under the condition of large-
scale parameters in system (1), this paper uses the 15 test methods given in SP800 - 22 Revision 1a25 to test the 
random characteristics of the bit sequence of the chaotic system. Among them, 15 tests each item produce the 
P-value values and compare it with the given level to determine whether the sequence of the system is random. 
When the value of the generated P-value ≥0.01, the sequence of the system is random. Otherwise, the sequence 
of the system is not random. The length of the bit sequence recommended in SP800-22 Revision 1a is 102 to 
107 and the length of the test series S selected in this paper is n = 106 . Equation (6) is the discretization form 
of Runge-Kutta method of system (1), parameters are selected as a = 5, b = 8, c = 1, p = 7 and p = 700 . The 
initial values (x0, y0, z0) = (1.1, 2.2, 3.3) are selected and 100 million bits data are generated. Table 4 shows the 
corresponding test data.

Table 4 shows when the values of p are expanded by 100 times.The values of the P-value obtained by the test 
all satisfy P-value ≥0.01, which proves that the random sequence of the system has excellent pseudo-randomness.
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Figure 9.   System (3) Comparison of complex dynamic characteristics. (a) Comparison of SE complexity 
when f (·) = kxy + pxx, k = p = 7 . (b) Comparison of C0 complexity when f (·) = kxy + pxx and 
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The existence of toggle terms in unified chaotic systems
In 2002, Lü and Chen proposed to connect the Lorenz system with the Chen system, proposing the unified 
chaotic system26. The proposal of unified chaotic systems reveals the relationship between chaotic systems with 
similar structures, which provides an important theoretical basis for the study of chaotic systems with similar 
chaotic characteristics. The chaotic model of a unified chaotic system is:

When the parameter value range of the unified chaotic system is a ∈ [0, 1] , the system will transition from a 
generalized Lorenz system to a generalized Chen system, and the system has been in a chaotic state. When 
a ∈ [0, 0.8) , the system belongs to the generalized Lorenz system; when a = 0.8 , the system belongs to the gen-
eralized Lü system; when a ∈ (0.8, 1] , the system belongs to the generalized Chen system.

The nonlinear term xy in Eq. (7) is replaced with the switchable branch of f (·) in Eq. (4), and the switchable 
branch proposed in this paper is applied to the unified chaotic system. To investigate the changes in the dynamic 
behavior of unified chaotic systems under different initial conditions.

Calculate dissipation ∇V  for system (8):

The dissipation degree ∇V  in Eq. (9) that the dissipation degree of system (8) is affected by the value of parameter 
a. When a ∈ [0, 1] , system (8) is still a dissipative system and converges with exponential (e(11a−41)/3dV)/dt , 
indicating that the volume of system (8) at t time is contracted from V0 to V0e

(11a−41/3).
At time t → ∞ , the volume element of system (8) converges exponentially to 0, enabling the system to 

produce bounded attractors, indicating that switching branch f (·) has no effect on the dissipative properties of 
system (8), and eventually produces bounded attractors.

To specifically show the influence of the selection of switching branch f (·) on the dynamic behavior of uni-
fied chaotic systems, different switching branches in f (·) are selected as examples to show the dynamic behavior 
transformation of system (8) from the Lyapunov exponent diagram and the Poincare section diagram.

The initial value in the unified chaotic system (8) is selected as (1,1,1), and the values of k, p, m in the switch-
ing option are set to k = p = m = 1 . The Lyapunov exponent diagrams of system (8) under different switching 
conditions are obtained, as shown in Fig. 10. To observe more clearly the influence of the selection of different 
switching branches on the chaotic characteristics of the unified chaotic system, the existence of dynamic behav-
ior is compared and analyzed by using the timing diagrams, as shown in Fig. 11. At the same time, the value 
range of the switching branch in the unified chaotic system is explored, and the existence of attractors in the 
unified chaotic system under the condition of a wide range of unknown parameters is observed. Fig. 12 shows 
the comparison of attractors with a wide range of values for different switching branches under the same initial 
conditions. Table 5 is used to systematically demonstrate the effect of switching branch f (·) selection on the 
dynamic behavior of chaotic systems.

(7)

{

ẋ = (25a+ 10)(y − x)
ẏ = (28− 35a)x − xz + (29a− 1)y
ż = xy − z(a+ 8)/3

(8)

{

ẋ = (25a+ 10)(y − x)
ẏ = (28− 35a)x − xz + (29a− 1)y
ż = f (·)− z(a+ 8)/3

(9)∇V =
∂ ẋ

∂x
+

∂ ẏ

∂y
+

∂ ż

∂z
= (11a− 41)/3

Table 4.   NIST test results.

No. Test method P-value of p = 7 P-value of p = 700 Result

1 Frequency 0.9662 0.4284 Success

2 Block frequency 0.6008 0.9135 Success

3 Runs 0.3506 0.2598 Success

4 Longest run 0.2968 0.0559 Success

5 Rank 0.2038 0.8625 Success

6 FFT 0.1687 0.0348 Success

7 Nonoverlapping template 0.6077 0.0340 Success

8 Overlapping template 0.3233 0.4298 Success

9 Universal 0.5587 0.3234 Success

10 Linear vomplexity 0.3752 0.2587 Success

11 Serial 0.4472 0.1636 Success

12 Approximate entropy 0.0441 0.5946 Success

13 Cumulative dums 0.9971 0.9374 Success

14 Random excursions 0.4083 0.8896 Success

15 Random excursions variant 0.9619 0.4224 Success
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By observing the Lyapunov exponent diagram under different switching branch conditions in Fig. 10, differ-
ent branch conditions have an impact on the chaotic characteristics of the unified chaotic system. In the value 
interval of parameter a ∈ [0, 1] , several switching branches produce dynamic behaviors such as static point, 
period, and chaos at the same time, indicating that the switching branch proposed in this paper also produces 
better application effects when applied to unified chaotic systems.

The change of motion trajectory in a single dimension in Fig. 11 reveals the influence of switching branches 
on the motion trajectory of attractors in unified chaotic systems. It shows that the unified chaotic system also has 
the characteristics of chaotic system being extremely sensitive to the initial state after applying switch branch f (·) . 
Explain the sensitivity of system (8) to the initial value. Since the third chapter of this paper, different switching 
branches applied to system (3) exhibit a wide range of chaotic characteristics. Fig. 12 shows the large-scale chaotic 
properties existing in unified chaotic system (8). The random value method is used to show the difference in the 
motion trajectory of unknown parameters in a wide range of value ranges. By using different research methods 
for the dynamic behavior of different switching branches on unified chaotic systems in Table 5, the applicability 
of the switching options proposed in this paper in unified chaotic systems is fully demonstrated.

Circuit simulation design
To verify the feasibility of system (1) and (3) circuit implementation, Multisim simulation software is used to 
build the simulation circuit diagram Fig. 13 of the system.

The output gain of the multiplier (AD633) in Fig. 13 is 1. The operational amplifier (LM324M), selector switch 
and other related components are used for addition, subtraction, integration and other related operations. Apply 
Kirchhoff law to Fig. 13 to get the differential equation:

Table 5.   Influence of switching branch f (·) on the dynamic behavior of unified chaotic systems.

f (·) kxy pxx kxy +myy pxx +myy

Lyapunov exponential diagram Fig. 10a Fig. 10b Fig. 10c Fig. 10d

Timing diagram Fig. 11a Fig. 11b Fig. 11c Fig. 11d

Phase diagram Fig. 12a Fig. 12b Fig. 12c Fig. 12d
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Figure 10.   The Lyapunov exponent diagram when switching branches are selected.
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Figure 11.   Timing diagrams of system (8) under the condition of different parameter values.
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Figure 12.   The existence of chaotic attractors in system (8) under the condition of large parameter values of 
different switching branches.
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By using the switch to select the different nonlinear terms connected to the circuit, chaotic systems with 
different combinations of nonlinear terms can be obtained by varying the resistor values. The chaotic systems 
are selected when the nonlinear terms at the variable ω are xy, x2 and xy + x2 , the corresponding attractor 
diagrams are obtained by varying the resistance values. When the parameters b = 8, c = 1, a = 5 and a = 1 are 
chosen for system (1), the attractor diagrams Fig. 14a and b are obtained from the circuit simulation by adjust-
ing the resistance of R1 . Equation (3) is compared with Eq. (10) when the unknown parameters are chosen as 
a = 5, b = 8, c = 1, p = 1, k = 1 and initial values of (0.1, 0.1, 0.1).
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Figure 13.   Circuit schematic diagram of system (1) and (3).
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The attractor diagram of system (3) corresponding to xy is shown in Fig. 14a and b, the attractor diagram of x2 
is shown in Fig. 14c and the attractor diagram of xy + x2 is shown in Fig. 14d.

The attractor diagrams under different simulations shown in Fig. 14 are consistent with the trajectories of 
the attractor diagrams in Figs. 1 and 4, indicating that the simulation results obtained by circuit simulation are 
successful. This paper provides theoretical support for applying system (3) proposed in this paper to hardware 
implementation.

Physical implementation
In practical application, due to device error and other reasons, the simulation results cannot be guaranteed to be 
consistent with the actual experiment. Therefore, it is necessary to verify the physical circuit of the chaotic system.

The output gain of the multiplier (AD633) in Fig. 15 is 0.1. The operational amplifier (LM324M), Fig. 15 
shows the physical implementation of the designed chaotic circuit system (1)on a breadboard. The x − z attrac-
tor diagram of chaotic system (1) is shown in Fig. 15a, and the x − y attractor diagram of system (1) is shown 
in Fig. 15b.The hardware circuit on the breadboard is composed of 3 analog multipliers AD633, 2 operational 
amplifiers LM324N, 9 capacitors and 11 resistors.

The switchable chaotic system is implemented using FPGA technology. The hardware implementation 
involves several key components, namely the FPGA development board, the AN9767 black gold dual-channel 
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Figure 14.   Circuit simulation attractor (a) Attractor diagram for a = 5 and a nonlinear term of xy (b) Attractor 
diagram for a = 1 and a nonlinear term of xy (c) Attractor diagram for a = 5 and a nonlinear term of x2 (d) 
Attractor diagram for a = 5 and a non-linear term of x2 + xy.
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14-bit DA output module, a downloader, and an oscilloscope. The hardware setup is depicted in Fig. 16, where 
Fig. 16(a) represents the hardware effect diagram of the FPGA implementation, and Fig. 16b illustrates the 
hardware diagram of the FPGA.

The result diagram of FPGA hardware implementation of the switching system is shown in Fig. 17. The attrac-
tor diagram of the system (3) corresponding to xy is shown in Fig. 17a and b, while the attractor diagram of the 
system corresponding to x2 is shown in Fig. 17c. Additionally, the attractor diagram of the system corresponding 
to xy + x2 is shown in Fig. 17d.

Conclusion
Under the condition of variable parameters, this study fully demonstrates the existence of attractors at different 
times and illustrates the coexistence of attractors in chaotic systems when the initial value is symmetrical. The 
switching system exhibits different chaotic characteristics depending on the selection of nonlinear terms and 
parameters. The application of the switchable method to the unified chaotic system has a significant effect. The 
chaotic sequence generated by the system is tested by expanding the parameters by a hundred times. Addition-
ally, a simulation circuit for the switching system is designed and physically implemented.

Figure 15.   Breadboard schematic (a) x − z phase diagram of system (1) (b) x − y phase diagram of system (1).

Figure 16.   Physical realization diagram (a) Hardware rendering of FPGA implementation (b) Hardware 
diagram of FPGA.
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