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Predicting superconducting 
transition temperature 
through advanced machine 
learning and innovative feature 
engineering
Hassan Gashmard , Hamideh Shakeripour * & Mojtaba Alaei 

Superconductivity is a remarkable phenomenon in condensed matter physics, which comprises a 
fascinating array of properties expected to revolutionize energy-related technologies and pertinent 
fundamental research. However, the field faces the challenge of achieving superconductivity at room 
temperature. In recent years, Artificial Intelligence (AI) approaches have emerged as a promising tool 
for predicting such properties as transition temperature (Tc) to enable the rapid screening of large 
databases to discover new superconducting materials. This study employs the SuperCon dataset as 
the largest superconducting materials dataset. Then, we perform various data pre-processing steps 
to derive the clean DataG dataset, containing 13,022 compounds. In another stage of the study, we 
apply the novel CatBoost algorithm to predict the transition temperatures of novel superconducting 
materials. In addition, we developed a package called Jabir, which generates 322 atomic descriptors. 
We also designed an innovative hybrid method called the Soraya package to select the most critical 
features from the feature space. These yield R2 and RMSE values (0.952 and 6.45 K, respectively) 
superior to those previously reported in the literature. Finally, as a novel contribution to the field, 
a web application was designed for predicting and determining the Tc values of superconducting 
materials.
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The amazing properties of superconducting materials are a direct consequence of quantum mechanics that 
emerge on a large scale1. The two basic characteristics of superconductors that make this class of materials dif-
ferent from others include: a) offering no resistance to the flow of electric currents, and b) complete exclusion of 
magnetic field2. No comprehensive theory capable of predicting the transition temperatures (Tc) of supercon-
ducting materials has yet been presented to date and the discovery of new superconductors still relies on expert 
intuition and is largely dependent on trial and error based on experience3. Hence, empirical laws have for many 
years served as guides for researchers in their efforts to fabricate new superconducting materials4.

Condensed Matter Physics strives to discover the interactions of materials at the atomic level since material 
properties are derived from these interactions5. Prediction and determination of the microscopic properties of 
materials presuppose the solution of the Schrodinger equation for a Many-Body system. However, solving this 
equation for such systems is practically impossible due to the vast Hilbert space needed to handle them, espe-
cially for highly correlated materials. Consequently, a solution adopted in most cases is to employ approximate 
methods6–8. One of these methods is Density Functional Theory (DFT) which is based on the Hohenberg–Kohn 
and Kohn–Sham theorems and has a substantial record of success in predicting material properties and solving 
the associated quantum mechanics problems9–11. Despite its outstanding achievements, the theory has some 
limitations in its current form; for instance, it employs approximation for exchange–correlation functional, yields 
errors when used for strong correlation systems, can only be employed for a small number of atoms, and is ham-
pered by increasing computational costs and runtime with increasing system size10,12–15. Strong electron–electron 
correlations in superconducting materials make it extremely challenging to perform first-principles calculations 
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to determine their structural properties and predict their Tc
3,9, making searching for novel alternative approaches 

inevitable.
As alternative strategies for solving quantum mechanics problems, machine learning methods offer lower 

computation costs, shorter execution times, accurate predictions, and faster development cycles9,12,13. Being data-
driven and given the fact that huge amounts of data have been produced over the years, machine learning meth-
ods encourage researchers to utilize them for discovering novel materials and predicting their properties4–6,16. 
Materials Science is nowadays said to have entered its fourth stage of evolution, termed “Data-Based Materials 
Science”, a term borrowed from Thomas Samuel Kuhn to describe the field’s development6,12,17,18. Figure 1 illus-
trates the four (empirical, theoretical, computational, and data-driven) paradigms of materials science. To date, 
large amounts of theoretical and experimental data have been collected in the three traditional (i.e., empirical, 
theoretical, and computational) paradigms; the next step, logically, is to apply the new innovative tools developed 
by artificial intelligence, which are capable of extracting knowledge from such data6,12,18–22.

Given the importance of the Tc values of superconducting materials, researchers have in recent years devel-
oped machine learning-based models for predicting this quantity. Selecting 21,263 superconducting materials 
and utilizing 80 atomic descriptors for each compound, Hamidieh4 used the XGBoost algorithm to design a 
model for predicting of Tc. Stanev et al.16 employed the Random Forest algorithm to develop a model using 
132 atomic features of Magpie descriptors for 6196 superconducting compounds. Konno et al.3 implemented a 
convolutional neural network (CNN) model (i.e., a deep learning model) to predict the Tc values of about 13,000 
superconducting materials. They represented their materials using an innovative “periodic table reading” method. 
The dimensions of the representation were 4 × 32 × 7, with 4 representing the four orbitals of s, p, d, and f corre-
sponding to the valence electrons of each element in a compound, and 32 and 7 denoting the dimensions of the 
periodic table. Dan et al.23 developed the ConvGBDT model by merging the convolutional neural network (CNN) 
and the gradient boosting decision tree (GBDT) models. For the three datasets of DataS, DataH, and DataK, the 
authors used the Magpie descriptors to represent materials and the ConvGBDT model to predict Tc values. Li 
et al.11 introduced a hybrid neural network (HNN) model as a combination of a convolutional neural network 
(CNN) and a long short-term memory neural network (LSTM). They utilized atomic vectors and employed both 
the one-hot and Magpie material characterization methods to represent superconductors in the feature space. 
The authors found that the Magpie features generally outperformed the one-hot features. Roter et al.24 employed 
the Bagged Tree method (a variant of the Random Forest algorithm) to design a model for predicting Tc. They 
represented superconducting materials using a chemical composition matrix as the feature space. The matrix 
had about 30,000 rows and 96 columns, wherein each row corresponded to a chemical formula, and the columns 
contained the 96 primary elements of the periodic table. Each entry in this matrix was filled with an index cor-
responding to the elements of each chemical compound. Quinn et al.25 utilized a Crystal Graph Convolutional 
Neural Network (CGCNN) model to integrate classification and regression models within a pipeline to identify 
candidates of high-temperature superconductors from among the 130,000 compounds in the Materials Project. 
In the crystal-graph representation of materials, the connections between atoms represent the graph’s edges, and 
the locations of the atoms and their properties represent the vertices.

The main objective of the current research is to design a suitable and reliable model for predicting the Tc 
values of superconducting materials using machine learning approaches. While the algorithm and the dataset 
are the two indispensable research tools in data science, the present study attaches more importance to the data-
set than the algorithm. After carefully cleaning data, we generate a suitable feature space for superconducting 
materials. The main advantages of the present work over previous ones include: (1) Establishing more appropri-
ate feature space related to superconducting Tc and (2) Identifying the features most related to the Tc values of 
superconducting materials. We reach significant results by designing the Jabir package to produce 322 atomic 
features for each compound and Soraya package for selecting features.

Figure 1.   Four paradigms of materials science from the beginning to the current.
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Data
Data set
Two essential steps must be taken before statistical learning can predict Tc in superconducting materials. The first 
involves collecting and preprocessing a dataset, and the second is adopting a suitable algorithm for the learning 
process and model development on that dataset. According to Halevy et al.26, the first step is of greater signifi-
cance as data scientists typically devote about 80% of their efforts to datasets and their preprocessing27; the same 
is valid with the present work using SuperCon dataset (https://​doi.​org/​10.​48505/​nims.​3739), currently the largest 
and most comprehensive superconducting materials database containing 33,407 superconducting compounds.

Here, a significant contribution is done by executing distinct steps of data pre-processing and providing 
detailed explanations for each step. Ultimately, following the implementation of various data pre-processing 
phases and the exclusion of problematic data, the DataG dataset consisting of 13,022 superconducting com-
pounds is derived.

Cleaning the dataset
Dealing with missing and duplicated data
The SuperCon dataset lacks the transition temperature values for 7088 compounds. These cases are identified as 
missing data and removed from the dataset. Along with that, we remove 7418 data duplications. Among these, 
1264 compounds are regarded as duplicates due to the displacement of data elements; examples include: MgB2, 
B2Mg, Ag7B1F4O8, Ag7F4O8B1, Al0.1Si0.9V3, V3Si0.9Al0.1, Zr2Co1, Co1Z2, ….

Dealing with problematic data
(1) We eliminate 5348 compounds whose element subscripts are X, Y, Z, D, x, y, z, and d. (2) We remove prob-
lematic compounds such as: HgSr2Ho0.333Ce0.667Cu2O6=z, Ba2Cu1.2Co2.4O2,4, Ag7Bf4O8, Hg0.3Pb0.7Sr1.75La0.25CuO4+2, 
Ho0.8Ca0.2Sr2Cu2.8P0.2Oz+0.8, Bi1.6Pb0.4Sr2Ca2Cu3F0.8Oz-0.8. (3) Compounds containing the elements not included in 
the periodic table are ignored. (4) Given the objective of predicting transition temperatures for superconductors 
at ambient pressure, those created under non-ambient pressures (e.g., La1H10, H2S1, H3S1, D3S1, …) are removed 
from the dataset. (5) The compound YBa2CuO6050 is eliminated on the grounds that the oxygen subscript of 6050 
might be incorrect4. (6) We dismissed 70 compounds whose transition temperatures are reported to be zero. 
(7) Finally, the compound Pb2CAg2O6 is discarded due to the unreasonable transition temperature of 323 K 
reported for this compound.

Data correction
(1) According to the SuperCon reference28, the transition temperature of the iron-based superconductor 
CsEuFe4As4 is nearly 30 K, while the SuperCon dataset records it as 287 K. Therefore, it is modified to 28.7 K. 
Moreover, the compound Sm1Ba-1Cu3O6.94 is substituted with Sm1Ba1Cu3O6.94. (2) Bi1.6Pb0.4Sr2Cu3Ca2O1013 is 
altered to Bi1.6Pb0.4Sr2Cu3Ca2O10.13 because the nearby data rows containing formulas with O10.xx

4.

Dealing with multiple temperatures reported for a single compound
One limitation in the SuperCon dataset is the presence of multiple Tc values reported for 2132 compounds, posing 
a challenge for accurate analysis. For instance, MgB2 alone has been reported to exhibit 47 different transition 
temperatures ranging from 5 to 40.5 K. To tackle this challenge, it has been recommended to consider average 
transition temperatures for compounds that have multiple Tc values reported in the dataset. Prior to determin-
ing the average Tc value, it is essential to exclude compounds whose reported transition temperatures display 
significant dispersion. To achieve this, the standard deviation of the different transition temperatures for each 
compound is calculated and compounds with standard deviations greater than 20 K are removed from the dataset. 
Performing this procedure leads to the elimination of 18 compounds.

Detecting outliers
Undoubtedly, outliers in a dataset can pose problems in identifying underlying patterns, resulting in diminishing 
system performance and accuracy29. In this study, the outlier data are detected using the Z-score method30 and 
the PyOD package31, both renowned tools in the field of anomaly detection. After a meticulous examination, 
the outliers are identified and excluded according to the three following distinct aspects:

(1)	 Transition temperature: The average transition temperature of remaining compounds ranges from 0.0005 
to 250 K. Using the abovementioned techniques, 10 superconducting materials with average transition 
temperatures outside the 0.01–136 K range are identified as outliers and removed. Figure 2 illustrates the 
Tc distribution of the few superconducting material families.

(2)	 Number of elements: Fig. 3 shows the number of compounds according to the number of constituent ele-
ments. A subset of compounds with one, eight, and ten elements are identified as outliers and subsequently 
removed, resulting in the elimination of 81 superconducting compounds.

(3)	 The summation of subscripts: Implementing the abovementioned techniques reveals that six compounds 
exhibited subscript summations exceeding 100 that are subsequently removed as outliers.

Our meticulous data-cleaning procedures yield a refined dataset, called DataG dataset, containing 13,022 
compounds.

https://doi.org/10.48505/nims.3739


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3965  | https://doi.org/10.1038/s41598-024-54440-y

www.nature.com/scientificreports/

Computational methods
Machine learning algorithm
In this study, we use the CatBoost algorithm as a machine learning ensemble technique based on Gradient 
Boosted Decision Trees (GBDT) proposed by Yandex Company. GBDT is an efficient tool for solving regression 
and classification issues in big data sets. CatBoost is a Decision Tree based algorithm and open-source imple-
mentation for supervised machine learning that involves two innovations: Ordered Target Statistics and Ordered 
Boosting. Researchers have successfully employed CatBoost for machine learning investigations incorporating 
Big Data since its launch in late 2018. Numerous applications have been reported for CatBoost in various fields, 
including astronomy, finance, medicine, biology, electrical utilities fraud, meteorology, psychology, traffic engi-
neering, cyber-security, biochemistry, and marketing32. However, the application of CatBoost has not yet been 
reported for predicting superconducting transition temperatures. This study uses the algorithm to find if it can 
efficiently identify relationships and patterns between features and Tc. We show that through the creation of 
atomic features for superconducting material, CatBoost algorithm provides a model with very good accuracy.

Generating the feature space
After preprocessing the data set, we must extract atomic features in a “data representation” procedure. There 
are two main approaches for representing compounds: The first is based on chemical formulas, and the second 
on crystal structure23. The atomic features are generated for superconducting materials using the first approach 
for our purposes.

In fact, machine learning algorithms recognize a compound by its characteristics, i.e. the identifier and 
characteristic of a compound are the features that are consider for the compound. This process is called data 
representation. Figure 4 shows how to calculate atomic features.

Figure 2.   Distribution of transition temperature of superconducting materials.

Figure 3.   The number of superconducting compounds based on the number of their constituent elements.
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We design and develop the Python language package called Jabir to generate 322 atomic features for each 
compound of all types, including superconducting materials. The package calculates eight statistical relationships 
(e.g., variance and mean) for each physical feature (e.g., magnetic moment) based on the three components of 
Element, Subscript, and Fraction. Figure 5 depicts the workflow of the feature-generating by Jabir.

For illustration, consider the compound Mg0.9Fe0.1B2 composed of three elements. The subscripts are 0.9, 
0.1 and 2, while the fractions of the elements in the compound, obtained from Eq. 1, are 0.3, 0.033, and 0.666, 
respectively.

As mentioned, the atomic features are generated based on the three components of Element, Subscript, and 
Fraction. The fraction-based atomic features are multiplied by the fraction of the element in the compound.

Similarly, the subscript-based atomic features are multiplied by the subscript of that element in the compound. 
However, the atomic features based on element (Element-based) are based solely on elemental values; in other 
words, the elemental value is multiplied by one, ignoring the related fraction or subscript. It should also be noted 
that the Jabir package solely calculates the element-based atomic features for the four Ionic Radius, Vander Waals 
Radius, Period Number and Group Number features because the two subscript-based and fraction-based ones 
are meaningless for these features. Table 1 briefly explains the process used for calculating the mean thermal con-
ductivity of the Mg0.9Fe0.1B2 compound, for instance. To learn more about Jabir’s features, see the Supplementary 
Information; we have explained briefly all the 30 most significant features depicted in Fig. 7.

At first glance, it seems fraction-based and subscript-based are the same thing, and we should choose one. 
However, the fraction of some elements in some compounds consisting of the same elements can be equal while 
they have different subscripts. The subscript-based must also be considered in atomic features space to account for 
this difference. For instance, the compounds Y1Fe2Si2 and Y2Fe3Si5 have identical fractions of “Y” (namely, 0.2), 
while it is rational to think that this same element has different effects in these two compounds. Clearly, among 
the three types of atomic features, only the subscript-based one accounts for this difference, demonstrating the 
reason why the subscript-based feature must be used.

(1)Fraction =
Subscript

∑

Subscript

Figure 4.   Atomic feature generation workflow for a compound.

Figure 5.   Jabir package generates 322 atomic features for each compound, including eight statistical relations 
for 12 physical features based on the three components of Elements, Subscript, and Fraction. Also, for the four 
Ionic Radius, Vander Waals Radius, Period Number and Group Number features, only the Element component 
is calculated because the two others, subscript-based and fraction-based ones, are meaningless for these features. 
Therefore, 320 features have been generated, and finally, 2 more features are added to them: the number of 
constituent elements of each compound and the sum of their subscripts. In short, there are 322 atomic features 
for each compound (12 × 3 × 8 + 4 × 1 × 8 + 2 = 322).
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Feature selection
Feature selection methods are utilized to determine the best feature subset. Some advantages of feature selection 
include reduced overfitting, improved accuracy, reduced training time, simplified model design, faster conver-
gence, enhanced generalization, and improved robustness to noise33–36. Feature selection methods help pick out 
the subset of attributes most relevant to the Tc of superconducting materials. Generally, for a feature space of N 
features, there are 2N subsets of features. For example, the current feature space with 322 features leads us to select 
a subset among 2322 ≈ 8.54 × 1096 feature subsets. Due to the enormous number of subsets, we need sophisticated 
methods to overcome computational costs. There are generally four general methods for selecting a subset of 
features: filter, wrapper, embedded, and hybrid33,35,37. In this study, the various feature selection techniques are 
tested carefully and evaluated for their efficiency and effectiveness against such evaluation criteria as the coef-
ficient of determination (R2), Eq. 2, and root mean square error (RMSE), Eq. 323. Finally, we developed a novel 
and innovative hybrid method. This method has been published in the form of a Python package called Soraya.

Using the proposed feature selection technique, 30 of the most important features generated by the Jabir 
package for DataG are selected. The results of these comparisons are reported in Table 2.

The proposed innovative hybrid method for selecting the best subset of feature space calculates the two-
by-two correlation of all 322 features in its first step. In the second step, all the features with absolute Pearson 
correlation criterion values greater than 0.80 are grouped into distinct clusters. The Pearson correlation criterion 

(2)R2
= 1−

∑n
i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − y
)2

(3)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

Table 1.   Calculation of the mean thermal conductivity for Mg0.9Fe0.1B2 compound.

Atom Subscript Fraction Element
Thermal conductivity (W 
K−1 m−1)

Subscript thermal 
conductivity Fraction thermal conductivity

Element thermal 
conductivity

Mg0.9 0.9 0.3 1 160 160 × 0.9 = 144 0.3 × 160 = 48 160

Fe0.1 0.1 0.03 1 80 80 × 0.1 = 8 0.033 × 80 = 2.64 80

B2 2 0.66 1 27 27 × 2 = 54 0.66 × 27 = 17.82 27

mean – – – – 68.66 22.82 89

Table 2.   Evaluation and comparison of various feature selection techniques (bold: in this study). There are 
four general methods for selecting the most important features, each encompassing multiple techniques. Here, 
each technique selects 30 of the most significant features and subsequently, their performance is evaluated. 
Significant values are in bold.

Method Technique N_Features R2_test RMSE_test

Embedded Lasso regression 30 0.937 7.31

Embedded Ridge regression 30 0.929 7.78

Embedded Elastic net 30 0.937 7.31

Wrapper Forward 30 0.931 7.68

Wrapper Backward 30 0.929 7.77

Filter Shuffling 30 0.933 7.55

Filter Pearson correlation 30 0.896 9.42

Filter Permutation 30 0.940 7.14

Filter Decision tree 30 0.935 7.46

Filter Random forest 30 0.937 7.34

Filter XGBoost 30 0.916 8.46

Filter CatBoost 30 0.941 7.09

Filter SHAP value 30 0.939 7.21

Filter Featurewiz package 30 0.937 7.35

Filter Mutual information 30 0.926 7.96

Filter Jostar package 30 0.935 7.48

Filter Genetic algorithm 30 0.934 7.49

Hybrid Soraya 30 0.947 6.8
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is a parametric statistical method that allows to determine the existence or absence of a linear relationship 
between two quantitative variables38. This step categorizes 304 features into 62 clusters and retains 18 features 
with correlations less than 0.80 for the following steps. (Each cluster contains a varying number of features. For 
example, one cluster may consist of only two correlated features, while another may comprise five. Therefore, 
the rationale behind Soraya’s decision to group 304 features into 62 clusters is based on the characteristics of the 
features presented in the dataset.). This step aims to retain the most important features from each cluster and 
eliminate the remainder as redundant. Features with a correlation greater than 0.8 mean that they have very 
strong correlation39. The objective of feature selection is to identify a subset of the original features from a pro-
vided dataset by eliminating irrelevant and redundant features40. Furthermore, as the feature space dimensions 
decrease, the learning model’s accuracy will increase41. We should keep only one of those features which they 
have very strong correlation and remove the others, because they are redundant features that do not provide 
any new information42.

In the third step, the learning process of the model is performed independently for each cluster, with the 
most significant feature in each cluster being selected and the others eliminated. As a result of grouping the 
features into 62 distinct clusters, 62 features remain in this step. Once the duplicate features have been deleted, 
55 features remain.

In the fourth step, 18 features are added to the 55 features obtained above. Subsequently, the SHAP (SHapley 
Additive exPlanations) method, which is based on the game theory for explaining the output of machine learn-
ing models43,44, is employed to sort the 73 features according to the significance level. In this step, the SHAP 
method acts as a filter method.

In the fifth step, the 5 most significant features, as identified and sorted by the SHAP method in the previous 
step, are initially selected. Using the forward selection (wrapper method), the remaining 68 (i.e., 18 + 55 − 5) 
features are added one by one to the 5 features, until 30 features are selected from among the most significant 
ones. (The 30 most significant features give the highest accuracy for the model; The Soraya package is designed 
in such a way that it shows the amount of accuracy with the addition of each feature.) The steps outlined above 
are depicted in Fig. 6.

The DataG dataset, which contains 13,022 superconducting materials, comprises 83 elements from the peri-
odic table. As a result, 83 columns are created in which the fractions of the constituent elements for each com-
pound are recorded. This process is illustrated in Table 3. Finally, we add this feature vector to the previously 
selected features to make a final feature space with 113 (83 + 30) dimensions.

Results
Identifying key features
During the feature selection process in Section "Feature Selection", we employed an innovative hybrid technique 
called “Soraya package” to pick 30 of the most significant features. Subsequently, in Fig. 7, we sorted these selected 
features using the capability of the CatBoost algorithm. In the Supplementary Information, we have explained 
those features depicted in Fig. 7.

Across various studies4,38,45, including the current study, researchers have discovered that the thermal con-
ductivity stands out as the most important feature among different features in determining the Tc of supercon-
ducting materials. Theoretically, the thermal conductivity of superconductors provides significant clues about 
the nature of their charge carriers, phonons, and the scattering processes occurring between them46. Thermal 
conductivity refers to the ability of a material to conduct heat. The significance of thermal conductivity is directly 
connected to the concentration of particles capable of transferring heat45,47. The concentration of the supercon-
ducting particles (ns) is related to a characteristic length describing the superconducting state, namely, the 
London penetration depth (λ), �2 = m

q2nsµ0
 , where m, q, ns are mass, charge and concentration of superconduct-

ing particles respectively and μ0 is magnetic constant38,48. The transition temperature of a superconductor is 

Figure 6.   Workflow related to the innovative hybrid method (Soraya Package). Through a 5-step process, this 
technique can efficiently identify the most significant features in the dataset while eliminating any redundant 
features.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3965  | https://doi.org/10.1038/s41598-024-54440-y

www.nature.com/scientificreports/

associated with both the London penetration depth and the coherence length. In other words, the formation and 
destruction of the superconducting state is related to the London penetration depth and the coherence 
length38,45,48. On the other hand, the results of this study and other studies4,38,45 show that the superconducting 
transition temperature has a strong correlation with the thermal conductivity; Among the 322 features, the range 
of thermal conductivity has the strong correlation (0.68) with the Tc; see Fig. 7. Then, it could be concluded that 
the results of this research are consistent with the results of theoretical works.

Predicting the superconducting materials’ Tc values
For the DataG dataset, which contained 13,022 superconducting materials, 90% of the dataset is allocated to the 
training dataset and 10% to the test one (i.e., 1303 compounds). Using the model created during training, the 
CatBoost algorithm predicted a Tc value for every 1303 compounds in the test dataset (Fig. 8). The R2 and RMSE 

Table 3.   Ba0.8Fe2Se2 is represented by an array of 83 columns, with each column containing the fraction of 
constituent elements present in Ba0.8Fe2Se2.

Compound Ba0.8Fe2Se2

H 0

He 0

Li 0

… 0

Fe 0.417

… 0

Se 0.417

… 0

Ba 0.167

Figure 7.   Using Soraya package, 30 of the most significant features were selected from among 322 features, and 
subsequently, the CatBoost algorithm was employed to sort these selected 30 features.
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evaluation criteria are 0.952 and 6.45, respectively, superior to those reported in the literature. Table 4 compares 
the values for the R2, RMSE, and MAE evaluation criteria obtained in the present study and those reported 
elsewhere. The model proposed here yields R2, RMSE, and MAE values superior to those previously reported.

Furthermore, the procedure employed for DataG (namely, creating new features, selecting features, tuning 
hyperparameters, etc.) is also applied to DataS, DataK, and DataH datasets, which led to improved evaluation 
criteria (Table 4).

The model thus developed is subsequently used to predict the Tc values for SmFeAsO0.8F0.2, SmFeAsO0.7F0.3 
and three new Iron-based superconducting materials not included in the data set and for which no Tc values had 
yet been reported. As shown in Table 5, the Tc value of the main compound increases as the Fluorine element 
increases to an optimal doping content. This increase in Tc aligns with the experimental results. Table 5 also indi-
cates that we can play around with elements (e.g., substitution, changing contribution) and find trends for increas-
ing Tc for a specific compound, which can help material scientists to design high-temperature superconductors. 
It should be emphasized that none of the compounds mentioned in Table 5 are included in the SuperCon dataset.

Moreover, the model was used to predict the Tc values for a few superconducting compounds not included 
in the DataG but for which Tc values had been previously reported in the literature. The results are provided 

Figure 8.   Comparison of predicted Tc of 1303 superconducting compounds by machine learning model 
according to experimental Tc.

Table 4.   Evaluation values for predicting the Tc of superconducting materials related to the current research 
(bold) and other works. GBDT: Gradient Boosting Decision tree, CNN: Convolutional Neural Network, 
ConvGBDT: Convolutional Gradient Boosting Decision tree, HNN: Hybrid Neural Network, CGCNN: Crystal 
Graph Convolutional Neural Network. Significant values are in bold.

Authors Algorithm Features Dataset MAE (K) RMSE (K) R2

Hamidieh4 XGBoost 80 Atomic features DataH (21,263) – 9.5 0.92

Stanev16 Random forest Magpie (145 features) 16,415 – – 0.885

Dan23 GBDT Magpie (132 features) DataS (6200) 6.92 10.92 0.873

Dan23 CNN Magpie (132 features) DataS 7.88 12.02 0.831

Dan23 ConvGBDT Magpie (132 features) DataS 5.51 8.93 0.907

Dan23 ConvGBDT Magpie (132 features) DataH 4.65 8.69 0.937

Dan23 ConvGBDT Magpie (132 features) DataK (12,700) 4.74 8.83 0.931

Li11 HNN Magpie (132 features) 12,413 5.023 – 0.899

Li11 Random forest Magpie (132 features) 12,413 5.096 – 0.88

Roter24 Bagged tree Al Chemical composition matrix 30,000 – 8.91 0.93

Konno3 Deep learning 7 × 32 × 4 Reading periodic table DataK – – 0.92

Quinn25 CGCNN Crystal-graph representation ≈ 15,000 5.6 – 0.92

Present work CatBoost Jabir DataG (13,022) 3.54 6.45 0.952

Present work CatBoost Jabir DataH 4.62 8.18 0.942

Present work CatBoost Jabir DataK 4.93 8.83 0.937

Present work CatBoost Jabir DataS 5.37 8.69 0.914
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in Table 6 for comparison. Clearly, a great agreement can be observed between the two Tc values obtained by 
experiments and by the machine learning method used in this study.

Conclusion
In the realm of materials science, artificial intelligence stands as a powerful tool for predicting material proper-
ties. In this study, the CatBoost algorithm was employed to predict the Tc values of superconducting materials, 
marking a novel approach. For this purpose, data pre-processing of the SuperCon dataset was accomplished 
as a significant step in data science to develop a new dataset called DataG containing 13,022 superconducting 
compounds. Also, a new Jabir package capable of generating 322 atomic descriptors was designed and devel-
oped. Comparisons revealed the superiority of the atomic features generated by Jabir over those generated by 
such previous ones as the Magpie package. Furthermore, an innovative hybrid technique was developed as the 
feature selection method (Soraya package). In order to design and develop Jabir and Soraya packages, we applied 
novel ideas and innovative approaches, such as: (i) using new and diverse physical atomic features in the Jabir 
package and considering three different states (Elemental, Subscript, Fraction) in order to calculate the atomic 
features of each compound and (ii) using an innovative hybrid technique in Soraya package, removing features 
that are highly correlated with each other (removing redundant features) and using SHAP’s technique to select 
the most important features and finally using the forward method to adding the most important features. The 
contributions of the study led to optimized evaluation values (R2, RMSE, MAE) of DataH, DataS, and DataK 
datasets without the need for any data pre-processing. The present study’s results indicate that the procedure of 
selecting the most important descriptors significantly impacts predicting superconducting materials’ Tc values. 
Finally, the development of a novel web application was a pioneering contribution to the field for predicting and 
determining the Tc of superconducting materials.

Data availability
The dataset (DataG), which is prepared after various steps of data pre-processing on the SuperCon dataset, 
is available at the following address. https://​github.​com/​Gashm​ard/​DataG_​13022_​super​condu​cting_​mater​ials

Code availability
The developed packages (Jabir and Soraya) and the web application are accessible at the following URLs. Web 
application: https://​super​con-​tc.​iut.​ac.​ir/
Jabir package: https://​pypi.​org/​proje​ct/​jabir/
Soraya package: https://​pypi.​org/​proje​ct/​soraya/
Jabir package on Github: https://​github.​com/​Gashm​ard/​jabir
Soraya package on Github: https://​github.​com/​Gashm​ard/​Soraya

Table 5.   Prediction of Tc of three new Iron-based superconducting compounds using machine learning 
model. By substituting an element instead of Samarium, the value of Tc changes.

Compound Tc ML (K) Tc Exp (K)

SmFeAsO0.8F0.2 46.42 ≈ 5049

SmFeAsO0.7F0.3 49.46 ≈ 5350

Sm0.8Rh0.2FeAsO0.8F0.2 27.28 –

Sm0.8Ir0.2FeAsO0.8F0.2 29.27 –

Sm0.8In0.2FeAsO0.8F0.2 39.84 –

Table 6.   The machine learning model developed in this study accurately predicts the Tc of several 
superconducting compounds, none of which are present in the original SuperCon dataset.

Compound Tc ML (K) (DataG) Tc Exp (K)

SrAl2Si2
51 3.37 4.6

FeTa0.02Se52 10.29 8

FeNi0.02Se52 7.81 5

LaFeO0.9F0.1
53 18.52 26

Ba0.6K0.3Fe2As2
52 22.82 38.6

Ba0.29K0.71Fe2As2
52 18.52 14.6

NdFeAsO0.89F0.11
51 48.06 48

NdFeAsO0.82F0.18
53 48.28 51

SmFeAsO0.8H0.2
51 53.37 55

Ca0.83La0.17Fe2As1.88P0.12
54 38.01 45

https://github.com/Gashmard/DataG_13022_superconducting_materials
https://supercon-tc.iut.ac.ir/
https://pypi.org/project/jabir/
https://pypi.org/project/soraya/
https://github.com/Gashmard/jabir
https://github.com/Gashmard/Soraya
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