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Automated neonatal nnU‑Net 
brain MRI extractor trained 
on a large multi‑institutional 
dataset
Joshua V. Chen 1, Yi Li 1, Felicia Tang 1, Gunvant Chaudhari 1, Christopher Lew 2, Amanda Lee 2, 
Andreas M. Rauschecker 1, Aden P. Haskell‑Mendoza 3, Yvonne W. Wu 4 & Evan Calabrese 2,5*

Brain extraction, or skull‑stripping, is an essential data preprocessing step for machine learning 
approaches to brain MRI analysis. Currently, there are limited extraction algorithms for the neonatal 
brain. We aim to adapt an established deep learning algorithm for the automatic segmentation of 
neonatal brains from MRI, trained on a large multi‑institutional dataset for improved generalizability 
across image acquisition parameters. Our model, ANUBEX (automated neonatal nnU‑Net brain MRI 
extractor), was designed using nnU‑Net and was trained on a subset of participants (N = 433) enrolled 
in the High‑dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) study. We compared the 
performance of our model to five publicly available models (BET, BSE, CABINET, iBEATv2, ROBEX) 
across conventional and machine learning methods, tested on two public datasets (NIH and dHCP). 
We found that our model had a significantly higher Dice score on the aggregate of both data sets and 
comparable or significantly higher Dice scores on the NIH (low‑resolution) and dHCP (high‑resolution) 
datasets independently. ANUBEX performs similarly when trained on sequence‑agnostic or motion‑
degraded MRI, but slightly worse on preterm brains. In conclusion, we created an automatic deep 
learning‑based neonatal brain extraction algorithm that demonstrates accurate performance with 
both high‑ and low‑resolution MRIs with fast computation time.
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Magnetic Resonance Imaging (MRI) allows for the acquisition of high-resolution images with exceptional soft 
tissue  contrast1, making it especially useful for evaluation of the brain, where it often informs patient medi-
cal management. For neonates, brain MRI is particularly important for assessment of patients with neonatal 
encephalopathy, where both the presence and pattern of brain injury can assist prognostication and treatment 
 planning2–7. Advances in artificial intelligence (AI) and machine learning (ML) have allowed accurate prediction 
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of functional outcomes in infants using MRI  data8–11 taking advantage of the imaging information beyond what 
is reasonably utilized by human visual inspection alone. Image preprocessing is an essential step in standardizing 
data inputs for AI/ML algorithms, and ensures faster, more robust data processing while minimizing potential 
confounding  features12–18.

Brain extraction, otherwise known as skull-stripping, is an essential step for virtually all AI/ML approaches 
to brain MRI analysis. While this process is well-established in adult brain models, there are limited extrac-
tion algorithms available for the neonatal brain. Brain extraction refers to the process by which brain tissue is 
segmented, and non-brain tissue, including the skull and extracranial soft tissues, is  removed12,14,16,18,19. Brain 
extraction facilitates data de-identification by removing three-dimensional face data, which mitigates bias by 
preventing AI/ML algorithms from focusing on extracranial and facial soft tissues. Accurate automated brain 
extraction tools are important for improving standardization of the skull-stripping step, as manual editing is 
prone to variability, is time-consuming, and could influence the accuracy of associated AI/ML models. Histori-
cally, automated brain extraction tools have been based on thresholding and binary morphological operations, 
shape analysis, and/or atlas registration  techniques20–28; however, the most modern and accurate approaches 
are based on deep learning (DL) with convolutional neural networks (CNNs)29. Despite recent progress with 
 ML16,29, there is still a need for improved MRI brain extraction tools designed specifically for neonatal  brains30, 
which differ from adult brains based on differences in morphology, signal contrast, and the increased frequency 
of motion  artifact13,15,17,18,24,29,31.

DL-based brain extraction algorithm performance relies heavily on its training data, and generalizability 
can be limited by small training set sizes and lack of training data heterogeneity. Though models may learn to 
perform well on institution specific data, there is a need for more generalizable algorithms that can perform well 
on MRI data with varying acquisition parameters, field strength, and vendor platforms. To address this need for 
generalizability, we present ANUBEX (automated neonatal nnU-Net brain MRI extractor), a publicly-available 
DL-based algorithm for neonatal brain extraction based on the domain-leading nnU-Net architecture and trained 
on a large multi-institution dataset. We compare the performance of our algorithm to five publicly available algo-
rithms spanning conventional, machine learning, and deep learning methods using a multi-institution external 
 dataset20,21,32,33.

Methods
Study population
This was an Institutional Review Board approved ancillary study of the High-dose Erythropoietin for Asphyxia 
and Encephalopathy (HEAL)  study34–36, which prospectively enrolled 501 neonates from 17 different institutions 
across the United States of America with moderate to severe encephalopathy at birth. Informed consent was 
previously obtained from all subjects and/or their legal guardian, and all methods were carried out in accordance 
with relevant guidelines and regulations. A subset of HEAL participants (N = 474) underwent neonatal MRI. 
Exclusion criteria included missing, incomplete, or severely artifact degraded T1-weighted MR imaging data 
(N = 41) resulting in a final study population of 433 participants from 17 different institutions (Fig. 1).

Study data
Imaging data used for this study consisted of T1-weighted, T2-weighted, and diffusion-weighted imaging of the 
brain acquired as part of the HEAL trial. Scan parameters varied based on the imaging site and scanner platform. 
T1-weighted images included both three-dimensional gradient echo and two-dimensional spin echo imaging. 
T2-weighted images were two-dimensional Fast Spin Echo (FSE) imaging and diffusion-weighted images were 
Echoplanar Imaging (EPI). Other than in-plane resolution and slice thickness, scan parameters were not collected 
as part of the HEAL trial and are not consistently available for these data.

Iterative deep learning model development
The ANUBEX architecture was designed using nnU-Net37, a self-configuring segmentation framework based on 
the popular U-Net  architecture38, which is both widely used and has demonstrated domain leading segmenta-
tion performance on related tasks. Model training was accomplished using an iterative, human-in-the-loop AI 
approach. First, baseline automated brain masks were generated from T1-weighted images using a widely used 
tool for adult MRI brain  extraction21. Next, all brain masks were manually reviewed by a single medical trainee 
(author JC) using ITK-SNAP39 and categorized as either “Acceptable,” “Borderline,” or “Needs Revision” using 
the following criteria:

Acceptable
Very little or no non-brain tissue included or brain tissue excluded; manual revision not expected to improve 
algorithm performance.

Borderline
Small amount of non-brain tissue included or brain tissue excluded; uncertain if manual revision will change 
algorithm performance.

Needs revision
Significant amount of non-brain tissue included or brain tissue excluded; manual revision expected to improve 
algorithm performance.
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Studies labeled as “Borderline” were manually edited in ITK-SNAP by the same medical trainee. Next, all 
“Acceptable” and revised “Borderline” studies were used to train an instance of nnU-Net (single fold, random 
80%/20% train/validation split). This model was then used to re-generate automated masks for the remaining 
“Needs revision” cases and the process was repeated for a total of five iterations, with each training instance 
reusing all previously labeled “Acceptable” and manually revised “Borderline” images. After five iterations, all 
remaining “Borderline” (N = 11) and “Needs revision” (N = 23) masks were manually edited to complete the 
training dataset.

Final model training using all the manually reviewed/corrected data (N = 433) was performed using a five-
fold cross-validation approach with a standard random 80%/20% train/validation split for each fold. Model 
training was accomplished using a desktop computer equipped with two Nvidia RTX A600 40 GB graphics 
processing units running in parallel (one training fold per GPU). We developed two models, one trained on only 
T1-weighted imaging referred to as ANUBEX, and one trained on all three included sequences in a randomized 
manner referred to as ANUBEX Sequence Agnostic (ANUBEX-SA).

External validation
Performance of the fully trained ANUBEX model was evaluated using an out-of-sample, external test set consist-
ing of N = 39 T1-weighted images from two different sources: N = 20 from the developing Human Connectome 
Project (dHCP)40 consisting of high-resolution three-dimensional gradient echo T1-weighted imaging, and 
N = 19 from the NIH Pediatric MRI  study41 consisting predominantly of lower resolution two-dimensional spin 
echo T1-weighted imaging. Corresponding T2-weighted images were also obtained from the dHCP test set. 
A single reviewer (author JC) manually reviewed the test set and manually generated each mask, which were 
subsequently used as ground truth for assessing automated brain masks. The proposed model was applied to the 
external test set using an ensemble of all five training folds.

Model performance was compared to five different publicly available automated brain extraction methods: 
BET, BSE, CABINET, iBEATv2, and  ROBEX20–22,32,33. Each algorithm was applied to the external test set using 
default parameters. These benchmark comparison methods were chosen based on the following criteria: (1) 
publicly available, (2) out-of-the-box functionality (i.e. single command that runs on native data), and (3) based 
on a variety of different methods (e.g. shape analysis, atlas registration, deep learning).

Figure 1.  Flowchart describing the iterative brain masking process. * Studies were manually corrected. ** 
Iteration 1 used BET from FSL to generate automated brain masks. *** Iterations 2–4 used nnU-Net models to 
generate automated brain masks. Studies categorized as “borderline” were manually corrected. The nnU-Net 
models were subsequently retrained on the “acceptable” and newly corrected “borderline” studies, and new 
automated masks were regenerated for the “needs revision” studies. **** For iteration 5, all “borderline” and 
“needs revision” studies were manually corrected.
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Sub‑analyses
In addition to the primary external validation described in the previous section, we performed several sub-
analyses to evaluate model performance in different scenarios including different MRI sequences, preterm brain 
MRIs, and motion degraded brain MRIs. To address performance on different MRI sequences we evaluated 
ANUBEX-SA on T2-weighted imaging from the dHCP test set only, as the NIH data does not consistently 
contain T2-weighted imaging. To address performance on preterm brain MRIs, we evaluated ANUBEX on 
18 T1-weighted brain MRIs performed before 36 weeks that were available in the dHCP dataset. To address 
performance in the setting of motion artifact, we evaluated the performance of ANUBEX on motion degraded 
validation data from the fivefold cross-validation. We chose this approach because there were insufficient exams 
with motion artifact in the testing data for a meaningful analysis. We identified 92/433 (21%) exams with at least 
moderate motion artifact and 341/433 (79%) exams with either mild or no significant motion artifact using the 
following objective criteria (Fig. 2):

Mild motion artifact
Slight motion artifact that does not obscure grey-white matter junction.

Moderate motion artifact
Motion artifact that incompletely obscures grey-white matter junction.

Severe motion artifact
Obvious motion artifact that completely obscures grey-white matter junction.

Evaluation metrics and statistical analyses
The Dice coefficient was chosen as the primary metric for comparing manual and automated brain masks. The 
Dice coefficient compares the degree of spatial overlap between two binary images, ranging between 0 (no over-
lap) to 1 (perfect agreement), and is calculated as: Dice coefficient (A,B) = 2(A ∩ B)/(A + B) where (A ∩ B) is the 
union of masks A and B. Secondary metrics included sensitivity and specificity, calculated as Sensitivity = TP/
(TP + FN), and Specificity = TN/(FP + TN) where TP is the number of true positive voxels in the mask, TN the 
number of true negative voxels, FP the number of false positive voxels, and FN the number of false negative 
voxels. Dice coefficients were calculated using custom Python code, and statistical comparisons between average 
Dice scores were computed using a two-sample, two-tailed t-test with a significance threshold of p < 0.05. We 
controlled for multiple comparisons using the Benjamini and Hochberg False Discovery Rate correction method.

Ethical approval
This study was approved by the University of California, San Francisco Institutional Review Board as an ancillary 
study of the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) study.

Results
Study data and patient demographics
The final training dataset included N = 433 neonatal MRI studies from 17 institutions, 44% of which were female. 
The median gestational age (GA) at birth was 39.3 weeks (interquartile range [IQR] 38.1–40.3), with MRIs 
obtained between 96 and 144 h after  birth36. The final external testing dataset included N = 39 neonatal MRI 
studies from two institutions, N = 20 from the dHCP and N = 19 from the NIH. The dHCP preterm sub-analysis 
data set included N = 18 MRIs. The median GA at scan of patients from the NIH, dHCP, and dHCP Preterm data 
sets, respectively, were 42.3 weeks (IQR 42.1–43.1), 40.6 weeks (IQR 39.7–40.9), and 34.5 weeks (IQR 34.0–35.3). 
The demographics of the NIH, dHCP, and dHCP Preterm data sets, respectively, were 53%, 30%, and 44% female. 
Basic participant demographic data is shown in Table 1. MRI resolution is shown in Table 2.

Figure 2.  Examples of brain MRIs representing mild, moderate, and severe motion artifact.
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Model training
Final model training lasted approximately 36 h. Training and validation loss (Dice) decreased appropriately 
throughout the training process. Final trained model weights are freely available online (https:// github. com/ 
ecala br/ nnUNet_ models).

External validation and performance evaluation
External validation and performance evaluation were performed using the multi-institution external test data-
set (N = 39). Processing time for all 39 studies in the external test set took 330.34 s or an average of 8.5 s per 
study using an Nvidia RTX A6000 GPU. Results from ANUBEX were compared to results from 5 other publicly 
available brain extraction tools: BET, BSE, CABINET, iBEATv2, and  ROBEX20–22,32,33. Dice scores for all models 
evaluated on the testing dataset are provided in Table 3. Example brain masks generated by each algorithm are 
shown in Fig. 3. The Dice coefficient of our model was the highest of all methods tested with a mean ± standard 
deviation of 0.955 ± 0.017 (Fig. 4A). The next best performing model (iBEATv2) yielded an average Dice of 
0.949 ± 0.017, followed by CABINET at 0.934 ± 0.015. Other evaluated methods yielded average Dice scores 
below 0.85. Our model showed a small but statistically significant improvement in performance compared to 
the two other deep learning algorithms CABINET (p < 0.001) and iBEATv2 (p = 0.012) and a larger statistically 
significant difference between the non-deep learning algorithms ROBEX, BSE, and BET. Sub-analysis of algo-
rithm performance on the external test set by site revealed a trend towards better performance on the dHCP 
(3D) image data (Fig. 4C) compared to the NIH (2D) data (Fig. 4B). Notably, our algorithm showed the highest 
performance of all algorithms tested for both dHCP and NIH data.

Sub‑analyses
Sub-analysis results are presented in Table 3 and Fig. 4. ANUBEX-SA (trained on T1-, T2-, and diffusion-
weighted images) showed similarly high performance on T1-weighted imaging from both test sets (average 
Dice = 0.956 ± 0.012 for dHCP and Dice = 0.943 ± 0.014 for NIH) and performance on T2-weighted imaging 
from the dHCP test set was nearly identical (average Dice = 0.956 ± 0.008). We detected small but statistically 
significant decreases in performance of ANUBEX-SA compared to ANUBEX for the dHCP test set but not for 
the NIH test set or aggregate test set.

ANUBEX performance on the 18 preterm (< 36 weeks gestational age) brain MRIs from the dHCP yielded 
an average Dice = 0.947 ± 0.030, which was slightly worse compared to performance on term dHCP MRI 
data (p = 0.015). ANUBEX-SA performance was average Dice = 0.940 ± 0.028 for T1-weighted images and 
0.925 ± 0.028 for T2-weighted images, which was not significantly different compared to regular ANUBEX 
performance on preterm T1-weighted images (Fig. 4D).

Table 1.  Patient demographic information for the training and testing datasets. *Training Data Set from 
the HEAL Study reported only Gestational Age at Birth. Scans were acquired generally 4–6 days after birth. 
**dHCP and dHCP Preterm Data Sets do not contain Race/Ethnicity information.

Training data set (N = 433) * NIH data set (N = 19) dHCP data set (N = 20) **
dHCP preterm data set 
(N = 18) **

Gestational Age at MRI (weeks) 
[Median (IQR)] 39.28 (38.14–40.28) 42.07 (42.07–43.14) 40.57 (39.68 –40.90) 34.50 (34.00–35.29)

Sex

 Female 191 (44.1%) 10 (52.6%) 6 (30.0%) 8 (44.4%)

 Male 242 (55.9%) 9 (47.4%) 14 (70.0%) 10 (55.6%)

Self-reported Race of Maternal Parent

 White 308 (71.1%) 12 (63.2%)

 Black 56 (12.9%) 0 (0%)

 Asian 29 (6.7%) 1 (5.3%)

 Other 40 (9.2%) 6 (31.6%)

Self-reported Ethnicity of Maternal Parent

 Hispanic 113 (35.3%) 0

 Non-Hispanic 320 (73.9%) 19 (100%)

Table 2.  Slice resolution for N = 433 T1-weighted MRIs. Resolution Z-axis represents slice thickness.

Resolution X-axis Resolution Y-axis Resolution Z-axis

Range (mm) 0.60–1.20 0.39–1.07 0.39–5.2

Mean (mm) 0.98 0.97 1.06

Median (mm) 1 1 1

https://github.com/ecalabr/nnUNet_models
https://github.com/ecalabr/nnUNet_models
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Table 3.  Model performance metrics are presented for each of the test sets. *False Discovery Rate corrected 
p-value < 0.05. a p-value was calculated with a paired two-tailed t-test between Dice scores of the ANUBEX 
model and the comparison model with Benjamini and Hochberg False Discovery Rate p-value correction. 
b Aggregate external test set included both NIH and dHCP data sets but not preterm data. ANUBEX-SA (T1) 
refers to the sequence agnostic model trained on T1-, T2-, and diffusion-weighted images and evaluated on 
T1-weighted images, and ANUBEX-SA (T2) indicates that this model was evaluated on T2-weighted images.

Dice coefficient p-value a Sensitivity Specificity PPV

Allb

 ANUBEX 0.955 ± 0.017 0.932 0.996 0.982

 ANUBEX-SA (T1) 0.950 ± 0.014 0.160 0.926 0.995 0.977

 BET 0.845 ± 0.063 4.753 ×  10–13 * 0.856 0.973 0.876

 BSE 0.845 ± 0.090 2.101 ×  10–7 * 0.774 0.997 0.963

 CABINET 0.934 ± 0.015 2.572 ×  10–5 * 0.988 0.981 0.887

 ROBEX 0.746 ± 0.220 4.350 ×  10–6 * 0.680 0.996 0.960

 iBEAT v2 0.949 ± 0.017 0.012 * 0.916 0.999 0.986

NIH

 ANUBEX 0.944 ± 0.014 0.895 1.000 0.999

 ANUBEX-SA (T1) 0.943 ± 0.014 0.9057 0.895 1.000 0.998

 BET 0.833 ± 0.063 1.819 ×  10–6 * 0.723 0.999 0.991

 BSE 0.935 ± 0.011 0.234 0.943 0.994 0.929

 CABINET 0.942 ± 0.015 0.877 0.979 0.993 0.909

 ROBEX 0.941 ± 0.008 0.822 0.953 0.995 0.931

 iBEAT v2 0.937 ± 0.018 0.207 0.895 0.999 0.985

dHCP

 ANUBEX 0.966 ± 0.014 0.967 0.992 0.966

 ANUBEX-SA (T1) 0.956 ± 0.012 0.023 * 0.955 0.990 0.957

 ANUBEX-SA (T2) 0.956 ± 0.008 0.013 * 0.937 0.994 0.976

 BET 0.857 ± 0.065 2.788 ×  10–7 * 0.982 0.948 0.766

 BSE 0.759 ± 0.022 1.914 ×  10–18 * 0.614 0.999 0.995

 CABINET 0.927 ± 0.012 4.130 ×  10–8 * 0.996 0.969 0.866

 ROBEX 0.561 ± 0.159 2.914 ×  10–9 * 0.422 0.998 0.988

 iBEAT v2 0.961 ± 0.006 0.079 0.937 0.997 0.987

dHCP Preterm

 ANUBEX 0.947 ± 0.030 0.924 0.996 0.972

 ANUBEX-SA (T1) 0.940 ± 0.028 0.474 0.910 0.996 0.972

 ANUBEX-SA (T2) 0.925 ± 0.028 0.058 0.867 0.999 0.992

Figure 3.  Comparison of masks generated by 6 automatic brain segmentation tools on 2 randomly selected 
MRIs, one from the NIH dataset (left two columns) and one from the dHCP dataset (right two columns). 
Green pixels represent mask pixels that appropriately capture true brain as determined by gold standard manual 
segmentation. Red pixels represent mask pixels that capture nonbrain pixels. Blue pixels represent true brain that 
was not captured by mask pixels.
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ANUBEX performance in the setting of moderate or severe motion artifact was evaluated on validation data 
from the fivefold cross-validation, which results in elevated Dice scores compared to test set data but still allows 
comparison of performance between MRIs with and without motion artifact. Average validation Dice score for 
ANUBEX was 0.986 ± 0.021 for the group with at least moderate motion artifact compared to 0.988 ± 0.020 in 
the group without significant motion artifact. This difference was not statistically significant (p = 0.470).

Discussion
In this study, we evaluated ANUBEX, a new deep learning-based model for neonatal MRI brain extraction 
based on the widely used nnU-Net architecture. Model performance was evaluated on an independent, multi-
institution, external dataset and results were compared to five other publicly available brain extraction methods 
including deep learning-based and non-deep learning-based methods: BET, BSE, CABINET, iBEATv2, and 
ROBEX. Compared to the other methods we evaluated, our model demonstrated superior brain extraction 
performance on both 2D and 3D neonatal brain MRIs. Specifically, there was a small but significant improve-
ment in performance compared to the other two deep learning-based methods (CABINET and iBEATv2) and a 
larger significant difference compared to the non-deep learning-based methods. Based on sub-analysis results, 
our model performs slightly worse on brain MRIs of preterm infants as compared to term infants, an expected 
outcome given our model was trained on term and near-term infants. We did not find significant differences 
in performance between our T1-weighted model (ANUBEX) or our sequence agnostic model (ANUBEX-SA) 
whether evaluated on T1- or T2-weighted images, and model validation performance was not significantly dif-
ferent in moderately to severely motion degraded versus non to mildly motion degraded images.

Our approach to model generation has several potential advantages that may have contributed to the observed 
performance increase. First, we employed an iterative semi-automated approach to ground truth brain mask 
generation, which allowed increased efficiency and consistency. Second, we utilized a multi-institutional dataset 
from the HEAL trial as training data for our deep learning algorithm in order to create a more generalizable 
model across different institutions. By training with a larger and more heterogeneous sample including variation 
in MRI manufacturer, model, software, and imaging  parameters36, our model can potentially achieve higher 
accuracy in neonatal skull stripping across various institutions in comparison to studies performed with a 
smaller and institution specific dataset. For example, our model showed improved performance with both high-
resolution (0.8 × 0.8 × 1.6 mm) 3D imaging (dHCP) and thicker slice (1.0 × 1.0 × 3.0 mm) 2D imaging (NIH), 
which is likely attributable to the training data heterogeneity. Comparatively, iBEATv2 was trained on only the 
high-resolution Baby Connectome Project dataset (resolution 0.8 × 0.8 × 0.8 mm), and ROBEX was trained on a 
proprietary dataset of 92 healthy adult subjects (downsampled to lower resolution 1.5 × 1.5 × 1.5 mm)33. Finally, 
our model was generated using the widely used nnU-Net architecture, which has “out-of-the-box” functionality 
and has shown domain-leading performance in other medical image segmentation tasks. The use of nnU-Net 
also allows straightforward sharing of trained model weights and can lower barriers to implementation and use 
in future research projects.

This study has several important limitations. First, the use of data from the HEAL trial limits the scope of 
brain pathology included in the training data. HEAL study participants all had moderate to severe encepha-
lopathy and did not have other major structural brain abnormalities. While several other intracranial patholo-
gies were present in HEAL participants (e.g., infarcts, hemorrhages, hydrocephalus) these were not rigorously 
documented nor was the model specifically tested for brain extraction performance in the setting of any brain 
abnormality. Therefore, performance in the setting of brain structural pathology may be degraded. Second, we 
focused exclusively on the early neonatal period (< 44 weeks GA at scan) and therefore performance in patients 
older than 44 weeks GA may be degraded. Finally, comparison with other publicly available models was not 
exhaustive as several previously published algorithms had webpages that were inactive or code that was non-
functional on modern software stacks.

Because accurate brain tissue segmentation is key to subsequent image analysis and volumetric measurements, 
necessary future steps would include further evaluation of the accuracy of our model on patients outside of the 
neonatal age range, such as in young children or adults, and assessing our model’s utility on brains with diverse 
structural pathology. We were not able to uniformly perform sub-analyses on all other algorithms because of 
varying abilities to support T2-weighted imaging.

In conclusion, we propose an application of nnU-Net to create a newer high-accuracy automatic neonatal 
brain extraction algorithm trained on a large multi-institutional dataset to improve generalizability across MRI 
acquisition parameters. Our model demonstrates accurate performance with both high- and low-resolution MRIs 
and is designed to have a lower barrier to use as an “out-of-the-box” ready software with fast computational time.

Data availability
Trained model weights are available through the corresponding author or online at: https:// github. com/ ecala 
br/ nnUNet_ models
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