
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports

Resource analysis
and modifications of quantum
computing with noisy qubits
for elliptic curve discrete
logarithms
Jinyoung Ha , Jonghyun Lee & Jun Heo *

We estimate the number of physical qubits and execution time by decomposing an implementation of
Shor’s algorithm for elliptic curve discrete logarithms into universal gate units at the logical level when
surface codes are used. We herein also present modified quantum circuits for elliptic curve discrete
logarithms and compare our results with those of the original quantum circuit implementations at
the physical level. Through the analysis, we show that the use of more logical qubits in quantum
algorithms does not always lead to the use of more physical qubits. We assumed using rotated surface
code and logical qubits with all-to-all connectivity. The number of physical qubits and execution time
are expressed in terms of bit length, physical gate error rate, and probability of algorithm failure. In
addition, we compare our results with the number of physical qubits and execution time of Shor’s
factoring algorithm to assess the risk of attack by quantum computers in RSA and elliptic curve
cryptography.

Keywords Quantum resource analysis, Quantum algorithm, Quantum error correcting code

A variety of quantum computing techniques, ranging from algorithms to physical devices, have been actively
investigated since Peter Shor proposed a polynomial-time quantum algorithm for finding discrete logarithms and
factoring integers1. Several corporations, including Google and IBM, have pioneered efforts to make quantum
computers feasible2,3.

However, the current level of quantum computers has clear limitations such as high gate error rates and small
number of physical qubits. For this reason, research on noisy-intermediate-scale quantum operation is being
actively carried out4,5, and research for performing basic quantum error-correcting (QEC) code in a quantum
processor is also being conducted6,7. Quantum processor architecture research is also being performed to reduce
the resources necessary for quantum computers8–13, as well as quantum computing software research for efficient
quantum computer operation14–22.

Meanwhile, elliptic curves are utilized to create public key methods, such as key exchange23 and digital
 signatures24,25, which are widely employed in cryptographic systems. NIST curves P-256, P-384, and P-521,
which are Weierstrass curves over special primes of sizes 256, 384, and 521 bits, respectively, are notable curves
with widespread use. Elliptic curve cryptography is a public key cryptography approach based on the algebraic
structure of elliptic curves over finite fields. The difficulty of computing discrete logarithms in elliptic curve
groups, that is, the elliptic curve discrete logarithm problem, is used to secure elliptic curve cryptography.

The quantum resources requirements for Shor’s factoring algorithms have been investigated26–31. However, to
the best of our knowledge, there are few studies on the physical resource analysis of Shor’s algorithm for elliptic
curve discrete logarithms. Furthermore, as the outcomes of these assessments vary greatly, depending on the
assumptions used, examining the resources required under various scenarios is vital.

Throughout the analysis, we adopt the resource analysis method presented in article31. In addition to the
resource analysis, we modified the algorithm to reduce the required resources of the algorithm as illustrated in
Fig. 1. We performed the modifications by focusing on the method of performing modular operations in the
Roetteler algorithm (RA)34. First, we modify the serial constant adder to a parallel constant adder. As the parallel
constant adder uses dirty ancilla qubits to reduce the operation depth32, the operation speed can be increased

OPEN

School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea. *email: junheo@korea.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54434-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

without using additional logical qubits for data. Second, we modified the constant adders to add or subtract p
for modular operation into a Takahashi adder33. Takahashi adders need to use additional logical qubits for data
because they need to input the number to be added as quantum values; however, as the structure is simple, it is
expected to speed up the operation.

The contributions of this study are as follows. First, we express the number of physical qubits Nphy and execu-
tion time Tr required for RA as a closed-form equation for the bit length in elliptic curve cryptography. In addi-
tion, we proposed two types of modified algorithms to reduce the resources required for the RA: an algorithm
that parallelizes a constant adder, and an algorithm that transforms constant adders for modular operation
into Takahashi adder. We performed a resource analysis of the two modified algorithms; in the case of the first
modified algorithm, the Nphy is increased, but the execution time is reduced compared to the original RA. In
the case of the second modified algorithm, the Nphy remained almost unchanged, whereas the execution time
was confirmed to be the shortest among the two modified algorithms and original RA. These results suggest that
using the Takahashi adder can be more efficient than using the constant adder, even if additional logical qubits
are used when performing modular operations. Finally, we compared the resources required for attacking elliptic
curve cryptography with the resources required for attacking RSA analyzed in article31 and confirmed again that
elliptic curve cryptography is more vulnerable to quantum computing attacks at the physical level.

Related works
This section introduces Shor’s algorithm for elliptic curve discrete logarithms and review RA34. We then compare
our work to a previous study that estimated the resources of RA.

Shor’s algorithm for elliptic curve discrete logarithms
Several methods for implementing Shor’s algorithm for elliptic curve discrete logarithm have been developed
since the proposal of Shor’s algorithm. Although previous studies implemented the algorithm in different ways,
they all follow the general structure of Shor’s algorithm. Point addition performs the following operations:

where P and Q are the generator and public keys of elliptic curve cryptography, respectively. The Eq. (1) can be
performed by implementing point addition on the elliptic curve as a quantum circuit. In 2003, Proos and Zalka35

(1)
1

2n+1

2n+1−1∑

k,l=0

|k, l� →
1

2n+1

2n+1−1∑

k,l=0

|k, l�|k · Q + l · P�,

Figure 1. Slight modifications of modular operations in the Roetteler algorithm. The modified portions of
the existing algorithm are marked in red. Modification 1 transforms the serial constant adders in the Roetteler
algorithm into parallel constant adders32. Modification 2 changed the serial constant adders for modular
operation in the Roetteler algorithm to the Takahashi adder33 by using more logical qubits for data.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

demonstrated the implementation of Shor’s algorithm for elliptic curve discrete logarithms. They concluded with
a table of resource estimations for the number of logical qubits and time based on the bit length of the elliptic
curve at a logical level. Based on this work, In 2017, Roetteler et al.34 developed quantum circuit for elliptic curve
discrete logarithms, and then used this concrete implementation to automatically compute resource estimates
at a logical level.

Previous works
We review several studies analyzing the resources of physical quantum computing using Shor’s algorithm for
discrete logarithms. We summarized previous works and our work in Table 1. Roetteler et al.34 presented precise
resource estimates for quantum circuits that implemented Shor’s algorithm for elliptic curve discrete logarithm
problem at a logical level. For example, they observed that Shor’s algorithm for 224-bit discrete logarithms
required 2042 logical qubits and 7.73× 1010 logical Toffoli depth. They also compared the quantum resources
for solving the elliptic curve discrete logarithm problem to those required in Shor’s factoring algorithm, which
were obtained in a recent study32. Their logical-level comparison indicated that the amount of qubits required
to attack elliptic curves is fewer than that required to attack RSA for current settings at comparable classical
security levels, implying that elliptic curve encryption is really an easier target than RSA. However, only the
logical level was considered for their result, so their results did not consider various conditions such as ǫp and
algorithm failure probabilities to be considered when the quantum circuit is applied to noisy quantum computers.
In addition, as quantum algorithms that attack ciphers must be implemented by physical quantum computers,
physical-level resource comparisons are required to ensure the risks of quantum computing attacks to elliptic
curve cryptography and RSA.

Gheorghiu et al.30 analyzed the resources required by various algorithms, including RA for discrete loga-
rithms, attacking the current cryptosystem at the physical level. They also compared the quantum vulnerability
of RSA and elliptic curve cryptography for a fixed classical bit length at the physical level. They utilized a surface
code that required fewer physical qubits to construct a logical qubit36, which is similar to our work. They per-
formed resource analysis with 10−3 and 10−5 of ǫp , and the relation between the required time and the Nphy of
the algorithm was expressed in a closed form by adjusting the level of parallelization for the magic-state factory.
However, their closed formula does not contain parameters such as bit length, physical error rate, or algorithm
failure probability; therefore, various situations cannot be considered.

We utilized a rotated planar surface code that requires fewer physical qubits than than the method of article37.
We assumed all-to-all connectivity between logical qubits. We utilized the MSD protocol described in article8.
We also consider RA for discrete logarithms. In contrast to prior studies, our study describes the Nphy and the
required time as a closed-form formula. Our closed-form formula considers bit length, physical gate error
rate, and algorithm failure probability; therefore, obtaining the resources required in various situations is easy.
Unlike article30, we did not consider magic-state factory parallelization because we assumed that states made
in the magic-state factory should be used immediately. In addition, we compared the required resources for the
algorithms for discrete logarithms and factoring under the same conditions.

Methods
Resource analysis scheme
As the current level of physical quantum gates has a very high error rate, techniques such as QEC code and MSD
should be used to create logical qubits and logical operations with low error rates. We performed a resource
analysis using the physical-level analysis method and the equation for the required resources used in article31.
In this section, we briefly introduce the techniques used for this physical-level analysis and introduce a closed-
form formula for Nphy and Tr.

As mentioned above, we used QEC code to generate a logical qubit with a low gate error rate. We selected a
rotated planar surface code from a variety of QEC codes36. The number of physical qubits required to construct
one logical qubit is 2d2 − 1 when the code distance is d. The following relationship is established between the d,
ǫp , and logical gate error rate ǫL required by the algorithm in the rotated surface code8.

Table 1. Summary of previous works and our work. “△ ” indicates that the corresponding component has
been partially considered. Gheorghiu’s closed-form formula is an expression of the Nphy according to the time
required when the bit length and physical error rate are determined, whereas our work derives the number
of qubits and the time required using the bit length, physical error rate, and algorithm failure probability
as parameters. Roetteler analyzed the required resources of the algorithm only at the logical level. As the
magic-state factory is not used at the logical level, Roetteler’s work does not include magic-state factory
parallelization. Our work does not consider magic-state factory parallelization because it assumes that the state
stored in the magic-state factory cannot be stored for a long time and should be used immediately.

Physical-level analysis Magic-state factory parallelization Closed-form formula

Roetteler34 X X X

Gheorghiu30 O O △

Our work O X O

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

In Eq. (2), ⌈x⌉ is the function that takes real number x as an input and returns the least integer greater than or
equal to x. Therefore, we can determine the distance of the surface code using KQ formalism to obtain the ǫL
required by the algorithm.

To perform the T gate with a low error rate in QEC codes, the |A� = |0� + exp(i · π/4)|1� state with a low
error rate is required. MSD uses multiple noisy |A� states and outputs a smaller number of more reliable |A� states.

As in article31, we used Fowler and Gidney’s MSD protocol8. We performed various levels of MSD based on the
ǫL required by the algorithm. The code distances for MSD d1 , d2 , and d3 all have odd values greater than or equal
to 15. As shown in Table 2, the number of physical qubits required to make one T gate, Tm , and the time required
for MSD, tT , are expressed as functions of d1 , d2 , and d3 . In Table 2, ct denotes the cycle time of the surface code8.
Many studies have assumed that ct = 200 ns26,30, and we have adopted that assumption. We set d1 , d2 , and d3 such
that Tm is as minimal as possible while still satisfying the ǫL requirement. As the Tm increased dramatically when
the distillation level increased, we adjusted the code distances to perform distillation at the lowest possible level.

As shown in article31, the Nphy and the Tr can be expressed as

In Eq. (3), K is the number of logical qubits required by the algorithm, NCNOT is the maximum number of con-
current CNOT gates, and NT is the maximum number of concurrent T gates. In Eq. (4), D is the T depth of the
algorithm. In Eqs. (3) and (4), pfail is the probability of the failure of the algorithm. When elliptic curve logarithms
on an elliptic curve is defined over n-bit prime field, the RA has K = 9n+ 2⌈log2(n)⌉ + 10.

Decomposition of algorithm at the logical level
Similar to the analysis used in article31, the algorithm is decomposed into X, Z, CNOT, and T gates, and the ǫL
for the algorithm to operate properly is obtained using KQ formalism. Using this logical gate error rate obtained
through KQ formalism, we can determine the distance of the surface code and the level and distance of the
MSD. In addition, we obtained the T depth to identify the Tr . To determine the number of magic-state factories
to be prepared, we counted NT . Considering the CNOT operation using the lattice surgery method36, we also
determined that the NCNOT.

KQ formalism is described as follows38:

In Eq. (5), pfail is the algorithm failure probability. We can determine ǫL by obtaining K and Q. Previous studies
have performed analyses using pfail as a fixed value27,28. On the contrary, we set pfail as a variable to confirm the
change in the required resources of the algorithm according to the change in pfail.

Because the values of K and Q depend on the algorithm, we decomposed the RA to obtain K and Q. First, we
confirmed that decomposing the Toffoli gate using the method presented in article39 would result in Q of 11 and
T depth of 3. The majority of the operations in the RA are modular operations that require a constant adder gate.
In 2016, Häner et al. developed a quantum constant adder using a divide-and-conquer method32. Häner’s constant
adder includes serial and parallel versions, and the RA uses a serial version of a constant adder. The elementary
gate step QRoe and T depth DRoe of the RA are expressed as follows (Please see supplementary information).

As the CNOT gates are serially executed in the Takahashi adder, there are no cases where two or more CNOTs
are executed simultaneously. Thus, NCNOT = 1 . In addition, because three T gates are used simultaneously in the

(2)d = 2 · ⌈
log(10ǫL)

log(100ǫp)
⌉ − 1.

(3)Nphy = (2 · (2⌈
log(

10pfail
KQ)

log(100ǫp)
⌉ − 1)2 − 1) · (K + NCNOT)+ NT · Tm,

(4)Tr =
D · tT

1− pfail
.

(5)pfail = KQǫL.

(6)QRoe = 2472n3 log2 n+ 10316n3 + 1442n2 log2 n− 2222n2,

(7)DRoe = 576n3 log2 n+ 2796n3 + 336n2 log2 n− 510n2.

Table 2. Summary of Tm and tT according to the distillation level. Tm and tT are determined by the code
distances d1 , d2 , and d3 used for the MSD.

Distillation level Tm tT

1 Tm,1 = 32 · (2d21 − 1) 6.5 · d1 · ct

2 Tm,2 = 32 · (2d22 − 1)+ 8 · Tm,1 6.5 ·max(2d1, d2) · ct

3 Tm,3 = 32 · (2d23 − 1)+ 8 · Tm,2 6.5 ·max(4d1, 2d2, d3) · ct

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

Toffoli gate, and because there are no cases where the Toffoli gate is used simultaneously in the entire algorithm,
the maximum number of T gates used simultaneously throughout the algorithm is NT = 3.

Slight modifications to the Roetteler algorithm
In this section, we modify the execution method of the constant adder in the RA and evaluate the change in the
elementary gate step and T depth. As a constant adder is used throughout the RA, a little change in the constant
adder causes a significant results. First, to reduce the required time for the algorithm, we replace Häner’s serial
version constant adder with a parallel one. As the parallel constant adder performs operations simultaneously,
the elementary gate step and T depth can be reduced, but the NCNOT and NT increases. Second, we modify the
constant adder that adds or subtracts a modular number p to a Takahashi adder by additionally using n logical
qubits. These additional logical qubits are used to store modular number p as a quantum state. We do not change
all constant adders used in the RA but change only the constant adders that add or subtract the modular number
p to Takahashi adders. As the Takahashi adder has fewer elementary gate steps than the constant adder, it also
shortens the required time.

Constant adder parallelization
Häner et al. also presented a method to parallelize the constant adder by additionally using dirty ancilla qubits in
 article32. Because this method additionally uses dirty ancilla qubits, it has the advantage of not having additional
logical data qubits used for parallelization while reducing the elementary gate step and T depth. However, when
the constant adder is parallelized, NCNOT and NT increase, and additional logical qubits for performing CNOT
gate and magic-state factories are required. We used parallel constant adder to reduce the time required for
the algorithm, even if we risk an increase in the number of physical qubits. Let us define the number of Toffoli
gates that are used simultaneously as an and the number of CNOT gates that are used simultaneously as bn when
performing an n-bit quantum constant adder. As the constant adder has the form of divide-and-conquer, the
n-bit constant adder is expressed as the sum of the constant adders of the upper and lower half bits. Therefore,
an and bn follow the recurrence relation

where the natural number n ≥ 2 and a1 = 0, a2 = 0, a3 = 1, a4 = 1 and b1 = 0, b2 = 1 . Although an
and bn cannot be expressed in a closed form, an and bn for any n can be obtained using the values of
a1, a2, a3, a4 , and b1, b2 . For example, when n = 13 , a13 = a7 + a6 = (a4 + a3)+ (a3 + a3) = 4 and
b13 = b7 + b6 = b4 + 3b3 = (b2 + b2)+ 3(b2 + b1) = 5 . Using an and bn , when the bit length is n, NCNOT and
NT can be expressed as

Using this modification, we can redefine the elementary gate step and depth of the parallelized constant adder RA.
The elementary gate step QRoe,parallel and T depth DRoe,parallel of the parallelized constant adder RA are expressed
as follows (please see supplementary information).

Using Takahashi adder instead of constant adder
Although the n-bit constant adder uses only n logical qubits and thus requires fewer qubits than adder, which
requires additional logical qubits, the elementary gate step and T depth of the constant adder are larger than
those of the adder. For example, the Takahashi adder requires elementary gate step of 27n and T depth of 6n
approximately, assuming CNOT gate serialization. Similarly, ripple-carry adder of Cuccaro et al.40, knwon as
CDKM adder, requires an elementary gate step of 25n and a T depth of 6n approximately, assuming CNOT gate
serialization again. Unlike the Takahashi adder, the CDKM adder requires one additional logical ancilla qubit.
The Draper adder41 requires n+ 1 steps of controlled rotation gate. However, The Draper adder requires approxi-
mate quantum Fourier transform(AQFT) before and after the operation and therefore requires an additional
gate depth of O(n log n) . Furthermore, we have to approximate the rotation gate as H, S, and T gates using the
Gridsynth algorithm42. For example, when the degree of approximation is 10−10 , a total of 253 H, S, and T gates
are required and 102 T gates are required42. Therefore, Draper adder including AQFT was not considered in
this paper because both the number of qubits used and the depth were larger than constant adder. Comparing
the Takahashi adder and the CDKM adder, the CDKM adder has a slight advantage in terms of elementary gate
steps compared to the Takahashi adder, but the T depth, which greatly affects the time required, is the same as
Takahashi, and it uses one more logical qubit. In addition, when multiple-controlled adders are needed, such as
modular inversion, Takahashi adders are more advantageous than CDKM adders. Therefore, when performing
resource analysis, when comparing the method of replacing the constant adder with Takahashi adder and the
method of replacing it with CDKM adder, the method using Takahashi adder uses slightly fewer physical qubits
and takes the same amount of time (please see supplementary information). Therefore, we replaced constant
adder with Takahashi adder. The disadvantage of the Takahashi adder is that the number to be added must be
prepared in the quantum state. Therefore, we replaced only the constant adder for adding or subtracting the

(8)an = a⌈ n
2 ⌉

+ a⌊ n
2 ⌋
, bn = b⌈ n

2 ⌉
+ b⌊ n

2 ⌋
,

(9)NCNOT = bn, NT = 3an.

(10)QRoe,parallel = 19796n3 + 3422n2,

(11)DRoe,parallel = 5100n3 + 834n2.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

modular number p, which is frequently used in modular operations, with the Takahashi adder. Using this method,
only n additional logical qubits must be generated to store modular number p.

As in the RA, it is assumed that the CNOT gates are serially performed on Takahashi adder to minimize
NCNOT . Therefore, as in the RA, NCNOT = 1 and NT = 3.

The elementary gate step QRoe,T and T depth DRoe,T of the Takahashi adder version RA are expressed as fol-
lows (please see supplementary information).

Results

Table 3 shows the Nphy in our study and in article30 with the several fixed required time. We assumed ǫp = 10−3 ,
ct = 200 ns, and pfail = 0.01 . In article30, the required resources are expressed as a function of time and the Nphy .
Therefore, the Nphy estimation of ours and article30 are compared based on the required time for our analysis. As
shown in Table 3, although our analysis uses a slightly fewer Nphy , they require similar resources.

Figure 2 shows the Nphy and the required time of the RA and our modifications for ǫp of 10−3 and pfail values
of 0.01, 0.1, 0.3, and 0.9 with various bit lengths n. Let us name the algorithm that parallelizes the constant adder
in the RA as Mod 1, and the algorithm that changes the constant adder to Takahashi adder in the RA as Mod 2.

(12)QRoe,T = 157763 + 824n2 log2 n− 804n2,

(13)DRoe,T = 4056n3 + 192n2 log2 n− 180n2.

Table 3. Comparing our estimation of Nphy for the RA with30 based on our resource analysis results of
required time.

bit length 160 192 224 256 384 521

Required time (s) 1.40× 106 2.47× 106 3.99× 106 5.37× 106 2.25× 107 6.09× 107

Number of qubits (proposal) 3.52× 106 4.08× 106 4.63× 106 5.81× 106 8.32× 106 1.23× 107

Number of qubits30
3.92× 106 5.73× 106 5.95× 106 5.87× 106 8.60× 106 1.92× 106

Figure 2. Nphy and required time with different bit length. The solid line indicates the Nphy and the dotted line
indicates the required time. A circle represents pfail = 0.01 , a square represents pfail = 0.1 , a triangle represents
pfail = 0.3 , and an X represents pfail = 0.9.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

For most bit lengths, the RA has about 0.9 times fewer Nphy than the Mod 2, but in a specific bit length, the Mod
2 uses fewer qubits than the RA. For example, when n = 256 and pfail = 0.01 , the Nphy of the RA is 5.81× 106 ,
and the Nphy of the Mod 2 is 5.68× 106 . This point appears because the decrease in Q is larger than the increase
in K due to the change in the algorithm, so the ǫL required by the algorithm increases. For example, when n = 256
and pfail = 0.01 , ǫL = 8.49× 10−18 of the RA and ǫL = 1.46× 10−17 of the Mod 2. This difference leads the code
distances to change from d = 33, d1 = 17, d2 = 39 in the RA to d = 31, d1 = 17, d2 = 37 in the Mod 2, and these
changes leads the Mod 2 to smaller Nphy . This suggests that even if more logical qubits are used, the Nphy can be
reduced if the elementary gate step of the algorithm is reduced.

When pfail = 0.01 , the required time of the RA takes approximately 1.65 times longer than that of the Mod 2
when n = 110 , and the difference widens as n increases, showing a difference of approximately 1.97 times when
n = 521 . This is because the order of the T depth of the RA is O(n3 log n) , whereas the order of the T depth of
Mod 2 is O(n3).

Overall, the Mod 1 had a greater Nphy than the Roetteler and Mod 2. The reason for this is that a large number
of magic-state factories must be used simultaneously in the process of executing the Mod 1. The RA, for example,
requires approximately 4 million physical qubits for data and approximately 0.7 million physical qubits for MSD
when n = 224 and pfail = 0.01 , whereas the Mod 1 requires approximately 4.1 million physical qubits for data and
approximately 15 million physical qubits for MSD. The Mod 1 requires a similar number of physical qubits for
data as required by the RA, whereas it requires approximately 21 times the number of physical qubits for MSD.

Similar to the Mod 2, the parallelized algorithm has a T depth of O(n3) ; therefore, the required time is smaller
than that of the RA. However, the Mod 1 takes longer than the Mod 2 because DRoe,parallel is larger than DRoe,T.

Figure 3 shows the quantum volume, Nphy , and Tr for the Roetteler, parallel, and Mod 2 when the ǫp is
ǫp = 10−3 for Fig. 3a, and ǫp = 10−4 in Fig. 3b, and n = 224 for various values of pfail s. The quantum volume is a
product of the Nphy and the Tr , and represents the overall complexity of the algorithm. Consistent with the result
of article31, the quantum volume decreases as pfail decreases and then tends to increase again at some point. In
Fig. 3a, the quantum volume shows the smallest values for all three algorithm when pfail approaches 0.1, whereas
the quantum volume of all algorithms is the smallest when pfail is near 0.01, as shown in Fig. 3b. Consequently,
together with article31, selecting an appropriate pfail value is required to conduct an effective algorithm, and
the optimal pfail value fluctuates based on conditions such as the ǫp and n. This fact is expected to be applicable
regardless of the algorithm.

In Fig. 3, the quantum volume of the Mod 1 is the largest, and the quantum volume of the Mod 2 is the small-
est, regardless of pfail and ǫp . Although the Mod 1 has higher volume than the RA, it may operate more efficiently
in limited situations such as those where the physical qubits are sufficiently given and the algorithm execution
time needs to be reduced. Overall, the quantum volume is the smallest among the three algorithms. Thus, the
Mod 2 is generally the most efficient algorithm among the three algorithms. The difference between the Mod
2 and the other two algorithms is that the Takahashi adder is used instead of the constant adder for modular
operations. Therefore, even if more logical qubits are used, it may be more efficient to use the Takahashi adder
than the constant adder when performing modular operations.

Figure 4 shows the quantum volume of the RA and our modifications for different bit lengths and ǫp s when
pfail = 0.01 . The point that increases rapidly in quantum volume is where the MSD level increases. Although
the Mod 1 has a larger quantum volume than the RA in almost all situations, the Mod 1 has a smaller quantum
volume than that of the RA When ǫp = 10−6 and n = 192 . This is because the Mod 1 has a smaller T depth than
the RA, so the the ǫL required by the Mod 1 is larger than that of the RA and the MSD level of Mod 1 is lower. As

Figure 3. Quantum volume, Nphy , and required time for Roetteler, Mod 1, and Mod 2 for various pfail s when
(a) ǫp = 10

−3 and (b) ǫp = 10
−4 . The solid line indicates the Nphy , the dotted line indicates the required time,

and the double line indicates the required time. As in Fig. 2, RA is shown in blue, Mod 2 in purple, and Mod
2 in orange. In (a), all three algorithms have a minimum quantum volume when pfail = 0.1 , and in (b), when
pfail = 0.01 , all three algorithms have a minimum quantum volume.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

the ǫL required by the algorithm determines the MSD level, a corresponding situation may occur in some points.
Therefore, the level of MSD is an important factor in determining the complexity of the algorithm.

Figure 5 shows the quantum volume of our results and that of the two algorithms for factoring presented
in article31 when pfail = 0.01 , ǫp = 10−3 , and ct = 200 ns. The x axis represents the same level of security
based on classical computing. Security levels 1, 2, 3, and 4 represent the discrete logarithm with bit lengths
n = 110, 160, 224, 256 and prime factorization with bit lengths n = 512, 1024, 2048 , and 3072, respectively. Over-
all, the factoring algorithm tended to be larger than the algorithms for discrete logarithms in terms of the required
time, Nphy , and quantum volume. In addition, the increase in the required resources of the factoring algorithms
according to the increase in the security level is larger than that of the discrete logarithm algorithm. In security
level 1, the Beauregard algorithm has a Nphy similar to the Mod 2 and the RA, whereas in security level 4, it uses
slightly more qubits than the Mod 1. The quantum volume of the algorithm for discrete logarithms is much
smaller than that for factoring, and the gap increases as the level of security in classical computing increases. For
example, even at security level 1, the quantum volume difference between the Mod 2 and Beauregard algorithm
is approximately 103 , and when going to the fourth level of security, the difference increases to 105 . Therefore,

Figure 4. Quantum volume of the RA, Mod 1, and Mod 2 for various bit lengths and physical gate error rates.
The red, green, and blue surfaces represent RA, Mod 1, and Mod 2, respectively.

Figure 5. Comparison of (a) Nphy and required time and (b) quantum volume for algorithms performing prime
factorization and algorithms performing discrete logarithm when pfail = 0.01 and ǫp = 10

−3 . The Beauregard
algorithm for prime factorization is expressed as “Beauregard”, Pavlidis algorithm for factorization as “Pavlidis”.
RA is expressed in blue, parallel in purple, adder in orange, Beauregard in red, and Pavlidis in green. The circle
mark represents the algorithm for the discrete logarithm, and the X-mark represents the algorithm for prime
factorization.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

the elliptic curve cryptography is more vulnerable to the attack of quantum computing than the RSA, and the
degree of this vulnerability is very large at the physical level.

Discussion
We formulated closed-form equations for the number of physical qubits and execution time required by the
Roetteler algorithm, assuming all-to-all connectivity, and compared the resources required for different bit
lengths, physical gate error rates, and the probability of algorithm failure. We adopted the method of article31 to
obtain closed-form equations of the required resource. In addition, we slightly modified the modular operation
of the Roetteler algorithm. First, we parallelize the constant adder used for modular operations. Second, we
replaced the constant adder used in the modular operation with the Takahashi adder using additional logical
qubits. We analyzed the required resources of the modified algorithm and compared them with those of the
Roetteler algorithm. The results show that among the three algorithms for discrete logarithms, the algorithm
using the Takahashi adder is the most efficient. This result suggests that it is more efficient to use the Takahashi
adder than using the constant adder when performing modular operations, even if logical qubits are additionally
used. Through the fact that the Mod 2 uses fewer physical qubits than the Roetteler algorithm in a specific case,
we confirmed that an increase in the number of logical qubits does not necessarily lead to an increase in the
Nphy . In addition, considering that the Mod 1 with a large number of magic-state factories has more quantum
volume and Nphy than the Roetteler algorithm, we confirmed that reducing the number of magic-state factories
to reduce the required resources is necessary. Finally, we compared the results of our analysis with those of
 article31, who analyzed the required resources of the algorithms for factoring. The analysis results show that in
most cases, algorithms for discrete logarithms for quantum volume, Nphy , and execution time are smaller than
those for factoring, and the higher the security level, the greater is the difference. In particular, we confirmed that
the quantum volume of the algorithm for the discrete logarithm was smaller than the quantum volume of the
algorithm for factoring by 103 to 105 times according to the security level. Therefore, elliptic curve cryptography
is more likely to be attacked by quantum computing than RSA, and we confirmed that the degree is very large
when compared at the physical level.

Data availablity
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 18 December 2023; Accepted: 13 February 2024

References
 1. Shor, P. W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on

Foundations of Computer Science 124–134 (IEEE, 1994).
 2. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
 3. IBM Quantum (2023).
 4. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 5. Gonzales, A., Shaydulin, R., Saleem, Z. H. & Suchara, M. Quantum error mitigation by Pauli check sandwiching. Sci. Rep. 13, 2122

(2023).
 6. Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
 7. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).
 8. Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery (2018). arXiv preprint arXiv: 1808. 06709
 9. Lao, L. et al. Mapping of lattice surgery-based quantum circuits on surface code architectures. Quantum Sci. Technol. 4, 015005

(2018).
 10. Litinski, D. A game of surface codes: Large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).
 11. Sohn, I., Bang, J. & Heo, J. Dynamic concatenation of quantum error correction in integrated quantum computing architecture.

Sci. Rep. 9, 3302 (2019).
 12. Chamberland, C. & Campbell, E. T. Universal quantum computing with twist-free and temporally encoded lattice surgery. PRX

Quantum 3, 010331 (2022).
 13. Park, B. & Ahn, D. Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture. Sci. Rep.

13, 8638 (2023).
 14. Scaffold: Quantum programming language. Tech. Rep.
 15. JavadiAbhari, A. et al. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Comput. 45, 2–17 (2015).
 16. Steiger, D. S., Häner, T. & Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2, 49 (2018).
 17. LaRose, R. Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019).
 18. Shi, Y. et al. CertiQ: A mostly-automated verification of a realistic quantum compiler (2019). arXiv preprint arXiv: 1908. 08963
 19. Smith, R. S., Peterson, E. C., Skilbeck, M. G. & Davis, E. J. An open-source, industrial-strength optimizing compiler for quantum

programs. Quantum Sci. Technol. 5, 044001 (2020).
 20. McCaskey, A. J., Lyakh, D. I., Dumitrescu, E. F., Powers, S. S. & Humble, T. S. XACC: A system-level software infrastructure for

heterogeneous quantum-classical computing. Quantum Sci. Technol. 5, 024002 (2020).
 21. Sivarajah, S. et al. t ket〉 : A retargetable compiler for NISQ devices. Quantum Sci. Technol. 6, 014003 (2020).
 22. Khammassi, N. et al. OpenQL: A portable quantum programming framework for quantum accelerators. ACM J. Emerg. Technol.

Comput. Syst. 18, 1–24 (2021).
 23. Diffie, W. & Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976).
 24. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472

(1985).
 25. Johnson, D., Menezes, A. & Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001).
 26. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: Towards practical large-scale quantum computation.

Phys. Rev. A 86, 032324 (2012).
 27. O’Gorman, J. & Campbell, E. T. Quantum computation with realistic magic-state factories. Phys. Rev. A 95, 032338 (2017).

http://arxiv.org/abs/1808.06709
http://arxiv.org/abs/1908.08963

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:3927 | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

 28. Hwang, Y., Kim, T., Baek, C. & Choi, B.-S. Integrated analysis of performance and resources in large-scale quantum computing.
Phys. Rev. Appl. 13, 054033 (2020).

 29. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).
 30. Gheorghiu, V. & Mosca, M. Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic

schemes (2019). arXiv preprint arXiv: 1902. 02332
 31. Ha, J., Lee, J. & Heo, J. Resource analysis of quantum computing with noisy qubits for Shor’s factoring algorithms. Quantum Inf.

Process. 21, 1–19 (2022).
 32. Häner, T., Roetteler, M. & Svore, K. M. Factoring using 2n+ 2 qubits with toffoli based modular multiplication. Quantum Inf.

Comput. 17, 673–684 (2017).
 33. Takahashi, Y., Tani, S. & Kunihiro, N. Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10, 872–890

(2010).
 34. Roetteler, M., Naehrig, M., Svore, K. M. & Lauter, K. Quantum resource estimates for computing elliptic curve discrete logarithms.

In International Conference on the Theory and Application of Cryptology and Information Security 241–270 (Springer, 2017).
 35. Proos, J. & Zalka, C. Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Inf. Comput. 3, 317–344 (2003).
 36. Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011

(2012).
 37. Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold universal quantum computation on the surface code. Phys. Rev.

A 80, 052312 (2009).
 38. Steane, A. M. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003).
 39. Amy, M., Maslov, D., Mosca, M. & Roetteler, M. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum

circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 818–830 (2013).
 40. Cuccaro, S. A., Draper, T. G., Kutin, S. A. & Moulton, D. P. A new quantum ripple-carry addition circuit (2004). arXiv preprint

quant-ph/0410184
 41. Draper, T. G. Addition on a quantum computer (2000). arXiv preprint quant-ph/0008033
 42. Ross, N. J. & Selinger, P. Optimal ancilla-free clifford+ t approximation of z-rotations. Quantum Inf. Comput. 16, 901–953 (2016).

Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2022-0-00463, Development of a quantum repeater
in optical fiber networks for quantum internet). This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2024-
2021-0-01810) supervised by the IITP (Institute for Information & Communications Technology Planning &
Evaluation). This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (No.2019R1A2C2010061).

Author contributions
J.Ha and J.Heo developed the theoretical idea. J.Ha performed the main analysis and should be regarded as
the main author. J.L. provided some technical support. J.Ha wrote the manuscript. All authors contributed to
analysis of the results.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 024- 54434-w.

Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://arxiv.org/abs/1902.02332
https://doi.org/10.1038/s41598-024-54434-w
https://doi.org/10.1038/s41598-024-54434-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Resource analysis and modifications of quantum computing with noisy qubits for elliptic curve discrete logarithms
	Related works
	Shor’s algorithm for elliptic curve discrete logarithms
	Previous works

	Methods
	Resource analysis scheme
	Decomposition of algorithm at the logical level
	Slight modifications to the Roetteler algorithm
	Constant adder parallelization
	Using Takahashi adder instead of constant adder

	Results
	Discussion
	References
	Acknowledgements

