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Resource analysis 
and modifications of quantum 
computing with noisy qubits 
for elliptic curve discrete 
logarithms
Jinyoung Ha , Jonghyun Lee  & Jun Heo *

We estimate the number of physical qubits and execution time by decomposing an implementation of 
Shor’s algorithm for elliptic curve discrete logarithms into universal gate units at the logical level when 
surface codes are used. We herein also present modified quantum circuits for elliptic curve discrete 
logarithms and compare our results with those of the original quantum circuit implementations at 
the physical level. Through the analysis, we show that the use of more logical qubits in quantum 
algorithms does not always lead to the use of more physical qubits. We assumed using rotated surface 
code and logical qubits with all-to-all connectivity. The number of physical qubits and execution time 
are expressed in terms of bit length, physical gate error rate, and probability of algorithm failure. In 
addition, we compare our results with the number of physical qubits and execution time of Shor’s 
factoring algorithm to assess the risk of attack by quantum computers in RSA and elliptic curve 
cryptography.
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A variety of quantum computing techniques, ranging from algorithms to physical devices, have been actively 
investigated since Peter Shor proposed a polynomial-time quantum algorithm for finding discrete logarithms and 
factoring  integers1. Several corporations, including Google and IBM, have pioneered efforts to make quantum 
computers  feasible2,3.

However, the current level of quantum computers has clear limitations such as high gate error rates and small 
number of physical qubits. For this reason, research on noisy-intermediate-scale quantum operation is being 
actively carried  out4,5, and research for performing basic quantum error-correcting (QEC) code in a quantum 
processor is also being  conducted6,7. Quantum processor architecture research is also being performed to reduce 
the resources necessary for quantum  computers8–13, as well as quantum computing software research for efficient 
quantum computer  operation14–22.

Meanwhile, elliptic curves are utilized to create public key methods, such as key  exchange23 and digital 
 signatures24,25, which are widely employed in cryptographic systems. NIST curves P-256, P-384, and P-521, 
which are Weierstrass curves over special primes of sizes 256, 384, and 521 bits, respectively, are notable curves 
with widespread use. Elliptic curve cryptography is a public key cryptography approach based on the algebraic 
structure of elliptic curves over finite fields. The difficulty of computing discrete logarithms in elliptic curve 
groups, that is, the elliptic curve discrete logarithm problem, is used to secure elliptic curve cryptography.

The quantum resources requirements for Shor’s factoring algorithms have been  investigated26–31. However, to 
the best of our knowledge, there are few studies on the physical resource analysis of Shor’s algorithm for elliptic 
curve discrete logarithms. Furthermore, as the outcomes of these assessments vary greatly, depending on the 
assumptions used, examining the resources required under various scenarios is vital.

Throughout the analysis, we adopt the resource analysis method presented in  article31. In addition to the 
resource analysis, we modified the algorithm to reduce the required resources of the algorithm as illustrated in 
Fig. 1. We performed the modifications by focusing on the method of performing modular operations in the 
Roetteler algorithm (RA)34. First, we modify the serial constant adder to a parallel constant adder. As the parallel 
constant adder uses dirty ancilla qubits to reduce the operation  depth32, the operation speed can be increased 
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without using additional logical qubits for data. Second, we modified the constant adders to add or subtract p 
for modular operation into a Takahashi  adder33. Takahashi adders need to use additional logical qubits for data 
because they need to input the number to be added as quantum values; however, as the structure is simple, it is 
expected to speed up the operation.

The contributions of this study are as follows. First, we express the number of physical qubits Nphy and execu-
tion time Tr required for RA as a closed-form equation for the bit length in elliptic curve cryptography. In addi-
tion, we proposed two types of modified algorithms to reduce the resources required for the RA: an algorithm 
that parallelizes a constant adder, and an algorithm that transforms constant adders for modular operation 
into Takahashi adder. We performed a resource analysis of the two modified algorithms; in the case of the first 
modified algorithm, the Nphy is increased, but the execution time is reduced compared to the original RA. In 
the case of the second modified algorithm, the Nphy remained almost unchanged, whereas the execution time 
was confirmed to be the shortest among the two modified algorithms and original RA. These results suggest that 
using the Takahashi adder can be more efficient than using the constant adder, even if additional logical qubits 
are used when performing modular operations. Finally, we compared the resources required for attacking elliptic 
curve cryptography with the resources required for attacking RSA analyzed in  article31 and confirmed again that 
elliptic curve cryptography is more vulnerable to quantum computing attacks at the physical level.

Related works
This section introduces Shor’s algorithm for elliptic curve discrete logarithms and review  RA34. We then compare 
our work to a previous study that estimated the resources of RA.

Shor’s algorithm for elliptic curve discrete logarithms
Several methods for implementing Shor’s algorithm for elliptic curve discrete logarithm have been developed 
since the proposal of Shor’s algorithm. Although previous studies implemented the algorithm in different ways, 
they all follow the general structure of Shor’s algorithm. Point addition performs the following operations:

where P and Q are the generator and public keys of elliptic curve cryptography, respectively. The Eq. (1) can be 
performed by implementing point addition on the elliptic curve as a quantum circuit. In 2003, Proos and  Zalka35 
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Figure 1.  Slight modifications of modular operations in the Roetteler algorithm. The modified portions of 
the existing algorithm are marked in red. Modification 1 transforms the serial constant adders in the Roetteler 
algorithm into parallel constant  adders32. Modification 2 changed the serial constant adders for modular 
operation in the Roetteler algorithm to the Takahashi  adder33 by using more logical qubits for data.
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demonstrated the implementation of Shor’s algorithm for elliptic curve discrete logarithms. They concluded with 
a table of resource estimations for the number of logical qubits and time based on the bit length of the elliptic 
curve at a logical level. Based on this work, In 2017, Roetteler et al.34 developed quantum circuit for elliptic curve 
discrete logarithms, and then used this concrete implementation to automatically compute resource estimates 
at a logical level.

Previous works
We review several studies analyzing the resources of physical quantum computing using Shor’s algorithm for 
discrete logarithms. We summarized previous works and our work in Table 1. Roetteler et al.34 presented precise 
resource estimates for quantum circuits that implemented Shor’s algorithm for elliptic curve discrete logarithm 
problem at a logical level. For example, they observed that Shor’s algorithm for 224-bit discrete logarithms 
required 2042 logical qubits and 7.73× 1010 logical Toffoli depth. They also compared the quantum resources 
for solving the elliptic curve discrete logarithm problem to those required in Shor’s factoring algorithm, which 
were obtained in a recent  study32. Their logical-level comparison indicated that the amount of qubits required 
to attack elliptic curves is fewer than that required to attack RSA for current settings at comparable classical 
security levels, implying that elliptic curve encryption is really an easier target than RSA. However, only the 
logical level was considered for their result, so their results did not consider various conditions such as ǫp and 
algorithm failure probabilities to be considered when the quantum circuit is applied to noisy quantum computers. 
In addition, as quantum algorithms that attack ciphers must be implemented by physical quantum computers, 
physical-level resource comparisons are required to ensure the risks of quantum computing attacks to elliptic 
curve cryptography and RSA.

Gheorghiu et al.30 analyzed the resources required by various algorithms, including RA for discrete loga-
rithms, attacking the current cryptosystem at the physical level. They also compared the quantum vulnerability 
of RSA and elliptic curve cryptography for a fixed classical bit length at the physical level. They utilized a surface 
code that required fewer physical qubits to construct a logical  qubit36, which is similar to our work. They per-
formed resource analysis with 10−3 and 10−5 of ǫp , and the relation between the required time and the Nphy of 
the algorithm was expressed in a closed form by adjusting the level of parallelization for the magic-state factory. 
However, their closed formula does not contain parameters such as bit length, physical error rate, or algorithm 
failure probability; therefore, various situations cannot be considered.

We utilized a rotated planar surface code that requires fewer physical qubits than than the method of  article37. 
We assumed all-to-all connectivity between logical qubits. We utilized the MSD protocol described in  article8. 
We also consider RA for discrete logarithms. In contrast to prior studies, our study describes the Nphy and the 
required time as a closed-form formula. Our closed-form formula considers bit length, physical gate error 
rate, and algorithm failure probability; therefore, obtaining the resources required in various situations is easy. 
Unlike  article30, we did not consider magic-state factory parallelization because we assumed that states made 
in the magic-state factory should be used immediately. In addition, we compared the required resources for the 
algorithms for discrete logarithms and factoring under the same conditions.

Methods
Resource analysis scheme
As the current level of physical quantum gates has a very high error rate, techniques such as QEC code and MSD 
should be used to create logical qubits and logical operations with low error rates. We performed a resource 
analysis using the physical-level analysis method and the equation for the required resources used in  article31. 
In this section, we briefly introduce the techniques used for this physical-level analysis and introduce a closed-
form formula for Nphy and Tr.

As mentioned above, we used QEC code to generate a logical qubit with a low gate error rate. We selected a 
rotated planar surface code from a variety of QEC  codes36. The number of physical qubits required to construct 
one logical qubit is 2d2 − 1 when the code distance is d. The following relationship is established between the d, 
ǫp , and logical gate error rate ǫL required by the algorithm in the rotated surface  code8.

Table 1.  Summary of previous works and our work. “△ ” indicates that the corresponding component has 
been partially considered. Gheorghiu’s closed-form formula is an expression of the Nphy according to the time 
required when the bit length and physical error rate are determined, whereas our work derives the number 
of qubits and the time required using the bit length, physical error rate, and algorithm failure probability 
as parameters. Roetteler analyzed the required resources of the algorithm only at the logical level. As the 
magic-state factory is not used at the logical level, Roetteler’s work does not include magic-state factory 
parallelization. Our work does not consider magic-state factory parallelization because it assumes that the state 
stored in the magic-state factory cannot be stored for a long time and should be used immediately.

Physical-level analysis Magic-state factory parallelization Closed-form formula

Roetteler34 X X X

Gheorghiu30 O O △

Our work O X O
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In Eq. (2), ⌈x⌉ is the function that takes real number x as an input and returns the least integer greater than or 
equal to x. Therefore, we can determine the distance of the surface code using KQ formalism to obtain the ǫL 
required by the algorithm.

To perform the T gate with a low error rate in QEC codes, the |A� = |0� + exp(i · π/4)|1� state with a low 
error rate is required. MSD uses multiple noisy |A� states and outputs a smaller number of more reliable |A� states.

As in  article31, we used Fowler and Gidney’s MSD  protocol8. We performed various levels of MSD based on the 
ǫL required by the algorithm. The code distances for MSD d1 , d2 , and d3 all have odd values greater than or equal 
to 15. As shown in Table 2, the number of physical qubits required to make one T gate, Tm , and the time required 
for MSD, tT , are expressed as functions of d1 , d2 , and d3 . In Table 2, ct denotes the cycle time of the surface  code8. 
Many studies have assumed that ct = 200  ns26,30, and we have adopted that assumption. We set d1 , d2 , and d3 such 
that Tm is as minimal as possible while still satisfying the ǫL requirement. As the Tm increased dramatically when 
the distillation level increased, we adjusted the code distances to perform distillation at the lowest possible level.

As shown in  article31, the Nphy and the Tr can be expressed as

In Eq. (3), K is the number of logical qubits required by the algorithm, NCNOT is the maximum number of con-
current CNOT gates, and NT is the maximum number of concurrent T gates. In Eq. (4), D is the T depth of the 
algorithm. In Eqs. (3) and (4), pfail is the probability of the failure of the algorithm. When elliptic curve logarithms 
on an elliptic curve is defined over n-bit prime field, the RA has K = 9n+ 2⌈log2(n)⌉ + 10.

Decomposition of algorithm at the logical level
Similar to the analysis used in  article31, the algorithm is decomposed into X, Z, CNOT, and T gates, and the ǫL 
for the algorithm to operate properly is obtained using KQ formalism. Using this logical gate error rate obtained 
through KQ formalism, we can determine the distance of the surface code and the level and distance of the 
MSD. In addition, we obtained the T depth to identify the Tr . To determine the number of magic-state factories 
to be prepared, we counted NT . Considering the CNOT operation using the lattice surgery  method36, we also 
determined that the NCNOT.

KQ formalism is described as  follows38:

In Eq. (5), pfail is the algorithm failure probability. We can determine ǫL by obtaining K and Q. Previous studies 
have performed analyses using pfail as a fixed  value27,28. On the contrary, we set pfail as a variable to confirm the 
change in the required resources of the algorithm according to the change in pfail.

Because the values of K and Q depend on the algorithm, we decomposed the RA to obtain K and Q. First, we 
confirmed that decomposing the Toffoli gate using the method presented in  article39 would result in Q of 11 and 
T depth of 3. The majority of the operations in the RA are modular operations that require a constant adder gate. 
In 2016, Häner et al. developed a quantum constant adder using a divide-and-conquer  method32. Häner’s constant 
adder includes serial and parallel versions, and the RA uses a serial version of a constant adder. The elementary 
gate step QRoe and T depth DRoe of the RA are expressed as follows (Please see supplementary information).

As the CNOT gates are serially executed in the Takahashi adder, there are no cases where two or more CNOTs 
are executed simultaneously. Thus, NCNOT = 1 . In addition, because three T gates are used simultaneously in the 

(2)d = 2 · ⌈
log(10ǫL)

log(100ǫp)
⌉ − 1.

(3)Nphy = (2 · (2⌈
log(

10pfail
KQ )

log(100ǫp)
⌉ − 1)2 − 1) · (K + NCNOT )+ NT · Tm,

(4)Tr =
D · tT

1− pfail
.

(5)pfail = KQǫL.

(6)QRoe = 2472n3 log2 n+ 10316n3 + 1442n2 log2 n− 2222n2,

(7)DRoe = 576n3 log2 n+ 2796n3 + 336n2 log2 n− 510n2.

Table 2.  Summary of Tm and tT according to the distillation level. Tm and tT are determined by the code 
distances d1 , d2 , and d3 used for the MSD.

Distillation level Tm tT

1 Tm,1 = 32 · (2d21 − 1) 6.5 · d1 · ct

2 Tm,2 = 32 · (2d22 − 1)+ 8 · Tm,1 6.5 ·max(2d1, d2) · ct

3 Tm,3 = 32 · (2d23 − 1)+ 8 · Tm,2 6.5 ·max(4d1, 2d2, d3) · ct
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Toffoli gate, and because there are no cases where the Toffoli gate is used simultaneously in the entire algorithm, 
the maximum number of T gates used simultaneously throughout the algorithm is NT = 3.

Slight modifications to the Roetteler algorithm
In this section, we modify the execution method of the constant adder in the RA and evaluate the change in the 
elementary gate step and T depth. As a constant adder is used throughout the RA, a little change in the constant 
adder causes a significant results. First, to reduce the required time for the algorithm, we replace Häner’s serial 
version constant adder with a parallel one. As the parallel constant adder performs operations simultaneously, 
the elementary gate step and T depth can be reduced, but the NCNOT and NT increases. Second, we modify the 
constant adder that adds or subtracts a modular number p to a Takahashi adder by additionally using n logical 
qubits. These additional logical qubits are used to store modular number p as a quantum state. We do not change 
all constant adders used in the RA but change only the constant adders that add or subtract the modular number 
p to Takahashi adders. As the Takahashi adder has fewer elementary gate steps than the constant adder, it also 
shortens the required time.

Constant adder parallelization
Häner et al. also presented a method to parallelize the constant adder by additionally using dirty ancilla qubits in 
 article32. Because this method additionally uses dirty ancilla qubits, it has the advantage of not having additional 
logical data qubits used for parallelization while reducing the elementary gate step and T depth. However, when 
the constant adder is parallelized, NCNOT and NT increase, and additional logical qubits for performing CNOT 
gate and magic-state factories are required. We used parallel constant adder to reduce the time required for 
the algorithm, even if we risk an increase in the number of physical qubits. Let us define the number of Toffoli 
gates that are used simultaneously as an and the number of CNOT gates that are used simultaneously as bn when 
performing an n-bit quantum constant adder. As the constant adder has the form of divide-and-conquer, the 
n-bit constant adder is expressed as the sum of the constant adders of the upper and lower half bits. Therefore, 
an and bn follow the recurrence relation

where the natural number n ≥ 2 and a1 = 0, a2 = 0, a3 = 1, a4 = 1 and b1 = 0, b2 = 1 . Although an 
and bn cannot be expressed in a closed form, an and bn for any n can be obtained using the values of 
a1, a2, a3, a4 , and b1, b2 . For example, when n = 13 , a13 = a7 + a6 = (a4 + a3)+ (a3 + a3) = 4 and 
b13 = b7 + b6 = b4 + 3b3 = (b2 + b2)+ 3(b2 + b1) = 5 . Using an and bn , when the bit length is n, NCNOT and 
NT can be expressed as

Using this modification, we can redefine the elementary gate step and depth of the parallelized constant adder RA. 
The elementary gate step QRoe,parallel and T depth DRoe,parallel of the parallelized constant adder RA are expressed 
as follows (please see supplementary information).

Using Takahashi adder instead of constant adder
Although the n-bit constant adder uses only n logical qubits and thus requires fewer qubits than adder, which 
requires additional logical qubits, the elementary gate step and T depth of the constant adder are larger than 
those of the adder. For example, the Takahashi adder requires elementary gate step of 27n and T depth of 6n 
approximately, assuming CNOT gate serialization. Similarly, ripple-carry adder of Cuccaro et al.40, knwon as 
CDKM adder, requires an elementary gate step of 25n and a T depth of 6n approximately, assuming CNOT gate 
serialization again. Unlike the Takahashi adder, the CDKM adder requires one additional logical ancilla qubit. 
The Draper  adder41 requires n+ 1 steps of controlled rotation gate. However, The Draper adder requires approxi-
mate quantum Fourier transform(AQFT) before and after the operation and therefore requires an additional 
gate depth of O(n log n) . Furthermore, we have to approximate the rotation gate as H, S, and T gates using the 
Gridsynth  algorithm42. For example, when the degree of approximation is 10−10 , a total of 253 H, S, and T gates 
are required and 102 T gates are  required42. Therefore, Draper adder including AQFT was not considered in 
this paper because both the number of qubits used and the depth were larger than constant adder. Comparing 
the Takahashi adder and the CDKM adder, the CDKM adder has a slight advantage in terms of elementary gate 
steps compared to the Takahashi adder, but the T depth, which greatly affects the time required, is the same as 
Takahashi, and it uses one more logical qubit. In addition, when multiple-controlled adders are needed, such as 
modular inversion, Takahashi adders are more advantageous than CDKM adders. Therefore, when performing 
resource analysis, when comparing the method of replacing the constant adder with Takahashi adder and the 
method of replacing it with CDKM adder, the method using Takahashi adder uses slightly fewer physical qubits 
and takes the same amount of time (please see supplementary information). Therefore, we replaced constant 
adder with Takahashi adder. The disadvantage of the Takahashi adder is that the number to be added must be 
prepared in the quantum state. Therefore, we replaced only the constant adder for adding or subtracting the 

(8)an = a⌈ n
2 ⌉

+ a⌊ n
2 ⌋
, bn = b⌈ n

2 ⌉
+ b⌊ n

2 ⌋
,

(9)NCNOT = bn, NT = 3an.

(10)QRoe,parallel = 19796n3 + 3422n2,

(11)DRoe,parallel = 5100n3 + 834n2.
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modular number p, which is frequently used in modular operations, with the Takahashi adder. Using this method, 
only n additional logical qubits must be generated to store modular number p.

As in the RA, it is assumed that the CNOT gates are serially performed on Takahashi adder to minimize 
NCNOT . Therefore, as in the RA, NCNOT = 1 and NT = 3.

The elementary gate step QRoe,T and T depth DRoe,T of the Takahashi adder version RA are expressed as fol-
lows (please see supplementary information).

Results

Table 3 shows the Nphy in our study and in  article30 with the several fixed required time. We assumed ǫp = 10−3 , 
ct = 200 ns, and pfail = 0.01 . In  article30, the required resources are expressed as a function of time and the Nphy . 
Therefore, the Nphy estimation of ours and  article30 are compared based on the required time for our analysis. As 
shown in Table 3, although our analysis uses a slightly fewer Nphy , they require similar resources.

Figure 2 shows the Nphy and the required time of the RA and our modifications for ǫp of 10−3 and pfail values 
of 0.01, 0.1, 0.3, and 0.9 with various bit lengths n. Let us name the algorithm that parallelizes the constant adder 
in the RA as Mod 1, and the algorithm that changes the constant adder to Takahashi adder in the RA as Mod 2. 

(12)QRoe,T = 157763 + 824n2 log2 n− 804n2,

(13)DRoe,T = 4056n3 + 192n2 log2 n− 180n2.

Table 3.  Comparing our estimation of Nphy for the RA  with30 based on our resource analysis results of 
required time.

bit length 160 192 224 256 384 521

Required time (s) 1.40× 106 2.47× 106 3.99× 106 5.37× 106 2.25× 107 6.09× 107

Number of qubits (proposal) 3.52× 106 4.08× 106 4.63× 106 5.81× 106 8.32× 106 1.23× 107

Number of  qubits30
3.92× 106 5.73× 106 5.95× 106 5.87× 106 8.60× 106 1.92× 106

Figure 2.  Nphy and required time with different bit length. The solid line indicates the Nphy and the dotted line 
indicates the required time. A circle represents pfail = 0.01 , a square represents pfail = 0.1 , a triangle represents 
pfail = 0.3 , and an X represents pfail = 0.9.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3927  | https://doi.org/10.1038/s41598-024-54434-w

www.nature.com/scientificreports/

For most bit lengths, the RA has about 0.9 times fewer Nphy than the Mod 2, but in a specific bit length, the Mod 
2 uses fewer qubits than the RA. For example, when n = 256 and pfail = 0.01 , the Nphy of the RA is 5.81× 106 , 
and the Nphy of the Mod 2 is 5.68× 106 . This point appears because the decrease in Q is larger than the increase 
in K due to the change in the algorithm, so the ǫL required by the algorithm increases. For example, when n = 256 
and pfail = 0.01 , ǫL = 8.49× 10−18 of the RA and ǫL = 1.46× 10−17 of the Mod 2. This difference leads the code 
distances to change from d = 33, d1 = 17, d2 = 39 in the RA to d = 31, d1 = 17, d2 = 37 in the Mod 2, and these 
changes leads the Mod 2 to smaller Nphy . This suggests that even if more logical qubits are used, the Nphy can be 
reduced if the elementary gate step of the algorithm is reduced.

When pfail = 0.01 , the required time of the RA takes approximately 1.65 times longer than that of the Mod 2 
when n = 110 , and the difference widens as n increases, showing a difference of approximately 1.97 times when 
n = 521 . This is because the order of the T depth of the RA is O(n3 log n) , whereas the order of the T depth of 
Mod 2 is O(n3).

Overall, the Mod 1 had a greater Nphy than the Roetteler and Mod 2. The reason for this is that a large number 
of magic-state factories must be used simultaneously in the process of executing the Mod 1. The RA, for example, 
requires approximately 4 million physical qubits for data and approximately 0.7 million physical qubits for MSD 
when n = 224 and pfail = 0.01 , whereas the Mod 1 requires approximately 4.1 million physical qubits for data and 
approximately 15 million physical qubits for MSD. The Mod 1 requires a similar number of physical qubits for 
data as required by the RA, whereas it requires approximately 21 times the number of physical qubits for MSD.

Similar to the Mod 2, the parallelized algorithm has a T depth of O(n3) ; therefore, the required time is smaller 
than that of the RA. However, the Mod 1 takes longer than the Mod 2 because DRoe,parallel is larger than DRoe,T.

Figure 3 shows the quantum volume, Nphy , and Tr for the Roetteler, parallel, and Mod 2 when the ǫp is 
ǫp = 10−3 for Fig. 3a, and ǫp = 10−4 in Fig. 3b, and n = 224 for various values of pfail s. The quantum volume is a 
product of the Nphy and the Tr , and represents the overall complexity of the algorithm. Consistent with the result 
of  article31, the quantum volume decreases as pfail decreases and then tends to increase again at some point. In 
Fig. 3a, the quantum volume shows the smallest values for all three algorithm when pfail approaches 0.1, whereas 
the quantum volume of all algorithms is the smallest when pfail is near 0.01, as shown in Fig. 3b. Consequently, 
together with  article31, selecting an appropriate pfail value is required to conduct an effective algorithm, and 
the optimal pfail value fluctuates based on conditions such as the ǫp and n. This fact is expected to be applicable 
regardless of the algorithm.

In Fig. 3, the quantum volume of the Mod 1 is the largest, and the quantum volume of the Mod 2 is the small-
est, regardless of pfail and ǫp . Although the Mod 1 has higher volume than the RA, it may operate more efficiently 
in limited situations such as those where the physical qubits are sufficiently given and the algorithm execution 
time needs to be reduced. Overall, the quantum volume is the smallest among the three algorithms. Thus, the 
Mod 2 is generally the most efficient algorithm among the three algorithms. The difference between the Mod 
2 and the other two algorithms is that the Takahashi adder is used instead of the constant adder for modular 
operations. Therefore, even if more logical qubits are used, it may be more efficient to use the Takahashi adder 
than the constant adder when performing modular operations.

Figure 4 shows the quantum volume of the RA and our modifications for different bit lengths and ǫp s when 
pfail = 0.01 . The point that increases rapidly in quantum volume is where the MSD level increases. Although 
the Mod 1 has a larger quantum volume than the RA in almost all situations, the Mod 1 has a smaller quantum 
volume than that of the RA When ǫp = 10−6 and n = 192 . This is because the Mod 1 has a smaller T depth than 
the RA, so the the ǫL required by the Mod 1 is larger than that of the RA and the MSD level of Mod 1 is lower. As 

Figure 3.  Quantum volume, Nphy , and required time for Roetteler, Mod 1, and Mod 2 for various pfail s when 
(a) ǫp = 10

−3 and (b) ǫp = 10
−4 . The solid line indicates the Nphy , the dotted line indicates the required time, 

and the double line indicates the required time. As in Fig. 2, RA is shown in blue, Mod 2 in purple, and Mod 
2 in orange. In (a), all three algorithms have a minimum quantum volume when pfail = 0.1 , and in (b), when 
pfail = 0.01 , all three algorithms have a minimum quantum volume.
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the ǫL required by the algorithm determines the MSD level, a corresponding situation may occur in some points. 
Therefore, the level of MSD is an important factor in determining the complexity of the algorithm.

Figure 5 shows the quantum volume of our results and that of the two algorithms for factoring presented 
in  article31 when pfail = 0.01 , ǫp = 10−3 , and ct = 200 ns. The x axis represents the same level of security 
based on classical computing. Security levels 1, 2, 3, and 4 represent the discrete logarithm with bit lengths 
n = 110, 160, 224, 256 and prime factorization with bit lengths n = 512, 1024, 2048 , and 3072, respectively. Over-
all, the factoring algorithm tended to be larger than the algorithms for discrete logarithms in terms of the required 
time, Nphy , and quantum volume. In addition, the increase in the required resources of the factoring algorithms 
according to the increase in the security level is larger than that of the discrete logarithm algorithm. In security 
level 1, the Beauregard algorithm has a Nphy similar to the Mod 2 and the RA, whereas in security level 4, it uses 
slightly more qubits than the Mod 1. The quantum volume of the algorithm for discrete logarithms is much 
smaller than that for factoring, and the gap increases as the level of security in classical computing increases. For 
example, even at security level 1, the quantum volume difference between the Mod 2 and Beauregard algorithm 
is approximately 103 , and when going to the fourth level of security, the difference increases to 105 . Therefore, 

Figure 4.  Quantum volume of the RA, Mod 1, and Mod 2 for various bit lengths and physical gate error rates. 
The red, green, and blue surfaces represent RA, Mod 1, and Mod 2, respectively.

Figure 5.  Comparison of (a) Nphy and required time and (b) quantum volume for algorithms performing prime 
factorization and algorithms performing discrete logarithm when pfail = 0.01 and ǫp = 10

−3 . The Beauregard 
algorithm for prime factorization is expressed as “Beauregard”, Pavlidis algorithm for factorization as “Pavlidis”. 
RA is expressed in blue, parallel in purple, adder in orange, Beauregard in red, and Pavlidis in green. The circle 
mark represents the algorithm for the discrete logarithm, and the X-mark represents the algorithm for prime 
factorization.
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the elliptic curve cryptography is more vulnerable to the attack of quantum computing than the RSA, and the 
degree of this vulnerability is very large at the physical level.

Discussion
We formulated closed-form equations for the number of physical qubits and execution time required by the 
Roetteler algorithm, assuming all-to-all connectivity, and compared the resources required for different bit 
lengths, physical gate error rates, and the probability of algorithm failure. We adopted the method of  article31 to 
obtain closed-form equations of the required resource. In addition, we slightly modified the modular operation 
of the Roetteler algorithm. First, we parallelize the constant adder used for modular operations. Second, we 
replaced the constant adder used in the modular operation with the Takahashi adder using additional logical 
qubits. We analyzed the required resources of the modified algorithm and compared them with those of the 
Roetteler algorithm. The results show that among the three algorithms for discrete logarithms, the algorithm 
using the Takahashi adder is the most efficient. This result suggests that it is more efficient to use the Takahashi 
adder than using the constant adder when performing modular operations, even if logical qubits are additionally 
used. Through the fact that the Mod 2 uses fewer physical qubits than the Roetteler algorithm in a specific case, 
we confirmed that an increase in the number of logical qubits does not necessarily lead to an increase in the 
Nphy . In addition, considering that the Mod 1 with a large number of magic-state factories has more quantum 
volume and Nphy than the Roetteler algorithm, we confirmed that reducing the number of magic-state factories 
to reduce the required resources is necessary. Finally, we compared the results of our analysis with those of 
 article31, who analyzed the required resources of the algorithms for factoring. The analysis results show that in 
most cases, algorithms for discrete logarithms for quantum volume, Nphy , and execution time are smaller than 
those for factoring, and the higher the security level, the greater is the difference. In particular, we confirmed that 
the quantum volume of the algorithm for the discrete logarithm was smaller than the quantum volume of the 
algorithm for factoring by 103 to 105 times according to the security level. Therefore, elliptic curve cryptography 
is more likely to be attacked by quantum computing than RSA, and we confirmed that the degree is very large 
when compared at the physical level.

Data availablity
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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