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Multimodal CNN‑DDI: using 
multimodal CNN for drug to drug 
interaction associated events
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Drug-to-drug interaction (DDIs) occurs when a patient consumes multiple drugs. Therefore, it is 
possible that any medication can influence other drugs’ effectiveness. The drug-to-drug interactions 
are detected based on the interactions of chemical substructures, targets, pathways, and enzymes; 
therefore, machine learning (ML) and deep learning (DL) techniques are used to find the associated 
DDI events. The DL model, i.e., Convolutional Neural Network (CNN), is used to analyze the DDI. DDI 
is based on the 65 different drug-associated events, which is present in the drug bank database. Our 
model uses the inputs, which are chemical structures (i.e., smiles of drugs), enzymes, pathways, and 
the target of the drug. Therefore, for the multi-model CNN, we use several layers, activation functions, 
and features of drugs to achieve better accuracy as compared to traditional prediction algorithms. We 
perform different experiments on various hyperparameters. We have also carried out experiments on 
various iterations of drug features in different sets. Our Multi-Modal Convolutional Neural Network - 
Drug to Drug Interaction (MCNN-DDI) model achieved an accuracy of 90.00% and an AUPR of 94.78%. 
The results showed that a combination of the drug’s features (i.e., chemical substructure, target, and 
enzyme) performs better in DDIs-associated events prediction than other features.

Keywords  Machine Learning Models, Neural Networks, Artificial Intelligence, Convolutional Neural 
Network (CNN), Drugs

A DDI occurs when two or more drugs are taken together and result in adverse effects on the organism. It is 
feasible to manage more drugs, but some diseases are complex and can be treated with only one. This is because 
many diseases are justified by multiple medications. Therefore, DDIs pose risks and can be deadly if not treated 
properly. However, it also has curative properties. These risks have been identified in many studies, including 
research aimed at identifying whether the intake of two or more drugs will be safe. In pharmaceutical research/
settings, DDIs are identified through thorough experimental and clinical testing. Despite high-throughput meth-
ods, the sheer number of DDIs makes experimental testing challenging and expensive ?. Computational methods 
can be used to address this problem by predicting potential DDIs, which can be an effective and fast alternative 
based on already-known knowledge of DDIs. In the last few decades, the speedy growth in drug development 
has provided medical practitioners with additional options for treating the diseases of patients. Therefore, using 
multiple drugs together can lead the patient to a severe condition, or it can be a cause of death. A doctor or 
physician prescribing multiple drugs to a patient may cause a drug-to-drug interaction, or we can say the drug-
to-drug interaction is a medication error1. A drug interaction can occur when one drug changes the action of 
other drugs, which may result in harmful or boost effects of the second agent (i.e., drug)2.

There are three types of drug-to-drug interactions.

•	 Does not react.
•	 Antagonistic (i.e., it is a type of interaction between multiple drugs that produces an adverse effect). This 

means that this type of reaction may adversely affect the patient.
•	 Synergistic (i.e., this type of interaction occurs between multiple drugs which may boost the effect on the 

body)3–5.
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Therefore, to improve the drug discovery process and patient recovery process for deadly diseases (for example, 
Cancer, Aids, Asthma, etc.), it is significant that we should know more about DDI. Discovering the DDI’s through 
the wet lab experiments is time-consuming and intensive work required6. Drug interaction prediction usually 
seeks to detect potential interactions between drugs that may lead to adverse effects or reduced efficacy7. While 
Drug combination prediction is intended to improve treatment effectiveness, drug interaction prediction identify 
possible side effects or difficulties that may arise from the use of particular drugs in combination8.To overcome 
the above problems ML and DL techniques are applied to predict DDI. Machine learning and deep learning have 
made important developments in the last few years in predicting DDIs. These methods are proposed for identify-
ing latent DDIs between drug combinations. Yet, the majority of these methods limit themselves to using drugs 
as input and performing the DDI prediction task. We use multiple features of drug targets, enzymes, pathways, 
and chemical substructures for our experiments; and we calculate similarities of drugs using Jaccard similarity 
measures. Our proposed method is MMCNN-DDI for the DDI’s. It is based on a Multi-Modal Convolutional 
Neural Network for the event prediction between DDIs. Therefore, we use four CNN sub-models for each fea-
ture of drugs and then combine these sub-models to predict drug-drug interaction events. We used DDIs using 
Multi-Modal Deep Learning (b) to create a dataset for the prediction; the data set has 572 drugs and various 
features like chemical substructures (SMILES), enzymes, pathways, and targets, 74,528 interactions, and 65 
types of drug-drug interaction events. We perform various experiments on different hyperparameters. Initially, 
we used a different number of layers and activation functions using the dense layer and input layer according to 
the Jaccard similarity. We used a 1D CNN input layer with a filter size of 1 and 5 kernels, three dense layers of 
1024, 512, and 256 neurons, and an output layer of 65 neurons. Our MCNN-DDI model reached an accuracy of 
90.00% and an AUPR of 94.78%. The experimental outcomes show that our method has achieved high accuracy 
and performs well against existing methods.

Related work
In the past decade, scientists have used ML and DL for drug development purposes to make drug development 
quick and help the drug industries develop drugs quickly because using wet-lab experiments is time-consuming 
and expensive, as discussed in some studies. The research9 proposed a method named Semi-Nonnegative Matrix 
Factorization (DDINMF) for degressive and enhancive calculation of DDI’s, and the proposed model is created 
on semi-non-negative matrix factorization. The study10 integrated various structures of drugs like chemical 
substructure, enzymes, pathways, and targets and proposed a method named Sparse Feature Learning ensemble 
method with Linear Neighborhood Regularization (SFLLN) for predicting DDI’s. Authors11 integrate three dif-
ferent deep learning techniques, which are Recurrent Neural Networks (RNNs), CNNs, and Mixture Density 
Neural Networks (MDNs), for the efficient prediction of DDI. The research12 proposed a novel method named 
Deep Predictor (DPDDI) for the DDI prediction in which Graph Convolutional Network (GCN) is used for the 
extraction of network structure features of medicine from the network of DDI’s, and a model of Deep Neural 
Network (DNN) is working as a predictor. Authors13 developed a new model that uses deep feed-forward net-
works and autoencoders and trained on three different similarity profiles, which are Target, Gene, and Similarity 
Profiles, Gene Ontology term similarity profiles, and SSP for predicting DDI’s effect.

Study14 proposed a method named the Neural Network-Based Method for DDIs (NDD). The model first cal-
culates the diverse similarity of drugs, for example, pathways, side effects, target, transporter, and substructure, 
and then uses neural networks to predict DDIs. In 2019 authors15 used multi-modal deep autoencoders, which 
learn from multiple drug feature networks simultaneously a unified representation of drugs. Several operations 
are adopted on drug embedding, which is retained for the drug-drug pairs representation and then used in the 
random forest (RF) for the DDI’s prediction. The study16 use multiple drug data sources like Drug Bank17, KEGG 
drugs18, and PharmGKB19 and use 12000 features of drugs and integrate these features using Knowledge Graphs 
(KGs). Different embedding approaches are used to train the prediction model, leading to a best-performing 
combination: The ComplEX embedding method. Xinyu et al.20 generated features of 5000 drugs from a drug 
bank database and built a DNN model to predict 80 types of DDI’s using 5000 drug features; these features of 
drugs were produced using SMILES. Deng et al.21 used a drug bank database and collected DDI from that and 
then used event trimming and dependency analysis to extract 65 different categories of DDI and then proposed 
a novel framework named Drug-Drug Interaction Multimodal Deep Learning (DDIMDL), which used a sub-
model for every feature of drugs and then concatenated the sub-models for the prediction of the DDI. This 
research22 used a One-Class Support Vector Machine (OCSVM) for reliable negative seed generations, then 
used all the positive and negative labels for training and an iterative Support Vector Machine (SVM) to identify 
all negative from and un-label samples to predict DDIs. The study23 explored graph outcomes knowledge for 
the DDI prediction to overcome the following two problems: the first is to achieve a good performance, and the 
second is to keep certain interpretability.

In this research authors24 created a DDI prediction framework based on Knowledge Graph (KG) embeddings 
and introduced a Gumbel-SoftMax and Wasserstein Distances-Based Adversarial Autoencoders (AAE’s) where 
the autoencoder is used to make high-quality negative samples. In 2020 study25 extracted various features of drugs 
which include targets, categories, enzymes, and pathways, focused on 65 types of DDI events, and proposed a 
CNN-based model named CNN-DDI for the drug-drug interaction prediction. Study26 introduces a multi-scale 
feature fusion method to fuse multi-modal features well using scalar and cross-level components. In research 
authors27 proposed a technique called Knowledge Graph Neural Network (KGNN) for the DDI’s prediction. 
This method learns for each entity from neighborhoods, and then the neighborhood’s information is integrated 
with bias from the current entity representations. Study28 used drug embedding and Graph autoencoders with 
multiple knowledge sources to effectively predict DDI’s. To learn the embeddings of drugs, they used a Drug 
Target Interaction network and a variational autoencoder to gain rich chemical structure representation.
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In this research authors29 used seven types of drug pair similarities to create feature vectors and then proposed 
a model based on logistic regression for DDI predictions. the research30 and31 used interaction profile fingerprint 
and structural similarity for the DDI’s prediction. Most previous studies focuOne-Classher two drugs interact-
ing with each other or not, and now most researchers focus on the deep learning prediction model using deep 
neural networks; compared with simple CNN and DNN, the multi-modal CNN performed well, which can also 
effectively overcome the overfitting problem as compared to simple DNN. This study developed a novel method 
based on a Multi-Modal CNN named (MMCNN-DDI). First, four features of drug targets, enzymes, pathways, 
and chemical substructures. Then we use different similarity measures like the Jaccard and Cosine similarity 
matrix to calculate drug pairs’ similarities. Then construct four sub-models based on a CNN for each feature 
of drugs and feed these similarities matrix to sub-models last; these sub-models are concatenated for predict-
ing DDI’s. The study32 presents DANN-DDI, a deep attention neural network framework to predict unknown 
DDIs by integrating multiple drug features. The model uses a graph representation learning approach to obtain 
medicine embeddings, followed by an attention neural network (ANN) to acquire representations of drug-drug 
pairs. The technique outperforms several state-of-the-art prediction methods and can recognize innovative 
connections and DDI-associated events. This study33 presents a new method called DDI-IS-SL for predicting 
drug-drug interactions created on combined similarity and semi-supervised learning (SSL). DDI-IS-SL inte-
grates drug biological, chemical, and phenotype data to compute drug similarity and uses the Regularized Least 
Squares classifier to predict interaction possibility scores of drug pairs. The paper34 discusses DDIs which occur 
when drugs affect each other, leading to unexpected or severe side effects. DDIs are important to consider for 
drug-related studies, for example, drug repurposing, and drug-target interaction. The paper introduces DDIPred, 
a new technique for DDI prediction that utilizes drug chemical building embedding and graph convolutional 
networks (GCNN). In this study35, a new single-stage finder model has been developed. The model comprises a 
base network, which is then followed by several multiscale feature map blocks. This design allows for the output 
of the base network to be transformed into larger feature maps, which in turn generates more anchor boxes to 
detect smaller objects. As a result, the size of the feature maps is decreased, allowing for more precise detection 
of labeled objects. This paper36 discusses the use of DL and ML algorithms to predict (DDIs), which is a low-
cost and real method. The paper also highlights the need for further research in this area to reduce the number 
of interactions and their adverse effects. The recent use of deep learning techniques for recognizing relations 
among different medicines to evade adverse effects is also discussed, and the importance of increased accuracy 
and performance in predicting DDIs is emphasized. The paper concludes by suggesting that future research 
should consider drug-food interactions in addition to DDIs.

This research37 Predicting multiple interactions that a drug may encounter is crucial for drug development 
and safety. Artificial Intelligence (AI) has offered innovative methods to predict these interactions efficiently 
compared to traditional labor-intensive approaches. This research systematically examines AI applications in 
predicting drug-drug, drug-food (excipients), and drug-microbiome interactions. It outlines common model 
methods, evaluation indicators, algorithms, and databases used for these interactions. Particularly, ML models 
focusing on metabolic en- zyme P450, drug similarity, and drug targets are discoursed. The research38 study 
outlines progress in AI for each type, summarizing data sets and methods. It introduces common databases, 
presents research advancements, and traces the timeline of DDI prediction events. The paper also discusses the 
challenges and potential of AI in enhancing clinical decision-making and patient outcomes in DDI prediction.

In this research39 authors employ machine learning to predict drug risk levels based on Adverse Drug Reac-
tions (ADRs). Using a dataset of 985,960 ADR reports from the Chinese spontaneous reporting database, we 
address class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). The approach involves 
a multi-classification framework, utilizing ADR signal values and four different classifiers. The optimal com-
bination, PRR-SMOTE-RF, achieved an accuracy rate of 95%. This study has potential applications in assisting 
experts in assessing the transition of prescription drugs to over-the-counter status. In this study40 the authors 
employ artificial neural networks and factor propagation over graph nodes, presenting two innovative methods: 
adjacency matrix factorization (AMF) and adjacency matrix factorization with propagation (AMFP). These find-
ings emphasize the potential of AMF, AMFP, and the ensemble-based classifier in providing vital information for 
drug development and prescription, even with partial or noisy data. The study also underscores the importance 
of the drug interaction network as a valuable data source for identifying potential DDIs.

This study41 addresses the importance of predicting interactions between G protein-coupled receptors 
(GPCRs) and drugs, a crucial aspect of drug development. The results demonstrate improved predictive perfor-
mance compared to existing models, offering potential benefits for drug development efforts. The study42 focuses 
on Herbs and their partnership with medicines which become popular worldwide. This study collects all the 
facts about Panax notoginseng and medicines, helping doctors and patients make better choices for their health.

The research43 examined, a novel ensemble neural network model, proposed to improve the accuracy of 
predicting drug-drug interactions. In this study, the authors introduce a super-smart computer model that can 
predict interactions between 86 different drugs with almost 94% accuracy. A comparative analysis table of the 
discussed work is presented in Table 1.

The goal of this study44 is to give a comprehensive review of the current status and trends in drug-target 
interaction prediction. It lists several databases and web servers with data on drug space, target space, the drug-
target interaction network, and side effect networks. The paper45 deals with the function of small molecules and 
microRNAs (miRNAs) in cellular biology. The authors cover four experimental methods that have been employed 
in the last few years to look for small molecule inhibitors of miRNAs as well as three classes of models that can 
be used to predict whether a compound binds with a certain miRNA. The study46 calls for more effective drugs 
to combat complex human diseases. The paper explains the background of the drug and introduces the concept 
of drug-pathway associations. The authors47 present a Multi-Channel Feature Fusion model for multi-typed DDI 
prediction (MCFF-MTDDI). They extracted drug chemical structure features, drug pairs’ extra label features, 
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and KG features of drugs. A multi-channel feature fusion module was then used to fuse these various features. 
The study48 compared ML and PBPK models in predicting drug-drug interactions (DDIs). Data-driven in nature, 
and able to handle huge datasets with complex relations, ML models are thus well suited for predicting DDIs 
from disparate databases. The research proposed an integrated approach that combines ML with PBPK models, 
thus increasing the accuracy and efficiency of DDI predictions while also making the process more interpretable.

Materials and methods
The dataset used in this study was provided by the DDIMDL21 this dataset has 572 drugs and 74528 interactions 
of drug pairs according to DDIMDL. Remove21 the repeated interaction of drug pairs then in the dataset 37264 
are left. They collected DDI’s from drug bank which was in the descriptive format and applied NLP techniques 
for a better understanding of DDI’s. Then four different features of drug targets, enzymes, pathways, and chemical 
substructures from the Drug Bank database. Drug Bank17database contains 12,151 drugs and its broad informa-
tion which includes the drug name, chemical substructure (i.e., SMILES) or we can say the chemical formula of 
drugs, targets, enzymes, pathways, description, protein, etc., also contains 3844 drugs approved from Food and 
Drug Administration (FDA) and 5867 experimental drugs.

Methods overview
Our proposed framework, as shown in Fig. 1, has two components. Initially, features are extracted then pass the 
required data in the models, to train the model. Only required preprocessing techniques are applied in the feature 
extraction component. Then we used feature engineering techniques on the drug’s data. In the second compo-
nent, we applied the CNN to train our model and evaluated that model with multiple performance measures, 
for example, accuracy, precision, recall, and F1 score. In this study, we proposed a method-based multi-modal 
CNN for the DDIs associated events predictions, as shown in Fig.2. First, we input four features of drug targets, 
enzymes, and pathways Schemes follow the same formatting. If there are multiple panels, they are listed below:

•	 First, we input four features of drug targets, enzymes, pathways, and chemical substructure.
•	 Second we use encoding and get binary vectors of features where 1 represents the presence of a compound 

and 0 represents the absence of a compound in the drug and then use similarity measure to calculate the 
similarity matrix of each drug pairs.

•	 In the third step we create sub-models based on CNN for the prediction of DDI’s events.

Similarity of drug pairs
For drug pairs similarity calculation, we use the Jaccard similarity in our proposed architecture. The Jaccard 
similarity compared a compound of two drugs to check whether the compound is shared or not. Mathematical 
formulas of the Jaccard similarity measure are given in Eq. (1). Jaccard Similarity Formula

Where:

(1)
Jsim(J ,K) =

|J ∩ K |

|J ∪ K |

=
Total number of compounds in drug pairs

Number of compounds in either set

Table 1.   Comparison with the related work.

Refs. Problem statement Models Techniques Results

Shukla et al.11 To overcome over-fitting and predict DDI 
using DL (CNN), (RNN), (MDN), (LSTMRNN) Integrated CNN, RNN, and MDN for 

Cancer cells ACC of 98.4%

Feng et al.12 DDI prediction without using various drug 
properties (GCN), (DNN), (5-fold CV) Single feature (i.e., SMILES) of drugs ACC of 94.0%

Lee et al.13 Decreasing profile size for accuracy (Autoencoders), (Feed Forward DNN) Autoencoders vs. PCA ACC of 94.0%

Rohan et al.14 Combining similarity and NN for accuracy (Neural networks), (GIP), (SNF), (5-fold 
CV)

Neural networks with similarity integra-
tion AUC of 99.2%

Liu et al.15 Capturing nonlinear network structures (DNN), (Deep Autoencoders), (3, 5-fold 
CV) Random forest training AUC of 87.03%.

Karim et al.16 Using data sources to predict DDIs (Convolutional LSTM), (Knowledge 
Graphs), (5-fold CV) Cov-LSTM for DDI prediction AUPR of 93.0%.

Hou et al.20 Predicting DDIs using drug bank data (DNN), (SVM) SMILES only for DDI prediction AUC 94.2%.

Deng et al.21 Predicting DDIS-associated events (DNN), (Stanford NLP), (Similarity 
Matrix), (5-fold CV) DNN for DDI’s AUC of 88.5%.

Zheng et al.22 Predicting DDIs using classifiers (SVM), (OCSVM), (KNN), (3, 5-fold CV) SMILES with side-effect and Indication F1-score 86.0%.

Chen23 Testing pairwise information similarity (Siamese GCN), (Single Layer NN) SMILES of drugs F1 67.31% on large data-set

Dai24 Generating severe adverse effects of DDIs
(Autoencoder), (KG embedding), (Was-
serstein distance), (GumbelSoftmax 
relaxation)

Network feature set with KG and Autoen-
coders PR-AUC 76.0%.
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•	 J is the bit vector for the first set (drug pair)
•	 K is the bit vector for the second set (drug pair)
•	 |J ∩ K | represents the intersection of J and K
•	 |J ∪ K | represents the union of J and K

Extracting drug features
We have four different drug feature which includes targets, enzymes, pathways, and chemical substructures, as 
shown in the layer of “Drug Features” in Fig. 1. We used the encoding layer to create a bit vector of each drug 
where 1 represents the presence of the compound in the drug and 0 represents the absence of the compound. 
For example, pathways can be represented by a 957-dimensional bit vector which is defined by the PubChem 
chemical molecule database49. PubChem defines a 202-dimensional bit vector for enzymes, an 1162-dimensional 
bit vector for targets, and an 808-dimensional bit vector for chemical substructure. The selected four drugs’ 
features for the experiment have high dimensions and most of the values are 0 in every bit vector of the drug. 
The value is 0 if a chemical compound is missing in a drug. Due to a maximum number of 0’s the dimension of 

Figure 1.   Framework architecture of DDI’s events.

Figure 2.   The Proposed model is named MCCN-DDI.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4076  | https://doi.org/10.1038/s41598-024-54409-x

www.nature.com/scientificreports/

a drug vector increases. Therefore, to reduce the drug vector sparsity we use Jaccard similarity measures. This 
similarity measure calculates a drug pair similarity matrix from a bit vector. Hence, we get 572 × 572 matric for 
each of the four drug features. This metric is used as a representation of drugs.

Let M = (Ajk) where M is the metric A is a drug and j and k are in the range of 0 and 1. Therefore, when the j 
and k are higher then the similarity between pairs of drugs is higher. Afterward, we feed these 572 × 572 as input 
of every drug feature to the sub-model based on CNN.

Multimodal CNN for prediction
As we are using different drug features in our study, we created sub-models based on convolutional neural net-
works for every feature of drugs.

CNN is a type of deep neural network50. CNN was developed in the mid-1980s51. The CNN consists of three 
types of layers first one is input layers, second is hidden layers, and in the last output layers. The hidden layer 
in CNN includes layers that perform convolutions. Commonly the hidden layer of CNN includes a layer that 
performs convolution kernel dot product with the input matrix layer’s commonly used activation function is 
ReLU52 and usually the product is Frobenius inner product. Features maps are generated by the convolutional 
operations which act as an input to the next layer and then followed by other layers like normalization layers, 
fully connected layers, and pooling layers.

Our model architecture was inspired by DDIMDL which uses a simple multi-modal deep neural network for 
DDI prediction and achieved an accuracy of 88.5%.

In the CNN model, we use the input layer with the filter size of 1 and the kernel size of 5 with the “tanh“ 
activation function. We use the “tanh“ as an activation function because the similarity matrix using the Jaccard 
similarity measures produces some negative values, therefore we use “tanh” to use both positive and negative 
values. Then we use the flattening layer to convert the data into a dimensional array for inputting to the next layer. 
After flattening layer uses a dense layer of 1024,512,256 neurons and uses an “elu” as an activation function53. 
With every dense layer, we use the “Bach Normalization” layer54 for the normalization of the previous output 
layer. To avoid over-fitting of the model we also use a drop-out layer55 of value 0.3 with every dense layer. Then 
we use a dense layer of 65 neurons as an output layer because we are classifying 65 different types of drug-drug 
interaction with the “SoftMax” activation function. We use Adam56 as an optimizer in our model, and for the 
loss function, we use categorical cross entropy57.

Results
In this section, we delve into the methods we employed and the exciting results we obtained in our study on 
drug-to-drug interactions (DDIs). Our approach harnessed the power of machine learning, specifically utiliz-
ing a Convolutional Neural Network (CNN) to analyze 65 unique drug-associated events extracted from the 
DrugBank database. Our model considers a wide range of input data, including chemical structures represented 
as SMILES, information about enzymes, pathways, and drug targets. Through extensive experimentation, where 
we fine-tuned various model parameters and explored different combinations of drug features, our Multi-Modal 
Convolutional Neural Network-Drug to Drug Interaction (MCNN-DDI) yielded impressive results.

Furthermore, we have carried out two different statistical tests to evaluate the performance of different meth-
ods. A paired t-test is used to compare our proposed method with other methods. This test determines if the 
mean difference in performance metrics is significant. For example, accuracy or AUC-ROC statistics between our 
method and baseline methods, the t-test shows that our proposed methods perform better than other methods, 
as shown in Table 4. The second ANOVA statistical test determines the effect of performance on dependent 
variables and improvement in evaluation metrics. A significance level α = 0.05 was used to perform both tests. 
The statistical significance is indicated by the p-value if it is less than α = 0.05.

Performance of model on different hyperparameters
The hyperparameters can affect the performance of the model. Hence, we perform different experiments on 
different hyperparameters. First, we used different numbers of layers and different activation functions in the 
dense layer and input layer with the Jaccard similarity matrices the number of layers and the activation function 
results with Jaccard similarity are given in Table 2.

Table 2.   MCNN-DDI results on different layers and activation function with Jaccard Similarity.

Layers I-Fun D-Fun Similarity Matrices ACC​ F1 AUC​ AUPR

2 tanh tanh Jaccard 0.7631 0.6222 0.9664 0.8267

3 tanh tanh Jaccard 0.8826 0.7767 0.9979 0.9338

3 sigmoid sigmoid Jaccard 0.4166 0.4371 0.9664 0.3904

3 tanh elu Jaccard 0.8963 0.8086 0.9981 0.9449

3 tanh relu Jaccard 0.7952 0.5440 0.9961 0.8636

4 tanh relu Jaccard 0.8830 0.7779 0.9978 0.9344

4 tanh elu Jaccard 0.9000 0.8286 0.9981 0.9478
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Evaluating MNN‑DDI performance on different set of features
For the results, we generate a classification report in our study, and the evaluation measures include accuracy 
score, F1-score, precision, and recall on both content and context results. All the above measurements are used 
for the model results evaluations. We have also done some experiments with different sets of drug features to 
evaluate our model performance on individual drug features and a combination of different drug features. The 
results on a single and a set of features are given in Table 3. The chemical substructure achieves an accuracy of 
0.8861 which is more informative as compared to other features while the pathways achieve an accuracy of 0.8317 
and the model train on target achieves an accuracy of 0.8441. The enzyme features of drugs individually achieve 
an accuracy of 0.6808 which show that this feature of drugs is not informative as compared to other. When used 
individually in combination with other features it produces very good results. Whenever using two sets of features 
the smiles and pathways achieve an accuracy of 0.8993 which is greater than all of the other drug’s features used 
in a set of two. Using three sets of features among all the features the following features chemical substructures, 
Targets, and Enzymes achieved an accuracy of 0.9000. The model is trained on all four combined features and 
achieved an accuracy of 0.8953. All the experiments show that using all four features of drugs combined can’t 
perform as well as the above three features perform.

Evaluating the performance of our model more in-depth, we investigated how often DDIs among the top 
100 most highly scored predictions were correctly predicted. Therefore, we used a ranking strategy, to analyze 
how well our model prioritizes true positives. Hence, methodologically, we computed prediction scores for all 
the DDIs and ranked them based on these predictions. So, we analyze the precision predictions between differ-
ent drug interaction’s ranking particularly in the best 100. By this, we learned more about the model’s ability to 
identify the most pertinent DDIs. Our model has demonstrated the ability to prioritize DDIs accurately as per 
our expectations from this top-best 100 analysis. Our model shows good performance in predicting interac-
tions between different types of drugs such as cardiovascular, infectious, and cancerous diseases. In addition, 
our results were compared with the other approaches and they confirmed the effectiveness and reliability of our 
model to rank DDIs.

We also examined whether the model provided equal accuracy of prediction DDIs across cardiovascular, 
infectious, and cancer diseases. After a detailed evaluation, we noted a consistency in the performance of our 
model within the cardiovascular, infectious, and cancer diseases. The consistency shows the strength of our 
model. Our model consistently placed true positive interactions among the first-ranked predictions, indicating 
its capability to accurately detect clinically relevant DDIs.

Discussion
To show the robustness of our model MMCNNDDI we compare our model (as shown in Fig. 1) with the fol-
lowing models which are DDIMDL, DeepDDI, RF, K-nearest Neighbor (KNN), and Logistic Regression (LR). 
All the given methods use using same drug features like targets, enzymes, pathways, and chemical substructure 
except DeepDDI (as shown in 2). For the random forest, we set the decision tree values to 100 and for KNN we 
set the neighbor value to 4. The experiment results of all the methods are shown in the Table 4.

In Table 4, it can be observed that our model outperforms all the other models in the four assessments, while 
the LR model is poorly related to all the other models. Our model achieves high accuracy and AUPR values 
of 0.9000 and 0.9478, respectively, demonstrating its superiority (as shown in Table 3). When compared to 
DDIMDL, our model shows an improvement in accuracy score from 0.8852 to 0.9000 and an increase in AUPR 
value from 0.9208 to 0.9478, along with improvements in other evaluation metrics.

Table 3.   MCNN-DDI results on different sets of features.

Set of Features Similarity Matrices ACC​ F1 AUC​ AUPR

S Jaccard 0.8861 0.8099 0.9983 0.9505

T Jaccard 0.8441 0.7517 0.9977 0.9254

E Jaccard 0.6802 0.4584 0.9920 0.7691

P Jaccard 0.8317 0.7357 0.9975 0.9169

S + T Jaccard 0.8986 0.8264 0.9985 0.9549

S + E Jaccard 0.8933 0.7943 0.9976 0.9309

S + P Jaccard 0.8993 0.8294 0.9986 0.9552

T + P Jaccard 0.8509 0.7667 0.9980 0.9313

T + E Jaccard 0.8658 0.7498 0.9972 0.9158

P + E Jaccard 0.8635 0.7563 0.9973 0.9160

S + P + E Jaccard 0.8998 0.8102 0.9981 0.9464

S + T + E Jaccard 0.9000 0.8286 0.9981 0.9478

S + T + P Jaccard 0.8849 0.8077 0.9986 0.9530

T + P + E Jaccard 0.8672 0.7833 0.9976 0.9292

S + T + E + P Jaccard 0.8953 0.8164 0.992 0.9503
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Conclusion
Recently deep learning techniques have been used for the prediction of drug-drug interactions but mostly these 
studies concentrate on one feature of drugs or whether one drug interacts with another or not. In this research 
study, we use deep learning multi-modal CNN techniques on the drug bank database which was created by 
DDIMDL for the prediction of drug-drug interaction events. The data set has 572 drugs and their diverse fea-
tures like chemical substructures (SMILES), enzymes, pathways, and targets, 74528 interactions, and 65 types of 
drug-drug interaction events. Our MCNN-DDI model achieved an accuracy of 90.00% and an AUPR of 94.78% 
as shown in Table 3. Our MCNN-DDI model has a 1D CNN input layer with a filter size of 1 and 5 kernels size, 
three dense layers of 1024, 512, and 256 neurons and an output layer of 65 neurons, 1 Flatten layer, and Bach 
Norm and Dropout layer with 0.3 value and use a combination of four drug features for the input of the model. 
We used four CNN sub-models for every feature of drugs and then in the last, we combined these sub-models 
for the prediction of drug-drug interaction events.

Data availability
All data generated or analyzed during this study are cited in Reference19 and are also publicly available:https://​
go.​drugb​ank.​com/.
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