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Graph neural network 
recommendation algorithm based 
on improved dual tower model
Qiang He 1*, Xinkai Li 2 & Biao Cai 2,3*

In this era of information explosion, recommendation systems play a key role in helping users to 
uncover content of interest among massive amounts of information. Pursuing a breadth of recall 
while maintaining accuracy is a core challenge for current recommendation systems. In this paper, 
we propose a new recommendation algorithm model, the interactive higher-order dual tower (IHDT), 
which improves current models by adding interactivity and higher-order feature learning between 
the dual tower neural networks. A heterogeneous graph is constructed containing different types 
of nodes, such as users, items, and attributes, extracting richer feature representations through 
meta-paths. To achieve feature interaction, an interactive learning mechanism is introduced to inject 
relevant features between the user and project towers. Additionally, this method utilizes graph 
convolutional networks for higher-order feature learning, pooling the node embeddings of the twin 
towers to obtain enhanced end-user and item representations. IHDT was evaluated on the MovieLens 
dataset and outperformed multiple baseline methods. Ablation experiments verified the contribution 
of interactive learning and high-order GCN components.
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Recommendation  systems1,2 have an important role in helping users uncover interesting content from massive 
amounts of information in the context of the current information explosion era. Early methods were based on 
collaborative  filtering3 and mainly relied on matrix  decomposition4–8, such as hybrid algorithms based on Probs 
and Heats calculation  modes6. However, collaborative filtering is based on users’ historical behavioral informa-
tion and cannot effectively model auxiliary information such as social relationships and product attributes. 
Subsequently, researchers incorporated content features to overcome the cold start  problem9–11.

Most early research efforts focused on homogeneous networks composed of nodes and edges of the same 
type. For example, Perozzi et al.12 proposed the deep walk model that combines random walk with the skip-gram 
 model13. Subsequently, Grover et al.14 proposed depth-first and breadth-first wandering strategies to capture 
different network structure information by improving the wandering strategy of deep walk; both strategies are 
used in the Node2Vec model. The LINE model proposed by Tang et al.15 defines first-order and second-order 
similarities to learn the node representation of large-scale sparse networks. However, these three models are 
shallow, and the network representation they generate is not optimal because the captured network nodes are 
too close and full of local information. Graph neural network (GNN)  models16–39 have recently brought new 
opportunities to recommendation systems, which can explicitly model high-order user–product interactions to 
enrich  expressions16,17. For example, Berg et al.18 designed a recommendation method based on a graph autoen-
coder through message passing and aggregation. Wang et al.19 proposed that a spatial GNN would be superior 
to traditional collaborative filtering, such as  NCF20. Sun et al.21 believed that a simple aggregation mechanism 
could not effectively utilize neighbor information, so they designed neighbor interactive aggregation.

The core challenge that current recommendation systems face is pursuing recall breadth without sacrificing 
accuracy. Due to its high efficiency in large-scale candidate record screening, the two-tower neural network 
 model40–44 has received widespread attention. However, its user and product tower are trained independently 
and cannot effectively model the interaction between features, which results in poor recommendation accuracy. 
Recently, GNN models have been successfully used in recommendation systems, achieving significant perfor-
mance improvements through high-order feature interaction.
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We propose an interactive high-order twin-tower model (IHDT) that considers the speed advantage of the 
twin-tower model and the accuracy advantage of GNNs. This model is built on a heterogeneous graph of user 
products and uses an interactive learning mechanism to inject product (user) features related to users (products) 
into the corresponding encoder. The model uses high-order feature expression based on graph convolutional 
networks to aggregate multipored neighbor information of nodes and enhance the vector representation of users 
and products. Finally, the inner product between the augmented representations is calculated as the predicted 
value of the recommendation system. The effectiveness of the model was verified on public datasets, and the 
results show that IHDT achieves state-of-the-art performance comparable to multiple powerful benchmarks. 
The IHDT model thus offers interactive modeling of user products and graph-based high-order feature learning, 
and as such provides new ideas for large-scale recommendation systems considering both accuracy and diversity.

Model
Problem definition
Real-world data often contain multiple types of objects and their interactions, which makes it difficult to model 
the data using homogeneous information networks, as representing learning using a homogeneous informa-
tion network captures only some features. However, these heterogeneous data can be naturally modeled using 
heterogeneous information networks, in which multiple types of objects and interactions can coexist, containing 
rich network structure information and semantic information. The relevant definitions are shown below.

Definition 1 Information Network. An information network is represented as G = (V, E,ϕ,ψ) , consisting of 
a set of objects V, a set of links E, a mapping function of object types ϕ : V → A , and a mapping function of 
relationship types ψ : E → R . A is the set of object types, and R is the set of relationship types.

Definition 2 Homogeneous/Heterogeneous Information Network. An information network is heterogeneous if 
the number of object types is |A| > 1 or the number of relationship types is |R| > 1 . Otherwise, it is called a 
homogeneous information network.

A simple heterogeneous information network is shown in Fig. 1. It contains three types of nodes: user, item, 
and brand, and the relationships between them.

Definition 3 Network Model. The network  model45 can be represented as TG = (A, R) . It is a directed graph with 
object type A as nodes and relationship type R as edges.

Definition 4 Meta-path. A meta-path is a path of two classes of objects, A and R, in the network pattern 
TG = (A, R) , which can be expressed as A1→R1A2→R2 ...→RlAl+1 , representing a composite relationship.

Definition 5 Recommendation Base Graph. Traversing nodes and edges in the i-th meta-path pattern forms a 
subgraph, Gi , and finally merging all the obtained subgraphs to form the recommendation base graph G, i.e., 
G =

⋃
Gi.

In the heterogeneous information network, as shown in Fig. 2, different meta-paths are selected for user  u1 
to obtain different higher-order connectivity.

Figure 1.  Heterogeneous information network.
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IHDT model
The IHDT model (see Fig. 3 for the architecture diagram) is based on interactive, high-order learning mecha-
nisms to improve the dual tower model and the accuracy of the recommendation system. The IHDT model 
introduced in this paper learns node representations and applies them to recommendations in the following steps.

(1) Select different-pattern meta-paths �i in the data source to form different-pattern subgraphs Gi and finally 
merge all subgraphs to form the recommendation base graph G (i.e., G =

⋃
Gi).

Figure 2.  Two different higher-order connectivity of u1 . (a) Higher-order connectivity based on user–item 
meta-paths of u1 ; (b) Higher-order connectivity based on user–attribute–item meta-paths of u1.

Figure 3.  Interactive higher-order dual tower recommendation model (IHDT).
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(2) Use random initialization or a pre-training model to obtain different node initialization expressions of 
G ; the i-th user node is expressed as eu , the k-th attribute of this user is expressed as eku , the j-th item is 
expressed as ei , and the h-th attribute of this item is expressed as ehi .

(3) Using the interaction learning mechanism, the interaction mechanism expressions au and av of the user 
and item nodes are derived as the two inputs of the dual tower model.

(4) Higher-order mechanism expression learning based on GCN converges and aggregates the multifaceted 
representations of nodes to obtain the final representations e∗u and e∗i  of users and items.

(5) Finally, the inner product of e∗u and e∗i  is calculated and used as the final prediction value of the model.

Method
The construction of the IHDT model, including implementing the interactive and high-order learning mecha-
nisms, consists of the following steps.

Interactive learning
The framework of the proposed model is shown in Fig. 3. Add user feature vector au and product feature vector av 
to the user and product input terminals, respectively. The user and item embedding representations ziu,zjv ∈ R

1×d′ 
under specific user–item interaction are learned through the interaction mechanism G. The connection layer 
passes zu ∈ R

nu×d and zv ∈ R
nv×d into the user tower and product tower, and outputs the vector representations 

of users and products eu and ei:

where au and av are derived from the information captured by the interaction behaviors in the corpus.

High-order learning
The final output vectors eu and ei obtained in the dual tower model can only represent the first-order information 
of the current user (i.e., the rich feature information of the user (item)); the first-order interaction between the 
user and the item can be obtained in the dual tower model, but the convergence of higher-order information 
between the user and the item cannot be achieved. Using eu and ei as the input of GCN, first-order and high-order 
propagation aggregation rules are designed to obtain the final embedding representations of users and products 
e∗u and e∗i  . GCNs can achieve this purpose by propagating the convergence, ensuring the richness of eu and ei as 
well as the accuracy brought by the prediction:

where W1,W2 ∈ R
d′×d is the trainable weight matrix used to extract useful propagation information, and d′ is 

the transformation dimension, while pui is set as the Laplacian matrix of the graph, and Nu and Ni denote the 
first-order neighbors of user u and item i, respectively.

On top of first-order propagation and convergence, higher-order propagation and convergence are embedded 
into the propagation layers by stacking l. Users (and items) can receive messages propagated from their L-Hop 
neighbors. Then, the final embedding representation of the final l-th layer can be obtained:

where E(l) ∈ R
(N+M)dl is the representation obtained after the users, and items are embedded in the propagation 

convergence l layer. E(0) is E =



 eu1 , . . . , euN� �� �
users embeddings

, ei1 , . . . , eiM� �� �
item embeddings



 ; I is the unit matrix. L represents the Laplacian 

matrix of the user–item bipartite graph.

Model prediction
After propagation and convergence through l layers, the embedding representation of each user (item) is obtained 
at each layer, and the final user e∗u and item e∗i  embedding representations are obtained by a simple join operation:

Then, preference prediction is performed by computing the inner product of the final embedding representa-
tions of users and items:

Finally, model optimization is performed based on the Bayesian personalized ranking (BPR) loss:

where O represents sample set u, I represents positive samples, and u, i− represents negative samples. Finally, the 
above BPR loss function can be minimized, the parameters in the whole model can be optimized end-to-end 
in the form of backpropagation, and all parameters converge to a fixed value with the optimization process of 
the model.

(1)ziu, z
j
v = G

(
ei · av , ej · au

)
,

(2)e
(1)
u = LeakyReLU

(
1/
√
(|Nu||Ni|)(W1ei +W2(ei ⊙ eu))

)
,

(3)E(l) = LeakyReLU
(
(L+ I)E(l−1)W

(l−1)
1 ⊙ E(l−1)W

(l−1)
2

)
,

(4)e∗u = e(0)u � · · · � e(L)u , e∗i = e
(0)
i � · · · � e

(L)
i .

(5)ŷ = e∗⊤u e∗i .

(6)Loss =
∑

(u,I,i−)∈O −ln
(
r̂u,i − r̂u,i−

)
,



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3853  | https://doi.org/10.1038/s41598-024-54376-3

www.nature.com/scientificreports/

Overall process
According to the above, the overall training process of the IHDT model is as follows.

Table 4-1 Training process of IHDT.
Input: Heterogeneous Information Network = ( , , , )

       User-related meta-paths 1, 2,...,

       Item-related meta-paths 1, 2,...,

       Model order K

Output: IHDT Model and Parameters

Begin

1. Initialize user and product representations 1
,

2
,..., ,

1
,

2
,..., with a dual tower model

2.for 1, 2,..., do

3.   Get the user representation ∈ ℝ1× under the current meta-path through the interaction 

learning mechanism 

4. for k←1 to K do

5.     Aggregate neighbor information by meta-path to get k-order user representation 
( )

6. end for

7. Through a high-order learning mechanism, obtain the final user representation ∗ ∈ ℝ1×

8.end for

9.for 1, 2,..., do

10. Get the user representation ∈ ℝ1×  under the current meta-path through the interaction 

learning mechanism

11.  for k←1 to K do

12. Aggregate neighbor information through meta-paths to obtain the k-th order item 

representation 
( )

13. end for

14. Through a high-order learning mechanism, obtain the final user representation ∗ ∈ ℝ1×

15. end for

16. Calculate the inner product e∗u e∗i , and predict preferences

17. Calculate the loss function

18. Update model parameters

End

Algorithm 4.1.  Training process of IHDT

Experimental setup
Dataset description
Experiments were conducted on two real-world datasets to evaluate the proposed IHDT model. The effective-
ness of the IHDT model was evaluated by experiments conducted on two benchmark datasets, MovieLens-1M 
and MovieLens-10M. The MovieLens dataset was provided by the University of Minnesota’s Group Lens Project. 
The datasets are rated on a five-point scale, from 1 to 5, representing the user’s interest in the movie. They are 
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all publicly desensitized and accessible and vary in domain, size, and sparsity. The statistical information of the 
datasets is shown in Table 1.

For each dataset, 90% of the historical interactions of each user were randomly selected to form the training 
set, and the rest were used as the test set. Each pair of training and test sets is complementary, and recombin-
ing them can yield the initial dataset. From the training set, 10% of the interactions were randomly selected as 
the validation set to tune the hyperparameters. Each observed user–item interaction was treated as a positive 
instance. Then, a negative sampling strategy was used to pair it with a negative item the user had not used before.

Evaluation metrics
For each user in the test set, we considered all items with which the user had no interaction as negative samples 
and items that the user had interactions with as positive samples. We utilized four commonly used performance 
evaluation metrics: precision, recall, normalized discounted cumulative gain (NDCG), and hit rate (HR).

We briefly introduce these metrics as follows.
Precision@K is used to evaluate the proportion of products related to the user among the top K products 

recommended to the user. It is calculated as follows:

where di(K) is the intersection of the top K products recommended to the user and the products in the test set 
that the user interacts with.

Recall@K is used to evaluate the proportion of the products that are related to the user to those that are 
recommended to the user:

NDCG@K is used to evaluate the accuracy of the ranking results. Assuming that the length of the recom-
mendation list is K  , NDCG@K shows the gap between the ranking list and the real user interaction list. It is 
calculated as follows:

where rk = 1 indicates that the Kth item is the item that the user favors; otherwise, rk = 0 . Zk is a normalization 
constant.

HR@K is a commonly used indicator to measure recall rate and is calculated as follows:

where N is the total number of users, and hits(i) represents whether the value accessed by the i-th user is in the 
recommended list. If yes, then hits(i) equals 1; otherwise, it is 0.

Baselines
The proposed IHDT was compared with the following top-k recommendation algorithms to demonstrate its 
effectiveness.

MF4. This is a matrix decomposition optimized by Bayesian personalized ranking (BPR) loss, which uses only 
the direct user–item interaction as the objective value of the interaction function.

DMF46. This method is a matrix decomposition model with a neural network architecture. A user–item matrix 
with explicit ratings and non-preference implicit feedback is constructed and used as input. A deep structure 
learning architecture is proposed to learn a generic low-dimensional space representing users and items.

GCMC18. This approach considers the matrix decomposition of recommendation systems from a link predic-
tion perspective, represented by a bipartite user–item graph with labeled edges indicating the observed ratings. 
This way, a graph autoencoder framework is proposed based on micro-message transferable on bi-directional 
interaction graphs.

NeuMF47. This approach is an advanced neural CF model that uses multiple hidden layers above the element 
level and connections of user and item embeddings to capture their nonlinear feature interactions.

ConvNCF48. This method uses outer products to explicitly model pairwise correlations between embedding 
space dimensions. A more expressive and semantically sound 2-D interaction graph is obtained using the outer 
product on top of the embedding layer. On top of the interaction graph, a convolutional neural network (CNN) 
is used to learn higher-order correlations between the embedding dimensions.

(7)Precision(K) = 1
m

∑m
i=1

di(L)
L ,

(8)Recall(K) = 1
m

∑m
i=1

di(L)
D(i) .

(9)NDCG@K = Zk

∑K
k=1

2rk−1

log2(k+1) ,

(10)HR@K = 1
N

∑N
i=1 hits(i),

Table 1.  Dataset description.

Dataset Users Item Interaction Sparsity

MovieLens-1M 6040 3883 988129 4.213 ∗ 10−2

MovieLens-10M 69878 10677 10000054 1.34 ∗ 10−2



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3853  | https://doi.org/10.1038/s41598-024-54376-3

www.nature.com/scientificreports/

NGCF49. This approach can explicitly encode the higher-order user–item interactions into the representation 
vector, effectively injecting collaborative signals into the embedding process in an explicit way to improve the 
representation and, thus, the overall recommendation.

LightGCN50 This method removes the feature transformation and nonlinear activation in GCN, making the 
model more concise and efficient. LightGCN only retains the neighbor aggregation operation of GCN, that is, 
layer-by-layer propagation and aggregation through the user–item interaction matrix. At the same time, a new 
vertical regularization term is introduced to punish overly complex user and item representations to prevent 
overfitting. In terms of efficiency, a sparse graph is constructed by discarding some connections to speed up 
training and inference. Additionally, two dropping strategies, random dropping and weighted sampling, are 
introduced. LightGCN generally achieves the best balance of accuracy and efficiency by designing a simple 
model and regularization strategy. It retains the key mechanisms GCN requires while removing unnecessary 
components, which is its main advantage over other GCN models.

BM3*51 This method is different from the previous method in that it is a multi-modal recommendation 
method. It designs a multi-modal contrastive loss function that simultaneously optimizes three goals: recon-
structing user-item interaction graphs, aligning learned features between different modalities, and reducing the 
gap between different augmented view representations from a specific modality. dissimilarity. (*Note: The dataset 
we tested is a traditional recommendation system dataset which does not provide much additional information 
for multi-modal learning, so the effect may not ideal. This test is only to illustrate the multi-modal recommenda-
tion model does not have advantages for traditional recommendation tasks).

Parameter setting
This study implemented the IHDT model in TensorFlow and Pytorch. The parameters were randomly initial-
ized in TensorFlow for the improved dual tower model, and the number of connected layers was set to two by 
default. The output vector in the dual tower model was used as the initialization parameter of IHDT in Pytorch. 
The embedding dimensions of the model default were set to 64, the normalization coefficient was set to 1e−5 by 
default, the learning rate was uniformly set to 1e−4, the node loss ratio was set to 0.1, the message loss ratio was 
set to 0.1, the number of layers was set to 3, the layers in the Movielens-1M dataset batch size were set to 1024, 
the epoch was set to 1000, the dataset batch size in the MovieLens-10M was set to 4096, and epoch was set to 
400. Additionally, an early stop policy was set (i.e., if the evaluation indicator recall did not increase within 50 
consecutive epochs, it was stopped early).

Experimental results and analysis
Comparison of experimental results
Table 2 shows the results of Top-20 recommendations on MovieLens-1M and MovieLens-10M datasets for the 
IHDT and other benchmark algorithms described in this paper. The table shows that the IHDT algorithm out-
performed the comparison algorithms in overall performance and was superior to the comparison algorithms 
for all indicators. The accuracy, recall, and NDCG were all improved.

Table 2 shows that the IHDT algorithm considerably improved over the benchmark algorithms. The IHDT 
and NGCF algorithms also performed better. This paper speculates that it may be due to the high sparsity of the 
MovieLens-10M dataset used in the study. Both the IHDT and NGCF models could aggregate the feature infor-
mation of high-order neighbors. IHDT in the dual tower model also performed deep semantic interaction, so it 
still performed well with sparser data. MF and DMF were less effective on sparse datasets. Meanwhile, although 
NeuMF could also aggregate neighbor information, the converged information was insufficient for higher-order 
neighbors, resulting in moderate performance.

Analysis of recommendation list length impact
After completing the basic experiments to investigate the effect of different recommendation list lengths on model 
performance, we continued to compare the model’s performance with different recommendation list lengths on 

Table 2.  Algorithm @ 20 Performance of models with Top-20 on MovieLens dataset. Significant values are in 
bold.

Model

Movielens-1M Movielens-10M

Pre@20 Recall@20 NDCG@20 HR@20 Pre@20 Recall@20 NDCG@20 HR@20

MF (2009) 0.1636 0.2493 0.2661 0.8369 0.1458 0.3147 0.2862 0.8158

DMF (2017) 0.1566 0.2486 0.2540 0.8384 0.1286 0.2778 0.2495 0.7752

GCMC (2017) 0.1629 0.2548 0.2647 0.8429 – – –

NeuMF (2021) 0.1553 0.2369 0.2465 0.8248 0.1458 0.3104 0.2862 0.8068

ConvNCF (2019) 0.0826 0.1134 0.1229 0.6240 0.1288 0.2642 0.2421 0.7802

NGCF (2019) 0.1643 0.2640 0.2711 0.8503 0.1736 0.3500 0.3345 0.8797

LightGCN (2020) 0.1831 0.2789 0.3009 0.1722 0.3457 0.3333

BM3(2023) 0.1000 0.1516 0.1580 0.0983 0.2310 0.1949

IHDT 0.1852 0.27210 0.2901 0.8553 0.1742 0.3502 0.3350 0.8812
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the dataset of the basic experiment. The results of this experiment, which increased the recommendation list 
length from 10 to 100 while keeping other variables constant, are as follows.

Figure 4 shows the performance trends of the IHDT model on Movielens-1M and MovielensLens-10M 
datasets for recommendation list lengths from 10 to 100 using line graphs. Based on the above experimental 
results, it was found that as the recommendation list length increased, both the recall indicator and NDCG indi-
cator showed an increasing trend; the recall indicator increased significantly. The precision indicator decreased 
smoothly, indicating that the algorithm performed well when the recommendation list length was increased.

Parameter sensitivity study
When the IHDT model was applied to a recommendation system, the main parameters included the number of 
model layers, the dimensionality d of the user and item representation vector (embedding), the learning rate (lr), 
and the L2 regularization coefficient. Taking the Movielens-1M dataset as an example, this study investigated 
the parameter variation of the IHDT algorithm with different parameter values.

Number of model layers
The method in this paper selects the 1st to Kth-order higher-order neighbor information for fusion. To verify the 
influence of the selected order on the experimental results, different orders were selected for the Movielen-1M 
dataset. The experimental results are shown in Table 3.

The details in Table 3 reflect that when the model order is small, increasing the order of the model improves 
the model performance effectively, and the performance of IHDT-3 is much higher than that of IHDT-1 and 
IHDT-2. The high-order connection better captured the collaborative relationship between node messages, 
improved the node feature representation, and improved the model performance; when the model order con-
tinued to increase, there was a dramatic decrease in the model performance. The table shows that the model 
performance is lowest when the IHDT model order is 4. This may be due to overfitting caused by introducing 
noisy information into the representation learning that could be caused by applying an excessively deep archi-
tecture. Therefore, it is necessary to select the appropriate model order to determine the maximum performance 
of the model.

Dimensionality of user and item representation vectors
For the dimension selection of the final representation vector of users and items, the dimensions of the final 
representation vector were 32, 64, and 128. Table 4 shows the experimental results.

Based on the experimental data in Table 4, the following findings are made: the IHDT indicators do not 
trend gradually upward with increasing dimensionality of the representation vector. The best performance of 
the proposed model was when the value of dimensionality was 64, indicating that the model needs sufficient 

Figure 4.  Performance under different datasets and recommended list lengths.

Table 3.  Performance of models with different orders on Movielens-1M dataset. Significant values are in bold.

Model Kth Pre@20 Recall@20N NDCG@20 HR@20

IHDT-1 0.16571 0.26601 0.27298 0.85262

IHDT-2 0.16482 0.26472 0.27139 0.85162

IHDT-3 0.18052 0.27210 0.29007 0.85530

IHDT-4 0.12378 0.25893 0.26543 0.84702
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dimensionality to encode the preferences of users or items. The model’s predictive ability decreases if the dimen-
sionality is too low or too high.

Learning rate
The learning rate is a principal factor in ensuring the model’s performance. Too small a learning rate results in 
excessive convergence time or a failure to converge because the gradient disappeared; too large a learning rate 
puts the model at the risk of over-approximating the minimum and failing to converge. Therefore, this study 
used three learning rates, 1e−5, 3e−5, and 5e−5, to determine the sensitivity of this parameter. The experimental 
results are shown in Table 5.

Table 5 shows that the model performed better when the learning rate was 1e−5. However, when the learning 
rate was 3e−5 or 5e−5, its performance decreased significantly, and although the training time was significantly 
reduced, the performance was poor.

L2 regularization factor
Deep learning models usually have superb prediction and fitting capabilities, and thus, they are prone to over-
fitting. Various regularization techniques can mitigate overfitting to some extent. We used L2 regularization to 
adjust the overfitting of the model. The experimental results are shown in Fig. 5.

Figure 5 shows that the model achieved a better result when the regularization coefficient was 0.1. The model 
was robust in response to L2 regularization (i.e., the change in L2 regularization within a specific range did not 
significantly affect the model’s effectiveness), which also indirectly reflects the stability of the model.

Table 4.  Algorithm performance on Movielens-1M dataset under different representation vector dimensions. 
Significant values are in bold.

Dimensionality 32 64 128

Pre@20 0.15840 0.18052 0.16081

Recall@20 0.25278 0.27210 0.26131

NDCG@20 0.25912 0.29007 0.26478

HR@20 0.84089 0.85530 0.85265

Table 5.  Algorithm performance on Movielens-1M dataset under different learning rates. Significant values 
are in bold.

Learning rates 1e-5 3e-5 5e-5

Pre@20 0.19052 0.16436 0.16639

Recall@20 0.28210 0.26508 0.26670

NDCG@20 0.29907 0.26996 0.27257

HR@20 0.85630 0.85397 0.85478

Figure 5.  IHDT model performance of Movielens-1M dataset under different regularization coefficients.
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Ablation experiments
The proposed model has two improvements over other dual tower recommendation models, based on construct-
ing a heterogeneous recommendation base graph.

(1) This paper proposes an interactive dual tower model; that is, when the dual tower model is constructed, 
the user (item)-related items (users) are injected into the user (item) features for interaction to improve 
the accuracy.

(2) In this paper, we propose to improve the accuracy of the recommendation system through two design 
improvements. First, we use GNNs with higher-order learning mechanisms on the graph structure data, 
which shows a powerful feature extraction ability. Second, we converge the information features obtained 
from the dual tower model as the initial state of the GNN for higher-order fusion to improve the richness 
of user and item information. To verify the effectiveness and rationality of these two design improvements, 
we conducted corresponding ablation experiments and compared the difference in performance between 
the traditional and complete models. The specific completed comparative ablation experiments are as fol-
lows.

IHDTnoGCN : removed the GCN module; it verifies the effect of the model only in the dual tower.
IHDTnoEV : removed enhancement vector mechanism; it verifies the effect of the model using the traditional 
dual tower model.

The data used in the ablation experiment were the Movielens-1M dataset. Table 6 shows a comparison of the 
results of the improved model and the conventional model.

Table 6 shows that the two variants of the IHDT model algorithm show different degrees of effect degrada-
tion. The interaction-based dual tower model can obtain semantically richer user and item representations. The 
original dual tower model algorithm cannot obtain the historical interaction behavior of users, thus leading to 
poor accuracy. In contrast, the higher-order connectivity of GNNs can explore the importance of higher-order 
neighbors, assign them information on historical interaction behaviors, and enhance user representation and 
item representation, thus achieving improved accuracy of recommendation results.

Results overview
We comprehensively compared the IHDT algorithm with multiple mainstream recommendation algorithms on 
the public MovieLens data set. Our conclusions are as follows:

(1) Accuracy and diversity. IHDT’s precision index (precision) and recall rate (recall) are at the first-tier level 
among all state-of-the-art models.

(2) Response to long-tail demand. Judging from the hit rate indicator, the IHDT algorithm can better discover 
long-tail items and meet the needs of unpopular preferences. This benefits from the modeling of high-order 
feature relationships and the mining of implicit associations between users and items, thereby generating 
personalized recommendation results.

(3) Robustness and adaptability. Parameter sensitivity experiments show that IHDT achieves relatively stable 
performance. The algorithm also performs well across datasets of different sizes. This makes it easy to 
migrate applications and is very practical.

In summary, the method of combining interactive twin towers with high-order feature representation pro-
posed in this paper shows significant improvement in recommendation performance and application scalability.

Time cost analysis of introducing GCN high-order learning
The typical twin-tower model is mainly composed of a stack of fully connected layers. Due to the 
space-for-time strategy, it is very efficient in time. The time complexity of DNN can be expressed as 
O(

∑k
i=1(UDi,inDi,out + IDi,inDi,out) where U is the number of users, I is the number of items, Di,inandDi,out is 

the in/out representation dimension of layer i, and L is the number of fully connected layers. After introduc-
ing interactive learning and GCN, its time complexity increases to O(L ∗

(
UD2 + ID2 + ED

)
) , where E is the 

interactive edge Number, D is the representation dimension. Usually, UD2 + ID2 and ED are in the same order 
of magnitude.

Table 6.  Validation of ablation experiments on Movielens-1M dataset. Significant values are in bold.

Model Pre@20 Recall@20 NDCG@20

IHDTnoGCN 0.15972 0.23799 0.24817

IHDTnoEV 0.16427 0.26378 0.26967

IHDT 0.18052 0.27210 0.29007
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Summary
The paper proposes a new GNN-based recommendation system method, IHDT, that improves the accuracy of 
the traditional twin-tower recommendation model through interactive twin-tower structure and higher-order 
feature representation learning. Experimental results show that the IHDT algorithm can significantly improve 
the recommended accuracy compared with multiple competitive benchmarks.

Despite these advances, there are still several issues that require further study. First, more comprehensive 
work is needed to compare the computational efficiency of the IHDT method with other methods. Second, this 
method is currently evaluated only on the movie recommendation dataset; the application of IHDT for other 
types of recommendations (such as commodities and music) requires further research. Finally, further optimizing 
the choice of meta-path and user–project feature interaction is also an interesting research direction. Overall, the 
study provides valuable insights for improving the graph-based recommendation system, but more work needs 
to be done to promote the development of this field.

Data availability
The dataset file of this paper used is available at https:// pan. baidu. com/s/ 1AEh- XNP_ nJhxq rKuK0 CgeA, with 
password: a2b4.
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