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Investigation on explainable 
machine learning models to predict 
chronic kidney diseases
Samit Kumar Ghosh * & Ahsan H. Khandoker 

Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of 
the world’s population and leading to higher morbidity and death rates. The early stages of CKD 
sometimes present without visible symptoms, causing patients to be unaware. Early detection and 
treatments are critical in reducing complications and improving the overall quality of life for people 
afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based 
strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 
491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, 
and demographic variables. To develop the predictive model, five machine learning (ML) methods, 
namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme 
gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and 
area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of 
the features on the optimal model. Among the five models developed, the XGBoost model achieved 
the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature 
importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the 
three most influential features in the XGBoost model. The SHAP force analysis further illustrated the 
model’s visualization of individualized CKD predictions. For further insights into individual predictions, 
we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the 
early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and 
help clinicians better understand the rationale behind the predicted outcomes more effectively.

Chronic kidney disease (CKD) is a progressive and often debilitating medical condition characterized by the grad-
ual loss of kidney function over time. It is defined by a glomerular filtration rate (GFR) under 60mL/min/1.73m2 
for over 3 months or the presence of kidney damage  indicators1,2. Common causes of CKD include diabetes, 
high blood pressure, glomerulonephritis, and other related  conditions3. It affects millions globally and creates 
a significant healthcare burden due to its high prevalence, costly treatments, and potentially life-threatening 
 complications4. Early detection and identification of critical risk factors are crucial to managing CKD effectively 
and improving patient outcomes. Traditional diagnostic approaches are ineffective in properly predicting the 
progression of CKD and identifying the most significant factors contributing to its development. However, recent 
advancements in computational intelligence and machine learning (ML) techniques have shown great promise in 
terms of revolutionizing CKD diagnosis and variable importance  analysis5–8. This introduction investigates the 
relationship between computational intelligence and CKD diagnosis, emphasizing the use of ML techniques to 
predict and diagnose the disease at early stages. It also explores the idea of variable importance, highlighting its 
significance in understanding the underlying factors driving CKD progression and the development of tailored 
treatment strategies.

Over recent years, various studies have focused on the effective and precise diagnosis of CKD patients. Diverse 
classifiers have been employed to establish classification models to categorize clinical CKD data, as evidenced 
by the work of Jena et al.9. The investigation carried out by Ahmad et al.10 utilized supervised ML techniques, 
including neural networks (NN), logistic regression (LR), and support vector machines (SVM), to achieve this 
objective. A unified approach combining classification and association rule mining techniques has been employed 
to design a system for predicting and diagnosing CKD and its underlying causes. Among the diverse algorithms 
explored on medical data are random forest (RF), k-nearest neighbors (KNN), decision trees (DT), Naïve Bayes 
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(NB), LR, and SVM. Moreover, Alloghani et al.11 documented using the Apriori algorithm to choose attributes 
from the CKD dataset. This approach aimed to extract robust rules using the lift matrix.

In recent decades, there has been a notable increase in studies effectively diagnosing CKD patients with 
high accuracy. Wibawa et al.12 employed a combination of KNN and AdaBoost, utilizing the correlation-based 
feature selection (CFS) technique to select 17 attributes out of 24, resulting in an impressive accuracy of 98.1%. 
Polat et al.13 achieved a remarkable 98.5% accuracy using a SVM classifier with a filter subset evaluator method 
for feature selection, identifying 13 relevant features out of 24. Taznin et al.14 conducted research on a CKD 
dataset, achieving a notable 99% accuracy using the DT algorithm with only 15 attributes out of 24 features. 
Similarly, Amirgaliyev et al.15 attained a notable accuracy of approximately 94.60% using an SVM classifier with 
all 24 attributes. Yildirim et al.16 employed multilayer perceptron (MLP) and a sampling technique, achieving a 
noteworthy F1 score of 99.8%. On the same dataset, Salekin et al.17 achieved a remarkable 99.3% F1 score with 
a RF classifier, demonstrating similar results (99% F1 score) with only ten relevant predictive attributes. Rubini 
et al.18 utilized the fruit fly optimization algorithm (FFOA) for feature selection, identifying 11 relevant attrib-
utes out of 25 and achieving an accuracy of 99.08% using multi-kernel SVM (MKSVM) as the classifier. Emon 
et al.19 tested several ML algorithms and found that RFC exhibited the highest accuracy at 99%. Gupta achieved 
99.24% accuracy in the same dataset using  LR20. Manonmani et al.21 applied the improved teacher-learner-based 
optimization (ITLBO) algorithm as a feature selection technique, obtaining 16 features out of 24. They achieved 
an accuracy of 99.25% using the convolutional neural network (CNN) classification algorithm. Gunarathne 
et al.22 reduced attributes from 24 to 14 using the multiclass decision forest (MDF) method, resulting in 99.1% 
accuracy. Avci et al.23 classified CKD, attaining 99% accuracy with the J48 classifier. Aswathy et al.24 introduced 
a flower pollination algorithm (FPA)-based deep neural network (DNN), an innovative CKD diagnosis model 
leveraging Internet of Things (IoT) and cloud technologies. Demonstrating superior performance in sensitivity, 
specificity, accuracy, F-score, and kappa, the model utilized the FPA and oppositional crow search (OCS) for 
feature selection, suggesting future advancements in CKD diagnosis. Suliman et al.25 proposed an ensemble of 
deep learning-based clinical decision support systems (EDL-CDSS) for CKD diagnosis in an IoT-enabled cloud 
environment. The approach, incorporating data gathering, preprocessing, Adaptive Synthetic (ADASYN) outlier 
detection, and an ensemble of deep learning models with quasi-oppositional butterfly optimization algorithm 
(QOBOA) hyperparameter tuning, showed superiority over existing methods in simulations. In 2018, Shamsi 
et al. employed a statistical methodology, specifically the multivariable Cox’s proportional hazards analysis, to 
evaluate high-risk cardiovascular disease (CVD) patients. The purpose of this study was to determine independ-
ent risk factors, such as age, history of coronary heart disease (CHD), diabetes mellitus (DM), and smoking, for 
the development of CKD stages 3–526. Davide et al. developed ML techniques for predicting CKD stages 3–5 
using the same CKD dataset. Additionally, they conducted a feature ranking analysis to understand the most 
crucial clinical  factors27.

The reviews above indicate that numerous studies have been conducted on predicting CKD using ML tech-
niques. Various parameters, such as dataset size, dataset quality, and the timing of dataset collection, play signifi-
cant roles in enhancing model performance. However, many of these earlier models faced challenges in clinical 
implementation because of their lack of interpretability and the “black-box” nature of their  algorithms28,29. 
Understanding this “black box” is essential since it helps physicians understand the inner workings of ML 
 models30. Explainable artificial intelligence (XAI) was developed to address this issue and explain how machine 
learning (ML) makes decisions. Explainable ML is concerned with increasing the transparency and credibility of 
“black box” model decision-making. Among the prominent XAI techniques are the SHapley Additive exPlanation 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME)28,31. These techniques have demonstrated 
their effectiveness in providing valuable insights into machine learning models, particularly those related to CKD 
prediction. However, there seems to be a lack of studies on the dependability and robustness of these explanatory 
approaches when predicting outcomes for CKD.

The novelties of the present study with respect to the state-of-the-art are: (1) it focuses on predicting kidney 
disease by employing a variety of ML algorithms such as LR, RF, DT, and NB; (2) the research evaluates the 
proposed method against XGBoost, a leading-edge algorithm, for predicting overall survival outcomes in CKD 
patients; (3) the study elucidates the predictions of the XGBoost model through the application of SHAP and 
LIME methods; (4) it demonstrates how these interpretable models can contribute to the medical field by fore-
casting patients’ survival probabilities; (5) the study underscores the significance of personalized risk stratification 
through the developed model, highlighting its potential to assist clinicians in tailoring treatment intensity based 
on the unique prognostic profiles of individual patients.

Materials and method
Data source and description
The dataset used in this work was obtained from 544 patients admitted to Tawan Hospital in Al-Ain City, 
Abudhabi, United Arab Emirates (UAE). The data were collected between January 2008 and December  200826. 
The Tawam Hospital and UAE University research ethics board approved the study protocol (Application No. 
IRR536/17). Informed consent was not required since patient data and information were anonymized and de-
identified prior to analysis. All the experiments were performed in accordance with the approved guidelines and 
complied with the Declaration of Helsinki. The data details are publicly available at the following link: https:// 
figsh are. com/ artic les/ datas et/ 67111 55? file= 12242 270. The flow diagram of the cohort study, which includes the 
inclusion and exclusion criteria, is depicted in Fig. 1.

The dataset comprises demographic, biochemical, and clinical data pertaining to patients with CKD. The 
distinctive characteristics include gender, age, history of coronary heart disease (CHD), history of diabetes, his-
tory of vascular diseases, history of smoking, history of hypertension (HTN), history of dyslipidemia (DLD), 
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history of obesity, medications for dyslipidemia (DLD), medications for diabetes (DM), ACEIARB, cholesterol 
levels, triglyceride levels, glycosylated hemoglobin type A1C (HgbA1C), creatinine levels, estimated glomerular 
filtration rate (eGFR), systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), 
and follow-up duration.

The categorical features include the patient’s gender. Additionally, personal history factors are considered, 
such as diabetes history, CHD history, vascular disease history, smoking history, HTN history, DLD history, and 
obesity history. Disease-specific medications, namely DLD medications, diabetes medications, HTN medications, 
and inhibitors (angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists), are represented 
as binary values (0, 1). The target attribute is a nominal variable labeled “CKD” and “non-CKD”. All attributes 
in the dataset correspond to the patient’s initial visits in January 2008, except time-year and the binary variable 
EventCKD35 (represented as 0 and 1). The follow-up duration was extended until June 2017. The binary values 
0 and 1 represent patients in non-CKD stages 1 or 2 and CKD stages 3, 4, or 5, respectively. Within the follow-up 
duration, 56 patients (11.41%) were identified as being in CKD stages 3–5 from the total cohort. In this study’s 
framework, ‘time’ denotes the length of the follow-up period following the patients’ diagnosis and commence-
ment of therapy, measured in survival months.

Proposed method
Figure 2 presents a comprehensive framework, illustrating sequential steps from data collection through preproc-
essing, diverse machine learning algorithms, model evaluation, and the application of explainable AI techniques 
(LIME and SHAP) for generating local and global explanations.

Initial preprocessing refines raw data, encompassing handling missing values, scaling features, encoding 
variables, and addressing imbalances. Simultaneously, data partitioning involves creating training and testing 
subsets. A balanced preprocessing and meticulous data partitioning strategy ensures model robustness, averting 
overfitting or underfitting. Subsequently, a diverse set of ML algorithms was applied. The overall model under-
went evaluation, utilizing both statistical and explainable AI approaches, providing a nuanced assessment of its 
performance and interpretability.

Figure 1.  Flow diagram of the cohort study.

Figure 2.  Proposed methodology.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3687  | https://doi.org/10.1038/s41598-024-54375-4

www.nature.com/scientificreports/

Machine learning algorithms
AI, especially ML, has empowered us to organize scattered and unstructured data, becoming a crucial element 
in business decision-making systems. These ML techniques can extract valuable insights from raw data, laying 
the foundation for predictive models. Such methods are widely employed in the healthcare sector for predic-
tive analytics and decision support, aiding medical professionals in diagnosing various diseases, among other 
clinical applications. Numerous studies have leveraged ML for CKD prediction. These studies’ most frequently 
referenced methods are  LR32,  RF33,  DT34,  NB35, and  XGBoost36–38. The following subsections delve into the ML 
techniques employed for the detection and diagnosis of CKD.

Explainable artificial intelligence (XAI)
XAI has emerged as a crucial area of research to enhance AI systems’ transparency, accountability, and trust-
worthiness. XAI aims to mitigate the gap between the “black-box” nature of many ML models and the necessity 
for understandable explanations of their decision-making  processes39,40. This is especially relevant in vital fields 
such as healthcare, finance, and legal systems, where the ability to understand and justify AI-driven decisions is 
essential. The two most prominent techniques in the XAI field are SHAP and LIME. A comprehensive explana-
tion of these techniques is provided in this subsection.

SHapley Additive exPlanations (SHAP)
SHAP is an abbreviation for SHapley Additive exPlanations, first introduced in 2017 by Lundberg and  Lee41. It 
employs principles from game theory to provide localized explanations for a model’s predictions. In game theory, 
the model assumes the role of game rules. At the same time, the input features resemble potential players who 
can either engage in the game (observed features) or abstain (an invisible feature).

SHAP computes Shapley values by evaluating the model with diverse feature combinations. It measures the 
average shift in prediction when a feature is active compared to when it is inactive. This estimated variation 
represents the impact of a feature on the model’s prediction and is known as the Shapley value. So, these Shapley 
values provide a numerical evaluation of how much each feature aids in the model’s prediction for a given input. 
SHAP generates Shapley values, which provide model predictions using linear expressions with binary variables 
to indicate if a particular variable is active in the  model42.

The SHAP methodology can be outlined as follows: for a given input vector [x1, x2, . . . , xp] comprised of p 
features and a pre-trained model f, SHAP can be employed to approximate and yield a more comprehensible 
model, g. This simplified model helps understand how individual features contribute to the overall prediction 
across all feasible subsets of features. The representation of model g is articulated by the subsequent  formula43:

In Eq. (1), φ0 is the base value of the model, namely the mean value of all model outputs, the sequence 
[z1, z2, . . . , zp] serves as a streamlined variant of input x. In this context, z assumes a value of 1 when the related 
feature plays a role in the prediction and a value of 0 when it is omitted. The coefficient φi ∈ R signifies the Shap-
ley value attributed to each feature and M is the number of features. This value is essentially a weighted average 
of contributions from all potential feature combinations, where the weights depend on the size of each feature 
combination. The coefficient φi is evaluated by the following  expression43:

In the given context, φi represents the Shapley value associated with feature i. The model to be elucidated is 
denoted by f, while x signifies the datapoint input. The term x′ refers to the distilled data input. The notation |z| 
describes the count of non-zero elements in z. Additionally, z ⊆ x′ encompasses all vectors of z where the non-
zero components align with the non-zero components present in x′ . Lastly, p indicates the count of streamlined 
input features. The quantity fx(z)− fx(z\i) represents the deviation of shapley values from their average for each 
prediction, indicating the contribution of the ith variable.

SHAP produces a collection of feature weights that may be used to offer explanations for the model’s predic-
tions. These weights factor in the interplay between features, offering a detailed and refined understanding of 
the model’s functioning. Essentially, SHAP determines the Shapley value for each feature as a participant within 
the trained model. This involves evaluating all potential feature combinations, which is time-intensive. However, 
it’s recognized that SHAP can be efficiently computed for models with tree-like structures.

Local interpretable model‑agnostic explanations (LIME)
The term LIME is an abbreviation for “local interpretable model-agnostic explanations”. This method, irrespec-
tive of the underlying model, is used to investigate the connection between input parameters and the output of 
a pre-trained  model44. Fundamentally, LIME operates by approximating the behavior of a complex model near 
a specific data point. It does so by training a simpler and more interpretable model, often a linear model, on a 
subset of the original data centered around the instance of  interest45. The subset of data is formed by changing 
the instance’s characteristics while keeping the label constant. By observing how the simpler model behaves in 
these disrupted instances, we can understand how the original model might behave. The explanations offered 
by LIME for a given observation x are represented mathematically  as46

(1)g(z) = φ0 +

M
∑

i=1

φizi

(2)φi(f , x) =
∑

z⊆x′

|z|!
(

p− |z| − 1
)

!

p!

[

fx(z)− fx(z\i)
]
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In the given equation, G represents the collection of interpretable models, such as linear models and deci-
sion trees. The explanation, viewed as a model, is denoted by g ∈ G . Meanwhile, f corresponds to the function 
mapping from Rd to R . The term πx(z) signifies the proximity measure between an instance z and x. The com-
plexity measure of the explanation g ∈ G is captured by �(g) . LIME’s operational approach minimizes the loss 
function (L) without making assumptions about f. This is important since LIME’s distinguishing feature is its 
model-agnostic nature. The size of L indicates the difference between the approximation of f by g in the region 
described by πx , indicating the fidelity of the approximation. The steps involved in the LIME process are gener-
ally as  follows43: (1) Select the specific data points for which an explanation of the model’s prediction is desired. 
(2) Create new data points by randomly perturbing the features of the selected instance while keeping the label 
constant. (3) Predict the outcome for each altered data point from the complex black-box model and record the 
related input features. (4) Train an interpretable model like an LR or DT using the input variables and target 
values. (5) The coefficients from the interpretable model provide insights into which features exert the most 
significant impact on the prediction for a given instance.

The key advantage of LIME is its model-agnostic characteristics. It does not matter if you have a decision 
tree, a neural network, or any other type of classifier; LIME can be applied similarly to explain its predictions. 
However, it is important to mention that LIME provides local explanations, i.e., individual predictions. It does 
not necessarily capture the global behavior of the model.

Performance evaluation
The experimental procedure for implementing ML algorithms was executed exclusively in Python 3.9. The 
patients were divided into training and testing sets using a random allocation method, with a ratio of 7:3. Fur-
thermore, to improve the performance of ML models, the researchers have incorporated the stratified k-fold 
cross-validation (SKCV) method, as described in Prusty et al.47. The primary advantage of SKCV is that it ensures 
that each fold retains the same proportion of each class as the whole dataset. This reduces the likelihood of creat-
ing a fold with very few instances of the minority class. By preserving the class distribution in each fold, SKCV 
provides a more reliable estimate of the model’s performance. This reduces the variance that might result from 
non-stratified k-fold cross-validation, especially in imbalanced  scenarios48,49.

In this study, a 10-fold stratified cross-validation (CV) approach was utilized. The training data is first split 
into 10 folds. The model is subsequently trained on nine folds and validated on the remaining fold. This proce-
dure is repeated ten times with a different fold for validation. The average performance across these iterations 
indicates the model’s overall generalization capability. The receiver operating characteristic (ROC) curve was 
used as the assessment measure once the models were finalized to confirm their efficacy further. To ensure the 
robustness of the ML algorithms, the classification tasks were iterated five times. The performance assessment 
of the ML model was carried out using a variety of metrics, encompassing accuracy (Acc), sensitivity (Sen), 
specificity (Spe), and the F-score, as defined in Eqs. (4), (5), (6), and (7), respectively.

Accuracy is a metric that evaluates the classifier’s performance in accurately classifying the different groups. 
Sensitivity is a quantitative assessment of the accuracy in identifying individuals without CKD, commonly 
referred to as the true positive rate (TPR) or recall. The true negative rate (TNR), known as specificity, is com-
monly defined as the proportion of individuals correctly identified as not having CKD. The area under the 
ROC curve (AUC) is a metric that quantifies the classifier’s capacity to differentiate between distinct classes. 
The classification process for the ML classifiers was performed using a 10-fold CV approach. This approach was 
repeated five times to ensure consistency. The reported results include the average classification accuracy from 
these five repetitions and the highest classification accuracy achieved across all classifiers. Here, the terms tp 
(true positive), tn (true negative), fp (false positive), and fn (false negative) correspond to the instances that have 
been accurately predicted as positive, accurately predicted as negative, incorrectly predicted as positive, and 
incorrectly predicted as negative, respectively.

Results
The study cohort included 491 patients with eGFR ≥ 60mL/min/1.73m2 (at baseline); 250 males and 241 
females in a ratio of 1.04 : 1. The mean age at baseline was 53.20± 13.82 , and their ages range between 23 and 89 
years old (median 54, IQR, 44–46). Out of 491 patients, 435 (88.59%) patients are CKD stages 1–2 (non-CKD 

(3)φ(x) = argmin
g∈G

L(f , g ,πx)+�(g)

(4)Acc =
tp + tn

tn + tp + fn + fp

(5)Sen =
tp

fn + tp

(6)Spe =
tn

tn + fp

(7)F-score =
2× tp

2× tp + fp + fn
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group), and 56 (11.41%) patients are CKD stages 3–5 (CKD group). The baseline characteristics of the individu-
als in the nested case-control study are presented in Table 1. eGFR was assessed every 3 months from baseline 
to June 2017. In this study, CKD stages 3–5 were defined using the National Kidney Foundation Kidney Disease 
Outcomes Quality Initiative (KDOQI) standards, with an eGFR of less than 60mL/min/1.73m2 for ≥ 3  months50. 
A descriptive statistical analysis was done using a mean ± SD with an unpaired, two-tailed t-test for continuous 
variables and a frequency distribution for categorical variables (using the chi-squared test) to learn about the 
patients and their medical conditions. The statistical and quantitative description of the categorical and numeri-
cal features is described in Table 1.

It has been observed from Table 1 that CKD group subjects (stages 3–5) have a higher history of diabe-
tes (83.93% vs 38.62%), CHD (30.36% vs 6.44%), vascular diseases (12.50% vs 5.06%), smoking (25.00% vs 
14.02%), HTN (91.07% vs 65.29%), ACEIARB (76.79% vs 40.46%) and the medications of dyslipidemia (78.57% 
vs 52.18%), diabetes (73.21% vs 27.59%), HTN (83.93% vs 58.85%) than non-CKD group subjects (stages 1–2). 
The mean age of the non-CKD group ( 52.04± 13.87 years) was significantly lower than that of the CKD group 
( 62.23± 9.51 years). The levels of triglycerides (TG), HbA1C, serum creatinine (SCr), and SBP in the CKD group 
were significantly higher as compared to the non-CKD group. Still, the cholesterol, DBP, and BMI were lower.

The data is presented in terms of the mean and SD. The p value is a measure used in statistical hypothesis test-
ing to determine the probability of obtaining results as extreme as the ones observed during the study, assuming 
that the null hypothesis is true. A p value of 0.05 or less was regarded as statistically significant. p value of the 
covariates such as age, gender, cholesterol, HgbA1C, creatinine, SBP, history of diabetes, CHD, vascular diseases, 
smoking, HTN, dyslipidemia, ACEIARB, and medications of dyslipidemia, diabetes, and HTN is less than 0.05, 
and this indicates that these variables had a significant impact on the CKD stage. The other covariates ( p > 
0.05) have no significant influence. We identify statistically significant variables and represent their correlations 
through a heatmap based on the correlation coefficient matrix in Fig. 3.

In Fig. 3, it is evident that gender ( r = 0.096 ), age ( r = 0.230 ), history of diabetes ( r = 0.290 ), history of CHD 
( r = 0.260 ), history of vascular diseases ( r = 0.100 ), history of smoking ( r = 0.097 ), history of HTN ( r = 0.180 ), 
history of DLD ( r = 0.140 ), DLD medications ( r = 0.170 ), DM medications ( r = 0.310 ), HTN medications 
( r = 0.160 ), ACEIARB ( r = 0.230 ), HgbA1C ( r = 0.350 ), creatinine ( r = 0.300 ), and SBP ( r = 0.120 ) are posi-
tively correlated with the target (EventCKD35), while cholesterol ( r = −0.140 ) exhibits a negative correlation 
with the target. Based on these observations, we inferred that none of the features were redundant and chose to 
incorporate all of them for model development.

In the study involving 491 qualified participants, it was found that a small proportion of the participants had 
missing baseline data. Specifically, 3.1% of the participants were missing baseline serum HgbA1C data, equating 
to approximately 15 individuals. To address these missing values and maintain the integrity of the dataset, we 
imputed the missing values using the median values of the respective measures. The median, being a robust meas-
ure of central tendency, is particularly suitable for handling missing values as it is less sensitive to outliers and 
variations in the data. Imputing the missing values with the median for HgbA1C ensures that the dataset’s integ-
rity is preserved. This approach allows subsequent analyses and interpretations to be based on a more complete 

Table 1.  Baseline characteristics of patients.

Variables
Original data
(N = 491)

Non-CKD
(N = 435)

CKD
(N = 56) p value

Age (years) 53.20± 13.82 52.04± 13.87 62.23± 9.51 < 0.001

Gender (male (1):female (0)) 250:241 214:221 36:20 0.046

History of diabetes (0: false, 1: true) 215 (43.79%) 168 (38.62%) 47 (83.93%) < 0.001

History of coronary heart diseases (0: false, 1: true) 45 (9.16%) 28 (6.44%) 17 (30.36%) < 0.001

History of vascular diseases (0: false, 1: true) 29 (5.91%) 22 (5.06%) 7 (12.50%) 0.036

History of smoking (0: false, 1: true) 75 (15.27%) 61 (14.02%) 14 (25.00%) 0.046

History of hypertension (0: false, 1: true) 335 (68.22%) 284 (65.29%) 51 (91.07%) < 0.001

History of dyslipidemia (0: false, 1: true) 317 (64.56%) 270 (62.07%) 47 (83.93%) 0.001

History of obesity (0: false, 1: true) 248 (50.51%) 217 (49.89%) 31 (55.36%) 0.480

History of ACEIARB use (0: false, 1: true) 219 (44.60%) 176 (40.46%) 43 (76.79%) < 0.001

Dyslipidemia medications (0: false, 1: true) 271 (55.19%) 227 (52.18%) 44 (78.57%) < 0.001

Diabetes medications (0: false, 1: true) 161 (32.79%) 120 (27.59%) 41 (73.21%) < 0.001

Hypertension medication (0: false, 1: true) 303 (61.71%) 256 (58.85%) 47 (83.93%) < 0.001

Cholesterol (mmol/L) 4.98± 1.10 5.03± 1.09 4.54± 1.09 0.002

Triglycerides (mmol/L) 1.32± 0.79 1.29± 0.80 1.50± 0.72 0.054

Glycosylated hemoglobin type A1C (%) 6.6± 1.71 6.38± 1.44 8.30± 2.57 < 0.001

Creatinine ( µmol/L) 67.86± 17.92 65.93± 17.12 82.82± 17.08 < 0.001

Systolic blood pressure (mmHg) 131.37± 15.69 130.69± 15.31 136.73± 17.66 0.006

Diastolic blood pressure (mmHg) 76.87± 10.71 77.14± 10.54 74.75± 11.83 0.115

Body mass index ( kg/m2) 30.18± 6.24 30.20± 6.27 30.02± 6.06 0.833
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representation of the participants’ profiles. This strategy minimizes the potential bias introduced by missing 
data and maintains the statistical reliability of the findings, enabling more accurate insights to be drawn from 
the study. However, the dataset used in this research exhibits inherent imbalances, notably a significant disparity 
between CKD and non-CKD patients. Specifically, there are relatively few records of CKD patients. To address 
this imbalance, data augmentation methods such as SMOTE (synthetic minority oversampling technique)51 are 
employed, generating synthetic patient records. This step is crucial to rectify the imbalance and establish a more 
equitable foundation for ML training. Balancing the dataset becomes imperative for ensuring the robustness and 
fairness of ML models and their subsequent application in the study. The entire CKD dataset is divided into 10 
equal (or nearly equal) parts, or ‘folds’. Each fold should ideally have the same proportion of observations as the 
whole dataset with respect to the target class. The process consists of 10 iterations. During each iteration, a single 
fold is designated as the test set. The remaining nine folds are allocated for use as the training set. A model is 
trained on nine training folds and then tested on a single test fold. The process is iterated until all ten folds have 
been utilized as the test set. After all ten iterations are completed, the performance metrics from each iteration 
are averaged to provide an overall assessment of the model’s performance. The hyperparameter configurations 
for each of the models are outlined in Table 2, with optimization carried out using the grid-search method.

The training performance of individual algorithms is visualized in Fig. 4, where LR, RF, DT, and NB achieved 
accuracy scores of 87.98% , 92.67% , 89.00% , and 82.49% , respectively.

In contrast, the state-of-the-art XGBoost algorithm demonstrated superior accuracy at 93.29% , with opti-
mal parameters identified through grid-search, including a maximum depth of 3, a learning rate of 0.05, and a 
minimum child weight of 5. A summary of the performance of the ML models in predicting CKD is outlined in 
Table 3. For a comprehensive evaluation of these models, key metrics such as sensitivity, specificity, and F-score 
were calculated, and the results are detailed in the same table. Notably, the XGBoost algorithm exhibited the 
most impressive overall performance, achieving an AUC score of 0.9689. The AUC scores for other models were 
LR: 0.9435, RF: 0.9602, DT: 0.9125, and NB: 0.8955 as presented in Table 3.

This indicates that the XGBoost algorithm evaluated in this study demonstrated performance comparable to 
or better than others. This is because the method is designed to build a sequence of tree models one at a time and 
try to fix the mistakes made by the models before them. This boosting strategy enhances the model’s efficiency. 
Therefore, it is an efficient ML method built on a scalable end-to-end tree-boosting system design.

With the explosion of medical data and increased demand for more individualized and precise treatment, the 
XGBoost algorithm has emerged as a highly promising solution. The impressive execution speed and exceptional 
model performance of this system position it as a potential frontrunner among ML alternatives. The feature 

Figure 3.  Heatmap of the correlation coefficient matrix. Blue signifies a positive correlation, while yellow 
represents a negative correlation. The intensity of the color reflects the magnitude of the correlation coefficient, 
with more vibrant shades indicating stronger correlations. Specifically, shades tending towards blue represent 
coefficients approaching 1, while those leaning towards yellow represent coefficients approaching − 1.
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importance ranking with the SHAP summary plot for the XGBoost model is presented in Fig. 5, and the top 
three most important variables contributing to the predictive model were creatinine, HgbA1C, and age. The 
figure displays the SHAP value on the x-axis, and the feature ranks on the y-axis. Features with higher SHAP 
values are considered more influential in detecting the type and are placed at the top. The features are ordered 
from highest to lowest SHAP scores in the figure.

Furthermore, the SHAP beeswarm plot depicted in Fig. 6 offers detailed explanations regarding how the 
parameters within each variable contribute to the desired outcome (global explanation and interpretation).

This visual representation provides insights into the individual contributions of various factors, facilitating a 
comprehensive understanding of their impact on the model’s predictions. The x-axis illustrates the SHAP value, 
with each line corresponding to a specific feature. Notably, red dots indicate higher feature values, while blue 

Table 2.  Hyperparameter evaluation range for the ML models.

ML model Hyperparameter Search space Selected value

LR
C value 0.001, 0.01, 0.1, 1 0.1

Penalty ‘ℓ1 ’, ‘ ℓ2’ ℓ2

RF

Criterion ‘Gini’, ‘entropy’ ‘Entropy’

Max_depth 10, 20, 30 30

n_estimators 50, 100, 200 50

Min_samples_leaf 1, 2, 4 1

Min_samples_split 2, 5, 10 5

DT

Criterion ‘Gini’, ‘entropy’ ‘Gini’

Max_depth 10, 20, 30, 40 20

Min_samples_leaf 1, 2, 4 4

Min_samples_split 2, 5, 10 2

NB Var_smoothing Logarithmic scale: 1 to 10−9 , step size = 100 0.0043

XGBoost

n_estimators 50, 100, 200 200

Max_depth 3, 5, 7 3

Learning_rate 0.01, 0.05, 0.1 0.05

Min_child_weight 1, 3, 5 5

Figure 4.  Training performance of the individual algorithms.

Table 3.  Performance of ML models for predicting CKD.

ML Model Accuracy (%) Sensitivity (%) Specificity (%) F-score AUC 

LR 87.98± 0.060 86.48± 0.089 89.37± 0.084 0.8768± 0.062 0.9435± 0.032

RF 92.67± 0.040 93.03± 0.041 92.68± 0.040 0.9286± 0.031 0.9602± 0.023

DT 89.00± 0.045 90.58± 0.069 91.29± 0.078 0.9113± 0.058 0.9125± 0.056

NB 82.49± 0.065 78.32± 0.095 86.68± 0.057 0.8144± 0.073 0.8955± 0.050

XGBoost 93.29± 0.041 91.80± 0.051 94.73± 0.048 0.9313± 0.042 0.9689± 0.035
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dots denote lower ones. Each point on the plot signifies a single observation, and its position along the x-axis 
reflects the influence of the corresponding feature on the model’s output. We utilized SHAP force analysis and 
the LIME algorithm to explain the individualized prediction of CKD, drawing two examples from the validation 
set. The SHAP-based explainable function plot for patient ID 1 is presented in Fig. 7, depicting SHAP values 
for each feature.

The length of each feature’s ‘force’ indicates its impact on the prediction. The impact of a feature on the 
model’s output is directly proportional to the size of the arrow. According to Fig. 7, the model’s predictive prob-
ability values [f(x)] for CKD patients 1–2 (patient ID: 1) are 0.05. Certain factors, such as systolic blood pres-
sure, the patient’s age (64 years), gender (female), and cholesterol exhibit a positive influence, while creatinine, 
HgbA1C, and DM medications contribute negatively to predicting the outcome. A visual representation of these 

Figure 5.  Ranking of feature importance indicated by SHAP algorithm for predicting risk of CKD.

Figure 6.  Beeswarm summary plot illustrating the influence of input variables on the predictive performance of 
the XGBoost model, using SHAP values.
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contributions can be observed in Fig. 8 through a waterfall plot, depicting the CKD generated by the XGBoost 
model.

The positive impact of a feature is depicted in red, elevating the prediction from the base value, while the nega-
tive effect is shown in blue, lowering the prediction. Each step in the waterfall plot signifies the contribution of a 
distinct feature to the model’s prediction. The length of each step corresponds to the magnitude of the feature’s 
impact, and the direction (up or down) indicates whether the feature is driving the prediction higher or lower. 
As previously mentioned, the label for the target outcome (EventCKD35) indicates a binary result. A value of 0 
denotes non-CKD, i.e., CKD stages 1–2, while 1 represents CKD, specifically CKD stages 3–5. Accordingly, the 
model predicted a probability of 0.05 for patient ID 1, suggesting a low likelihood of CKD stages 3–5. Similarly, 
in the case of another patient (Patient ID: 68) with f (x) = 0.78 , factors such as HgbA1C, gender (female), cho-
lesterol, age (61 years), creatinine, and ACEIARB play a significant role in predicting a high likelihood of CKD, 
as illustrated in Fig. 9.

The waterfall representation in Fig. 10 depicts the prediction of CKD in terms of SHAP values, with features 
arranged in order of relevance from the most impactful (top) to the least impactful (bottom). Analyzing the 
SHAP values for Patient ID 68 reveals that the majority of features positively contribute to the final prediction 
probability of CKD, with HgbA1C being the most influential.

Figure 7.  SHAP-based explainable function plot for patient ID 1 (true: non-CKD, predicted: non-CKD).

Figure 8.  SHAP waterfall plot for patient ID 1 (true: non-CKD, predicted: non-CKD).

Figure 9.  SHAP-based explainable function plot for patient ID 68 (true: CKD, predicted: CKD).
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Combining SHAP values from various individual explanations provides a comprehensive perspective on the 
contribution of features across the entire dataset.

Further insight into the top three clinical features contributing to the XGBoost model is presented in the 
SHAP dependence plot in Fig. 11.

This plot visually illustrates the relationship between the values of a single feature and their corresponding 
SHAP, which represents the impact of a feature value on the model’s prediction. The x-axis represents the values 
of a specific feature, such as creatinine, HgbA1C, and age, while the y-axis displays the corresponding SHAP 
values associated with those feature values. For instance, when examining creatinine, the x-axis represents the 
range of creatinine values, and each point on the plot corresponds to a data point in the dataset. The y-axis, 
representing SHAP values, provides insight into how higher or lower creatinine values influence the model’s 
prediction. Consistently positive SHAP values for higher creatinine values suggest a positive contribution to the 
model’s prediction, while consistently negative values imply a negative influence. Similarly, for HgbA1C, the 
x-axis displays the range of HgbA1C values, and the y-axis shows the corresponding SHAP values. Positive SHAP 
values for higher HgbA1C values indicate a positive contribution to the model’s output, while negative values 
suggest a negative contribution. In the case of age, the x-axis represents the range of age values, and the y-axis 
displays the associated SHAP values. Positive SHAP values for higher age values indicate a positive influence on 
the model’s output, while negative values indicate a negative influence. These SHAP dependence plots help in 
understanding the relationships between individual clinical features and the model’s predictions. By analyzing 
these plots, one can determine whether the relationships are linear, nonlinear, or involve complex interactions 
with other features. Additionally, insights into patterns, concentrations of data points, and information distribu-
tion across the plot can be obtained. Overall, examining these plots for creatinine, HgbA1C, and age provides 

Figure 10.  SHAP waterfall plot for patient ID 68 (true: CKD, predicted: CKD).

Figure 11.  SHAP dependence plot for top three clinical features influencing the XGBoost model (a) creatinine; 
(b) HgbA1C; (c) age.
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valuable insights into how changes in these clinical features affect the predictions of the XGBoost model, aiding 
interpretation and potentially informing decision-making in a clinical context. Positive SHAP values signify 
positive contributions, while negative values indicate negative contributions, offering a nuanced understanding of 
feature impacts on the model’s output. Furthermore, LIME techniques were employed to analyze and interpret the 
prediction for a particular instance. This analysis was illustrated by examining an individual patient, as depicted 
in Figs. 12 and 13. The figure illustrates the features that influenced the categorization of individuals as either 
CKD (orange) or non-CKD (blue). The specific values of these features are detailed in the figure, representing 
their respective contributions.

The left section of the figure displays the predicted results for each patient. In the middle part of the figure, 
the top ten influential variables determining CKD and non-CKD events are highlighted in descending order of 
importance; the length of each bar signifies the weight or significance of that variable in the prediction process. 
Attributes of the orange color support CKD, and attributes of the blue color support non-CKD. The floating-
point numbers displayed on the horizontal bars indicate the relative significance of these features. A longer 
bar indicates a variable with a more pronounced influence on the outcome. The rightmost section of the figure 
shows the critical values of these ten variables at their peak influence on the outcome. The prediction outcome 
for patient ID 1, as illustrated in Fig. 12, confidently suggests that this specific patient is at CKD stages 1–2, with 
a prediction confidence of 95%. Similarly, Fig. 13 shows the prediction for patient ID 68, categorizing this indi-
vidual as non-CKD, specifically falling within CKD stages 3–5, with a prediction confidence of 86%. Moreover, 
the figures elaborate on the reasoning behind these predictions by highlighting the contributions of the input 
features to the projected outcomes.

Using the SHAP and LIME approaches, we assessed the prediction probabilities of the models for each patient 
in our database, which included 491 cases. These assessments provide in-depth knowledge regarding how the 
models recognize each patient and the chance that they will exhibit particular outcomes or attributes. The sup-
plemental Table S1 presents a more in-depth analysis and context for the results. The predictive probabilities 
correlate with patients with an elevated likelihood of experiencing complications stemming from their kidney 
ailment, yielding higher scores for those at greater risk. Conversely, lower risk scores indicate a reduced likelihood 
of encountering such complications. This outcome in predictive probabilities proves beneficial for healthcare 
practitioners, as it aids in discerning patients categorized under CKD stages 1–2 or 3–5. By understanding these 
probabilities, professionals can pinpoint patients needing more intensive monitoring, tailored interventions, or 
specialized care, depending on their specific risk profiles.

Figure 12.  A visualization of LIME model scores for patient ID 1 using the XGBoost model.

Figure 13.  A visualization of LIME model scores for patient ID 68 using the XGBoost model.
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Discussion
This study presents the development and testing of five ML models. We trained and evaluated these models 
using a dataset that included 22 clinical features. This research aimed to predict patients that fall into two cat-
egories: CKD stages 1–2 or 3–5. The XGBoost model outperformed other models such as LR, RF, DT, and NB. 
Furthermore, in response to the continuous criticism of ML models for their frequently opaque and difficult-
to-understand predictions, we have added explainability and interpretability characteristics to our XGBoost 
model, utilizing the LIME and SHAP techniques. These techniques provide a detailed analysis of patient-specific 
information regarding the impact of each variable on the predicted chance of CKD as determined by the model. 
This analysis includes a local interpretation, which focuses on how each variable contributes to the chance of 
CKD for a specific patient.

In the past, various ML algorithms have been utilized to effectively and accurately diagnose patients with 
CKD. However, a current trend is emerging to explore the applicability of ML for diagnosis and prognosis in 
CKD. In a recent study, Liu et al. discovered that the XGBoost model outperformed other machine learning 
models such as LR, RF, and SVM in predicting mortality among patients with acute renal  injury52. Similarly, Hu 
et al. found that XGBoost outperformed SVM, KNN, LR, DT, NB, and  RF53. Moreover, a recent meta-analysis 
conducted by Song et al. has confirmed that XGBoost outperformed other machine learning techniques, such 
as SVM and Bayesian networks, in predicting acute kidney injury  outcomes54. However, these studies lacked 
external validation and explainability. Addressing this research gap, our research focused on the potential of ML 
algorithms for prognostication in CKD. Furthermore, the LIME and SHAP techniques were utilized to further 
improve the transparency and interpretability of our model’s predictions. In addition to determining the pre-
dictive performance of the XGBoost model, the LIME and SHAP techniques provide valuable insights into the 
rationale behind the model’s predictions. In particular, SHAP values were used to demonstrate the importance 
of features and how certain compound sub-structures affect XGBoost’s predictions.

Among the variables evaluated, creatinine, HgbA1C, and age emerged as the three most important contribu-
tors to the XGBoost model. By incorporating three key features—creatinine, HgbA1C, and age—the model 
developed in this study demonstrates significant clinical applicability. These features have the potential to greatly 
assist physicians in diagnosing patients with CKD promptly and accurately. Creatinine, functioning as a reliable 
marker for kidney health, contributes to the model’s ability to enhance diagnostic precision. Another crucial 
feature, HgbA1C, plays a pivotal role in assessing long-term blood glucose control. Elevated HgbA1C levels signal 
poorly managed diabetes, a significant risk factor for CKD. Additionally, including age in the model recognizes 
the natural decline in kidney function associated with aging, offering a demographic perspective on CKD risk. 
By incorporating these significant features, the model strives to provide a more accurate and timely assessment 
of patients’ kidney health, potentially leading to improved management and outcomes for individuals at risk or 
already affected by CKD.

Conclusion
This study has introduced a robust ML framework leveraging computational intelligence for predictive diagnosis 
and variable significance determination in CKD. Various ML models, including LR, RF, NB, DT, and XGBoost, 
were employed. Among them, the XGBoost model emerged as the top performer, achieving an impressive AUC 
of 0.9689 and an accuracy of 93.29% in CKD prediction. Additionally, the investigation employed interpretable 
ML techniques such as SHAP and LIME for further analysis, providing insights into model behavior on both 
local and global scales. These methodologies contributed coherent and rational explanations, thereby enhanc-
ing the overall transparency of the model. To further improve this system, future enhancements could involve 
integrating more comprehensive healthcare datasets and incorporating advanced deep learning (DL) algorithms.

Data availibility
The datasets utilized for this study can be accessed freely at the link below: https:// figsh are. com/ artic les/ datas 
et/ 67111 55? file= 12242 270.
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