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Machine learning base models 
to predict the punching shear 
capacity of posttensioned UHPC 
flat slabs
Dina M. Ors 1*, Mohamed Ramadan 2,3, Ahmed M. Farghal Maree 3, Amr H. Zaher 3, 
Ahmed Afifi 2 & Ahmed M. Ebid 1

The aim of this research is to present correction factors for the punching shear formulas of ACI-318 
and EC2 design codes to adopt the punching capacity of post tensioned ultra-high-performance 
concrete (PT-UHPC) flat slabs. To achieve that goal, the results of previously tested PT-UHPC flat slabs 
were used to validate the developed finite element method (FEM) model in terms of punching shear 
capacity. Then, a parametric study was conducted using the validated FEM to generate two databases, 
each database included concrete compressive strength, strands layout, shear reinforcement capacity 
and the aspect ratio of the column besides the correction factor (the ratio between the FEM punching 
capacity and the design code punching capacity). The first considered design code in the first database 
was ACI-318 and in the second database was EC2. Finally, there different “Machine Learning” (ML) 
techniques manly “Genetic programming” (GP), “Artificial Neural Network” (ANN) and “Evolutionary 
Polynomial Regression” (EPR) were applied on the two generated databases to predict the correction 
factors as functions of the considered parameters. The results of the study indicated that all the 
developed (ML) models showed almost the same level of accuracy in terms of the punching ultimate 
load (about 96%) and the ACI-318 correction factor depends mainly on the concrete compressive 
strength and aspect ratio of the column, while the EC2 correction factor depends mainly on the 
concrete compressive strength and the shear reinforcement capacity.

Keywords Punching shear capacity, Ultra high-performance concrete, Post tensioned flat slab, Design code 
provisions, Artificial intelligence

Punching shear behaviour of the Column-slab connection using the normal reinforced concrete is usually sud-
den brittle failure due to the stress concentration at the small area surrounding the column. Thus, continuous 
research effort is performed to validate the current design recommendations available by different international 
design codes to make advantage of the advanced construction materials and the construction methods in such 
critical failure  criterion1–3. The most common methods to avoid the brittle failure in the column-slab connec-
tions are to increase the slab or/and column dimensions using various strategies including the column head and/
or drop/up panel which is not always effective especially in large spans or heavy loads in industrial buildings, 
bridges and even raft foundations. The advanced construction materials played an important role in improving 
the punching shear behavior of the column-slab connection in terms of ultimate strength, delayed cracking, 
and improved post-peak load energy dissipation ability. The main obstacle to using these promising materials is 
the design codes restricted the design equations to a limit of 69 MPa as in the  EC24. Thus, research work is still 
needed to set up design recommendations approved by different codes to validate using the advanced materials 
with different construction methods.

Subramanian5, recommended based on an extensive experimental punching shear tests of flat slabs with high 
strength concrete to consider the effect of the shear stud reinforcement in the Indian, ACI and the Australian 
design code. The author proved the important role of the shear stud reinforcement in the enhancement of the 
punching of the high strength concrete in terms of strength and ductile failure.
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Harries6 experimentally tested a set of flat slabs with ultra-high concrete compressive strength and compared 
the results with the available ACI318 design equation. The researchers modified the ACI equation to consider the 
size effect, thus more accurate prediction of the ultimate punching shear strength when compared to the original 
ACI318. Also, the authors found that according to the fibers in the UHPC mix tend to align in the flow direction 
result in different flexural capacities in different directions. The developed equation is limited to the UHPC flat 
slabs with no axial force as in prestressed concrete or the developed axial tension force due to temperature change.

Joh et al.7 conducted a series of punching shear experimental tests of UHPC flat slabs restrained along the four 
sides. The ACI assume that the failure angle of the major punching crack is 45°, while the researchers found that it 
could be reduced to be 38° in case of prestressing the flat slabs. The equations using this assumption predict more 
accurate ultimate load when compared to the conventional design equations in the ACI. Also, the authors found 
that more research is needed to study the difference between conventional concrete and the UHPC, especially 
the post cracking behavior when flexural failure is expected.

Metwaly8 examined the validity of the ECP-203, ACI-318, and BS-8110 codes provisions on the punching 
shear capacity of fifty-five flat slabs. The authors found that the parameters of slab thickness, tension reinforce-
ment ratio and concrete compressive strength have significant effect of the punching shear behavior in terms of 
ultimate load and maximum deflection. Also, the British Code (BS-8110) formula gives more accurate prediction 
of the punching shear capacity for both NSC and HSC flat slabs than ACI-318 and ECP-203 codes.

Elsanadedy et al.9 proposed an innovative design equation to predict the punching shear strength of flat 
slabs with high strength concrete (HSC). The developed equation is limited to HSC flat slabs with depth not 
more than 300 mm and concrete compressive strength below 120 MPa. Authors recommended considering the 
size effect as the ratio between the effective depth to the critical perimeter (d/bo) and the reinforcement ratio in 
design codes such as the ACI.

Inácio et al.10 compared the results of the experimentally tested flat slabs with concrete compressive strength 
ranged from 36 to 130 MPa with different design codes provisions. The ACI and the EC estimate ultimate punch-
ing strength higher than the experimental results with smaller failure perimeter. However, MC2010 is always 
conservative.

Ricker et al.11 introduced a new proposal based on the current design codes design equations to differentiate 
between the punching shear failure mechanisms that occur inside and outside the interior column-slab con-
nection strengthened with UHPC column cap. Authors conducted a set of experiments to investigate the effect 
of the strengthening at column-slab connection and compared the test results with the available FIP model and 
the EC design equations. The researchers recommended a proportional factor of 1.77 and 2.64 to be multiplied 
by the ultimate punching strength calculated by the current design equations provided by the FIB and the EC 
respectively.

Zhi et al.12 experimentally tested nine of UHPC flat slabs that failed due to punching shear. The main variables 
between the tested UHPC flat slabs are slab thickness, concrete strength, column-slab contact area, reinforce-
ment ratio and loading position to consider the load eccentricity. Feasibility of different codes in prediction of 
punching shear need to be updated to be applicable in case of UHPC flat slabs. Based on the experimental results, 
the shear span-to-depth ratio highly affected prediction of the two-way UHPC punching shear, thus the authors 
proposed design equation which considered the effect of shear span-to-depth ratio which highly affected the 
punching shear failure in the UHPC flat slabs.

Qi et al.13 investigated the effect of using partial and full depth column cap in the column-slab connection 
using the superior advantages of the UHPC. Authors experimentally tested a series of interior column-slab 
connection strengthened with variable depth of the UHPC column cap. The test results were compared to the 
current design code equations including the ACI and FIP model design equations. As expected, the design codes 
underestimated the ultimate punching shear strength by 0.44 and 0.67 respectively. The researchers developed an 
analytical model based on yield line theory is proposed to estimate the punching shear strength of the flat slabs.

Abdulqader et al.14, proposed design equation to predict the punching shear strength of reinforced concrete 
flat slabs with compressive strength of 14.4–119 MPa that is out of the available range by the current design 
codes. The concrete compressive strength of the reinforced concrete flat slabs included in this study ranged from 
MPa to MPa which exceeded the limits of the ACI and the Australian Concrete Structures Standard (AS-94) 
of 69 MPa and 50 MPa respectively. The authors concluded that the proposed model is highly reliable, and the 
safety of different design codes sharply dropped when comparing the predicted punching shear strength by the 
design codes to the experimentally tested flat slabs.

Ebid et al.15 predicted the punching shear strength of lightweight concrete flat slabs using means of artificial 
intelligence including artificial neural network (ANN), genetic programming (GP), and evolutionary polynomial 
regression (EPR). The developed design expression showed the complicated inter-relation between affective 
variables namely, namely, the flat slab thickness, column dimensions, concrete density, concrete strength and 
the grade and ratio of the steel reinforcement.

Yehia et al.16 carried out a series of punching shear tests of UHPC flat slabs. The concrete compressive strength 
ranged from 164 to 193 MPa. These high concrete grades were achieved by adding steel microfibers that led to 
an increase of concrete strength from 70 MPa to two and half this value. Steel fibers enhanced the ductility of 
the flat slabs and reduced the failure angle of the punching shear cone. Both design codes of ACI and the EC 
predicted ultimate load larger than the experimentally monitored. Thus, the current available equations need 
to be modified. The authors validated a finite element model against the experimental results with maximum 
difference of + 2.5% in ultimate shear strength.

Ramadan et al.2 experimentally tested the punching shear behavior of the post-tensioned UHPC flat slabs to 
investigate the influence of various parameters including the concrete compressive strength and the strands lay 
out in both directions. The bundle & gapped-bundle layout slab showed a slight enhancement in the ultimate 
punching capacity due to improving the efficiency of used strands, but also showed major reduction in deflection, 
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angle of shear crack and dissipated energy. The researchers compared the test results with the design equations of 
the ACI and the EC that lead to the (HSC) slabs showing good agreement with both ACI & EC2, while (UHPC) 
slab exceeded the theoretical capacity by 65%.

Afifi et al.3 compared the results of the experimentally testes post-tensioned UHPC flat slabs with the pre-
dicted ultimate punching shear using the available equations in ACI and EC2 that showed the significant differ-
ence between the predicted and the experimental results. The ACI.

predictions are more accurate while EC2 predictions are more conservative. The average deviation was about 
1% and 6% for ACI and 23% and 14% for EC2 for slabs without and with punching reinforcement respectively.

El Zareef et al.17 investigated the punching shear behavior of ultra-high performance self-compacting concrete 
slabs UHPSC flat slabs by experimentally testing a series of flat slabs varying in concrete type, slab thickness, 
and reinforcement ratio on the punching shear capacity. All current codes lead to conservative results when 
compared with the experimental ultimate shear strength of UHPSCC flat slabs.

Yeh18 used the Artificial Neural Network (ANN) to investigate the effect of concrete mix proportions to 
achieve the required concrete compressive strength to develop ultra high-performance concrete. Authors proved 
that ANN are reliable and easier to the conventional experimental and numerical investigation based on the 
regression analysis.

Nikoo et al.19 conducted analytical study to investigate the reliability of using the artificial intelligence as a 
combination of ANN and Genetic Algorithm (GA) to predict concrete compressive strength under the effect of 
different parameters including coarse and fine gravel maximum size, W/C ratio, amount of gravel and coefficient 
of soft sand parameters. The authors validated the developed model against a set of experimental and numeri-
cal models using multiple Linear Regression (MLR) and proved that the developed model is more accurate and 
flexible in predicting concrete compressive strength.

Pishro et al.20 applied an Artificial Neural Network (ANN) to precisely expect the bond stress between the 
reinforcing steel bars and the surrounding UHPC. The authors developed a design equation to calculate the local 
bond stress based on an experimental test and developed finite element model using ABAQUS. Main variables 
were concrete compressive strength, bond length, concrete cover and the rebar diameter. The ANN algorithm 
proved that the predicted local stress equation is accurate and can be used in design.

Kim et al.21 used Smooth Particle Hydrodynamics to predict the amount of fragment and travel distance of 
concrete barrier under impact loading. Then the researchers developed an ANN and Multi Linear Regression 
models to investigate the accuracy of the conducted study. Results showed that the ANN model achieved better 
coefficient of determination than the MLRM. Finally, the researchers developed the concrete fragility curves 
not to exceed the specific amount of fragment and travel distance of concrete barrier under the same value of 
the impact loading.

Bakhoum et al.22 validated an ANN model to predict the concrete compressive strength achieving sustainable 
criteria including compressive strength, carbon dioxide and cost. As the proposed concrete contains proportions 
of cement kiln dust and fly ash. The input parameters are based on more than hundred-fifty concrete mixes col-
lected from previous studies. Then, TOPSIS strategy has been used to predict the best mixture proportions to 
produce a green sustainable concrete mix.

The previous review showed many studied concerned in punching in PT-slabs, and UHPC-slabs, but it indi-
cated a knowledge gap regarding the punching behavior of PT-UHPC flat slabs. Hence, the main objective of 
this research is to extend the applicable range of the current design codes provisions regarding punching shear 
capacity of flat slabs to include the PT-UHPC. The considered design cods are (ACI-318 & EC2). To achieve 
this goal, two correction factors (one for each code) were developed using combined (FEM-AI)  technique23,24

Methodology
To achieve the research goal, a three phases methodology were used as follows:

Phase-1 was concerned in developing a typical FEM model for PT-UHPC flat slab considering concrete com-
pressive strength (Fcu), strands layout (in terms of the average pre-stressing stress in the punching zone) (Fps), 
shear reinforcement capacity (Ash.Fy) and the aspect ratio of the column (L/B). Then the developed model was 
validated using the experimental results from the previous research  work2,3.

In Phase-2, a full parametric study (includes all parameters combinations) was conducted to generate two 
databases (one database for each considered design code). Each database includes the considered parameters 
besides the correction factor (the ratio between the design code punching capacity and the FEM punching 
capacity).

Finally, in Phase-3, three AI techniques namely “Genetic programming” (GP), “Artificial Neural Network” 
(ANN) and “Evolutionary Polynomial Regression” (EPR) were applied on each database to predict the correction 
factor in terms of the considered parameters. Figure 1 graphically presents the used methodology.

Phase 1: Develop and validate the Typical FEM model 
Collecting experimental test results for validation
Flat slabs specimens’ description
The developed typical FEM model will be validated against the experimental results of monotonic testing of 
nine PT-UHPC flat slabs from previous studies by the same research  group2,3. The dimensions of all tested slabs 
were 1000 mm × 1000 mm in plan and thickness of 120 mm, they all had four 0.5″ posttensioning strands in 
each direction stressed up to net effective stress of 800 MPa after losses. All slabs were supported along their 
edges and subjected to monotonic vertical load at their midpoints through loading steel block till failure. The 
main variables between the tested slabs are the concrete compressive strength, column dimensions aspect ratio, 
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vertical reinforcement ratio and the strands lay out. Details of all specimens are summarized in Table 1. The 
configurations of tested flat slabs are illustrated in Fig. 2.

Materials
Concrete: The concrete mixes of the tested UHPC flat slabs included concrete compressive strength of 100 MPa, 
120 MPa and 140 MPa. Each mix was tested under compression and tension in the same test day to ensure slabs 
strength. Tables 2 and 3 summarize the mixes proportions and mechanical properties of all concrete mixes.

Steel: The experimentally tested flat slabs were reinforced by the posttensioned strands without any main 
mild reinforcement. The installed strands were low relaxation 7-wire strands with 0.5″ diameter. The required 
accessories were complaint with the ASTM A416 "Standard Specification for Steel Strand, Uncoated Seven Wire 
Strand for Prestressed Concrete"24.

Developing the typical FEM model
Modelling strategy
The finite element model (FEM) performed in this study is developed using the available package of ABAQUS 
software. The main approach of the developed FEM in this study is to catch the experimentally tested slabs to 
verify the applied model parameters, then set up the required parametric study using wider range of the experi-
mentally tested variables. The developed FEM followed the conventional modelling methodology of simulating 
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Figure 1.  The applied methodology.
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concrete structure as 3D solid elements and the steel reinforcement (strands) as embedded region in the sur-
rounding concrete (Host region). Loading area is defined on the top surface of the concrete slab according to the 
required column dimensions. The model runs till the analysis is aborted according to the input plastic parameters 
indicating slab full failure. The details of the developed finite element model are all discussed herein this section.

Geometry and meshing sensitivity analysis
The geometry of the developed finite element model is defined in cartesian coordinate system by X–Y plane 
and Y-axis pointing upward in the model height direction. Elements required to simulate the concrete flat slabs 
must deform freely till failure without any shear locking restrictions that arises in first order fully integrated 
elements, thus 3D solid elements quadratic hexahedral brick 20-noded with reduced integration (C3D20R) are 
chosen to model concrete elements. Post-tensioned strands carrying high levels of tensile stresses are modeled 
using three-dimensional two node first order truss element to simulate the axial deformability and stiffness. 
Considering the full bond between the embedded strands and the surrounding concrete elements, mesh size of 
both concrete and steel strands must be the same. Mesh size used in this study was chosen based on a sensitivity 
analysis conducted to decide the best and most accurate response. Flat slab S3 was modeled using different mesh 
sizes for both concrete and steel strands of 30 mm, 40 mm, 50 mm, 75 mm, and 100 mm. Figure 3a compares the 
load–deflection response of each model against the experimental results of the same flat slab S3 which clearly 
shows that the model with mesh size of 40 mm achieves the least error when compared to the experimental 
response. Also, the punching shear strength of the tested flat slab is the closest to the model with mesh size of 
40 mm as shown in Fig. 3b.

Concrete material model
In compression, concrete is linear elastic and defined by the concrete Young’s modulus according to experimental 
tests and concrete Poisson’s ratio (ν)2,3.

The plastic portion is defined using the Concrete damaged plasticity CDP material model embedded in 
 ABAQUS25–28. To fully define the plastic behavior in CDP, yielding criterion is defined using a set of plasticity 
parameters. These plasticity parameters are, the dilation angle Ψ in the p-q plane, Flow potential eccentricity, the 
eccentricity (ϵ) is a small positive number that defines the rate at which the hyperbolic flow potential approaches 
its asymptote, the ratio of initial equi-biaxial compressive yield stress to initial uniaxial compressive yield stress 
 (fb0/fc0), the ratio of the second stress invariant on the tensile meridian to that on the compressive meridian, the 
flow potential eccentricity, the ratio of initial biaxial compressive yield stress to initial uniaxial compressive 
yield stress, the ratio of the second stress invariant on the tensile meridian to that on the compressive meridian 
and the viscosity parameter that defines viscoelastic regularization and the viscosity parameter μ used for the 
visco-plastic regularization of the concrete constitutive equations in Abaqus/Standard  analyses25. Then, concrete 
behavior is defined in compression and tension. The concrete compressive behavior is defined using Eqs. 1, 2 
and 3 that are validated by Choi et al.29 In this model, the plastic behavior starts at 0.3  fc

’ and the stress–strain 
curve is nonlinear as shown in Fig. 4a. Point 1 is defined in the elastic range as 0.3  fc′ and dividing this value the 
concrete young’s modulus  (Ec) to get the strain at the end of the elastic zone as in Eq. 1. Points from point 1 to 
point 2 are obtained using Eq. 2, then Eq. 3 is used to calculate the ultimate strain at which the curve ends. The 
tensile behavior of concrete is defined as linear elastic using Eq. 1 till the concrete tensile strength then linear 
decrease of concrete tensile strength till zero at the ultimate tensile strain. Concrete tensile strength is experi-
mentally  determined2,3 as well as all the input parameters of different concrete grades 100 MPa, 120 MPa and 
140 MPa are summarized in Table 4.

(1)Ec =
f

ξ

Table 1.  The configurations of tested flat  slabs2,3.

Slab fcu Column Dim L/B

Punching reinforcement (RFT)

Ash.Fy Strands fps

ID (MPa) (mm x mm) (−) (kN) Layout (kPa)

S1 120 50 × 50 1 – 0 Uniform 267

S2 100 50 × 50 1 – 0 Uniform 267

S3 140 50 × 50 1 – 0 Uniform 267

S4 120 50 × 50 1 – 0 Gapped 333

S5 120 50 × 50 1 – 0 Bundled 400

S6 120 50 × 50 1 2ɸ6@75 mm 108 Uniform 267

S7 120 50 × 50 1 2ɸ6@150 mm 54 Uniform 267

S8 120 50 × 200 4 – 0 Uniform 267

S9 120 50 × 100 2 – 0 Uniform 267
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Figure 2.  The configurations of tested flat slabs (all dimensions are in mm).

Table 2.  Mix proportion of Ultra-High-Performance Concrete. *D5: maximum diameter equals 5 mm. ˟Sc-
7d: Steam curing for 7 days.

Mix

Cement CEM 
52.5 N Silica fume sand

totalaggregate
Quartzpowder
totalaggregate

coarseaggregate
totalaggregate

W/C

Add superplasticizer Steel fiber

Curingkg/m3 % Siliceous Dolomite–D5* % %

100 800 20 0.25 0.25 0.5 0.16 4 1 water

120 800 20 0.25 0.25 0.5 0.16 4 1 SC-7d ˟

140 800 20 0.25 0.25 0.5 0.16 4 3 SC-7d ˟
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Table 3.  Mechanical properties of UHPC concrete mixture.

Average of compressive Strength (fc ) (MPa) Average of the indirect tensile strength (ftm) (MPa)

Mix 100 98.5 MPa 8.25

Mix 120 119 MPa 10.50

Mix 140 138 16.50
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Figure 3.  Comparison between the experimental and the FEM with different mesh size.

Figure 4.  Stress–strain curve of used material.

Table 4.  Parameters of the Concrete material model (CDP) according to the concrete grade *cube 
compressive strength (MPa). **cylinder concrete compressive strength (MPa) equivalent to 80% of  fcu.

Concrete compressive 
strength

Elastic 
parameters Plastic parameters Tensile strength

f ∗cu (MPa) f ′∗∗c (MPa) Ec(MPa) νc Ψ ϵ fb0/fc0 μ ft(MPa)

100 80 40,600 0.20 50.50 1.16 0.667 0.001 8.25

120 96 40,600 10.5

140 112 45,300 16.5
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where, f: stress at any point of strain ξ (Psi), ξ: strain at any stress f, ξ0: strain at the ultimate compressive strength 
fc′.

Steel material model
Steel reinforcement is modeled using 2D-truss element (T3D2) to simulate the axial stiffness and deformations. 
The mesh size of all steel elements is 40 mm based on a sensitivity analysis that best fits the experimental results, 
also the steel has the same mesh size as the surrounding bonded concrete elements. The steel material model 
is defined as elastic–plastic with strain hardening material for both mild reinforcement (RFT) in stirrups and 
the High Tensile Steel (HTS) in  strands30. The steel Elastic parameters are Young’s modulus of 20 GPa and 200 
GPa for the mild and HTS in case of stirrups and strands respectively and the Poisson’s ratio is 0.30 in both steel 
grades. The yield strength of the mild and HTS are 240 MPa and 1600 MPa with ultimate strength of 360 MPa and 
1800 MPa respectively. Strands and the stirrups are embedded and fully bonded with the surrounding concrete. 
Figure 4b shows the steel material model used in the FEM.

Loading and boundary conditions
Full scale models of the experimentally tested flat slabs are simply supported along its edges with line roller-
hinged boundary conditions in each direction. The pre-stress is applied to the bonded strands in each direction 
as an initial condition, then the monotonic column load is simulated by an incremental displacement boundary 
condition in negative global Y-direction. Typical finite element model elements, embedded bonded strands, 
stirrups and applied displacement direction are shown in Fig. 5.

Validating the typical FEM model
Failure Mechanism
All tested flat slabs failed due to punching shear in both experimental and the developed finite element model. 
Figure 6 shows clearly that the FEM successfully followed the conventional punching failure in terms of crack 
propagation and the major punching cone perimeter at the bottom surface of the tested flat slabs.

Load–Deflection (P‑∆) response
Each tested slab was modelled using the typical FEM model and loaded till failure, both ultimate load and 
midpoint ultimate deflection were recorded for each slab besides its (Load–deflection) curve. These outputs 
were compared with experimentally measured values to verify the typical FEM model. Figure 7 and Table 5 
summarize this comparison.

The results showed that the difference in the outputs between experimental and FEM models are about 3.8% 
and 12.7% for ultimate load and deflection respectively. This very good matching indicates a high reliability of 
the developed FEM models in terms of ultimate punching load.

Stiffness and Dissipated Energy
As an extension of the finite element model validation study, the stiffness at failure and the exerted dissipated 
energy for each modeled flat slab have been calculated and compared to the experimental values. Stiffness is 
calculated as the ratio between the ultimate load and the maximum deflection at the same loading level. And 

(2)f =
Ecξ

1+
(

ξ
ξ0

)2

(3)ξ0 =
2f′c
Ec

  
(a) (b) 

Figure 5.  Details of the developed FEM.
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the area under the load–deflection curve till point of failure represented the dissipated energy. The maximum 
difference between the FEM and the experimental is 13.3% and 18.4% the ultimate stiffness and the dissipated 
energy respectively. Figures 8 and 9 compare the values of the stiffness and the dissipated energy respectively as 
well as the error between the experimental and the FEM of each modeled flat slab.

 

a. .b 1S bals talF  Flat slab S2 

c. .d 3S bals talF  Flat slab S4 

e. .f 5S bals talF  Flat slab S6 

h. .i 7S bals talF  Flat slab S8 

j. Flat slab S9 

Figure 6.  Comparison between Failure mechanism of the experimental tests and the FEM.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3969  | https://doi.org/10.1038/s41598-024-54358-5

www.nature.com/scientificreports/

S1 S2 S3 

S4 S5 S6 

 
S7 S8 S9 

0

50

100

150

200

250

300

0 5 10 15

L
o

ad
 (

k
N

)
Deflection (mm)

exp.

FEM

0

50

100

150

200

250

0 5 10 15

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

100

200

300

400

500

0 5 10 15 20

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

50

100

150

200

250

0 2 4 6 8

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

50

100

150

200

250

300

0 2 4 6 8

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

50

100

150

200

250

300

350

400

0 5 10 15

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

50

100

150

200

250

300

0 5 10 15

L
o

ad
 (

k
N

)

Deflection (mm)

S7 EXP.

S7 FE.

0

50

100

150

200

250

300

350

0 5 10 15

L
o

ad
 (

k
N

)

Deflection (mm)

exp.

FEM

0

50

100

150

200

250

300

0 5 10 15

L
o

ad
  

(k
N

)

Deflection (mm)

exp.

FEM

Figure 7.  Comparison between the experimental and the FEM load–deflection curves.

Table 5.  Comparison between F.E & EXP. Results (Pu & Δu).

slab

Pu (kN) Δu (mm)

F.E EXP F.E/ EXP F.E EXP F.E/ EXP

S1 255.6 245.0 104.3 14.5 12.7 114.2

S2 241 226 106.6 12.05 10.5 114.8

S3 430.86 431 100.0 15.96 15.3 104.3

S4 260.54 250 104.2 11.37 7.7 147.7

S5 272.2 260 104.7 6.8 6.0 113.3

S6 320.9 341.5 94.0 13.52 11.9 113.6

S7 276.13 271.4 101.7 11.18 11.2 99.8

S8 343.86 327.4 105.0 14.28 10.2 109.5

S9 290.63 274.7 105.8 11.13 11.2 99.4

Average 102.9 Average 113.0

Standard deviation 3.91 Standard deviation 14.39

Variance 3.8% Variance 12.7%
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Phase 2: Parametric study
The aim of this section is to conduct a full parametric study which includes enough combinations to cover the 
considered ranges of the involved parameters. The selected values for each parameter were extracted from the 
previously published experimental  work2,3 as follows:

• Concrete compressive strength (Fcu) = 100, 120, 140 MPa
• Average pre-stressing stress in the punching zone (Fps) = 267, 333. 400 kPa
• Shear reinforcement capacity (Ash.Fy) = 0, 54, 108 kN
• Aspect ratio of the column (L/B) = 1.0, 2.0, 4.0

Eighty-one FEM models were developed, one model for each parameters combination to determine its FEM 
ultimate capacity. Then, the punching capacity of each parameter’s combination were calculated using ACI-318 

Figure 8.  Comparison between experimental and FEM ultimate stiffness of all tested flat slabs.

Figure 9.  Comparison between experimental and FEM dissipated energy of all tested flat slabs.
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and EC2 as shown in Fig. 10. Finally, the correction factors (K Aci = Pu FEM / Pu Aci) and (K Ec2 = Pu FEM / 
Pu Ec2) were calculated for each parameter’s combination.

The generated database 
The generated database forms the parametric study contains 81 records; each record contains the following data:

Fcu: The cube characteristic strength of concrete (MPa)
L/B: The aspect ratio of the column (length/width)
Ash.Fy: Ultimate tensile capacity of shear reinforcement within the punching zone (2d+B+2d) in (kN)
Fps: The average pre-stressing stress (in both directions) within the punching zone (2d+B+2d) in (kPa)
K Aci: The correction factor for ACI-318 formula (Predicted capacity/ACI Capacity)
K Ec2: The correction factor for EC2 formula (Predicted capacity/EC2 capacity)
The generated records were divided into a training set (65 records) and validation set (16 records) as recom-

mended by Ebid 31. The “Appendix” includes the complete dataset, while Tables 6 and 7 summarize their statistical 
characteristics and the Pearson correlation matrix. Finally, Fig. 11 shows the histograms for both inputs and 
outputs. The complete database is attached in the “Appendix”.

Figure 10.  Punching capacity formulas as per ACI-318 and EC2.

Table 6.  The statistical characteristics of the utilized database.

Fcu (MPa) L/B Ash.Fy (kN) Fps (kPa) K Aci K Ec2

Training set

 Min 100.00 1.00 0.00 267.00 0.95 1.09

 Max 140.00 4.00 108.00 400.00 1.69 2.06

 Avg 118.77 2.38 54.83 333.34 1.21 1.45

 SD 16.78 1.26 42.88 54.71 0.24 0.31

 VAR 0.14 0.53 0.78 0.16 0.20 0.22

Validation set

 Min 100.00 1.00 0.00 267.00 0.93 1.14

 Max 140.00 4.00 108.00 400.00 1.77 2.07

 Avg 125.00 2.13 50.63 333.31 1.27 1.52

 SD 13.23 1.17 48.56 52.57 0.28 0.35

 VAR 0.11 0.55 0.96 0.16 0.22 0.23
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Phase 3: Applying the (AI) techniques
(AI) Techniques 
AI techniques are the mathematical approaches developed to search for the optimal solution of complicated prob-
lems within the available time and resources (hardware, software and databases). The more time and resources 
allowed the more accurate and better solution AI can reach. There are two main types of AI approaches, one of 
them is based on mimicking the behavior of natural creatures and the other one depends on logical, mathematical 
or statistical approaches. Each type of them can deal better with specific types of problem. The first one (such 
as ANN, GA, GP and PSO) is better for inaccurate, distorted and incomplete data, while the other one (such as 
ES, FL and SVM) will be better for problems that need proof and reason. Accordingly, the suitable technique for 
certain problem could be selected based on problem type, data quality, data distribution and search restrictions. 
Figure 12 presents a classification for considering AI techniques by approaches and applications.

Table 7.  Pearson correlation matrix of the utilized database.

Fcu L/B Ash.Fy Fps K Aci K Ec2

Fcu 1.00

L/B 0.00 1.00

Ash.Fy 0.00 0.00 1.00

Fps 0.00 0.00 0.00 1.00

K Aci 0.84 − 0.27 − 0.02 0.05 1.00

K Ec2 0.86 0.12 − 0.26 0.05 0.88 1.00

Figure 11.  Distribution histograms for inputs (in blue) and outputs (in green).
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Artificial neural networks (ANN)
This is the most successful and famous AI techniques. It depends on simulating the human brain anatomy and 
operation. The network consists of sets of cells (called neurons) arranged in layers. The cells of each layer are 
connected to the cells of the previous and the next layers. In human brain, electrical signals transfer between 
cells through the connectors, accordingly, they are affected by the quality of the connectors. On the other hand, 
the cells don’t trigger their output signals until the summation of the input signals exceeded a certain thresholds. 
Similarly, the inputs of ANN transfer between neurons through the connectors. The quality of the biological 
connector is simulated by the weight of the ANN connector, and to simulate the effect of connector quality on 
the electrical signal, the end ANN neuron receives the input value multiplied by the connector weight. Finally, 
the threshold of biological cell is simulated by the "activation function" in ANN neuron which trigger the neuron 
output. Just like the human brain, the ANN gains knowledge by learning, during this process, the ANN adjusts 
the weight of each connector to maximize the accuracy of the outputs.

Genetic programming (GP)
GP is a special application of GA where the considered problem is to optimize a mathematical expression to fit 
certain observations, hence GP is a multi-variable and free structure regression technique. The individual solu-
tions of GA are presented by mathematical expressions in GP and the fitness function of GA is replaced by the 
Sum of Squared Errors (SSE) in GP. Finally, to apply GA on the mathematical expressions, they must be coded 
in genetic form first. Today, GP is a main technique includes many sub-techniques such as Linear and Cartesian 
Genetic Programming (LGP) & (CGP) besides Gene Expression Programming (GEP) and Multi- Gene Expres-
sion Programming (MGEP).

Evolutionary polynomial regression (EPR) 
EPR is an optimized polynomial regression using Genetic Algorithm (GA) technique. The transitional poly-
nomial regression depends on calculating the best fitting polynomial coefficients mathematically, however, for 
high order polynomials with multi-variables applications the number of polynomial terms becomes hundreds 
and even thousands and the hence the results become unpractical. In EPR technique, GA is used to select the 
most influence polynomial terms from the total number of the terms which keeps the results accurate enough 
and applicable.

Predicting the correction factors
Three different Artificial Intelligent (AI) techniques were used to predict the correction factors of both ACI-318 
and EC2 punching capacity formulas (K Aci, K Ec2) of PT-UHPC slabs using the generated database. These 
techniques are “Genetic programming” (GP), “Artificial Neural Network” (ANN) and “Evolutionary Polynomial 
Regression” (EPR). All the three developed models were used to predict (K Aci, K Ec2) using “characteristic 

Figure 12.  (Application-Approach) mapping for the considered (AI) techniques, After Ebid 2023.
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strength of concrete in MPa” (Fcu), “aspect ratio of column” (L/B), “tensile capacity of shear reinforcement in 
kN” (Ash.Fy) and “the average pre-stressing stress in both directions in kPa” (Fps).

Each model on the three developed models was based on a different approach (evolutionary approach for 
GP, mimicking biological neurons for ANN and optimized mathematical regression technique for EPR). These 
techniques were selected as they are the most suitable (AI) techniques for regression  applications32. However, for 
all developed models, prediction accuracy was evaluated in terms of the Sum of Squared Errors (SSE).

The following section discusses the results of each model. The Accuracies of developed models were evaluated 
by comparing the (SSE) between predicted and calculated correction factors values. The results of all developed 
models are summarized in Table 10 and Fig. 15. While Fig. 16 presents a comparison between the accurizes of 
the developed models.

Results 
Using GP technique
The developed GP model has five levels of complexity. The population size, survivor size and number of genera-
tions were 100 000, 30 000 and 150 respectively. Equations 4 and 5 present the output formula for K Aci and K 
Ec2 respectively, while Fig. 15a,d showed their fitness. The average errors% of total dataset are 4.8% and 4.1%, 
while the  R2 values are 0.943 and 0.965 in order.

(4)KAci = 1+

(

Fcu
(

Fcu− Aspect2
)

21215

)5

Figure 13.  Layout for the developed ANN models.

Table 8.  Weights matrix for the developed ANN For (K Aci).

Bias L/B Ash.Fy Fps Fcu K Aci

H (1) 1.61 0.12 − 0.06 0.02 − 1.38 H (1) − 1.38

H (2) − 0.33 − 0.55 − 0.20 0.19 − 0.05 H (2) 0.43

Bias 0.58

Table 9.  Weights matrix for the developed ANN For (K Ec2).

Bias L/B Ash.Fy Fps Fcu K Ec2

H (1) − 0.81 2.74 0.24 0.26 0.03 H (1) 0.96

H (2) − 0.54 − 0.16 0.18 − 1.02 0.13 H (2) 0.58

Bias 0.04
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Using ANN technique
Two models were developed using ANN technique, one to predict (K Aci) values and the other to predict (K 
Ec2) values. Both models used normalization method − 1.0 to 1.0, activation function Hyper Tan and “Back 
propagation” BP training algorithm. The used networks had the same layout as illustrated in Fig. 13 while the 
weight matrix of each model is shown in Tables 8 and 9. The average errors % of total dataset are 3.0%, 2.5% and 
the  R2 values are 0.980, 0.988 respectively. The relative importance values for each input parameter are illustrated 
in Fig. 14, which indicated that both correction factors (K Aci & K Ec2) depended mainly on the “characteristic 
strength of the concrete” Fcu, In addition, “the aspect ratio” L/B showed significant impact on the (K Aci), while 
“ultimate tensile capacity of shear reinforcement” (Ash.Fy) significantly affected the (K Ec2). Finally, both “Aspect 
ratio of column” L/B and “average pre-stressing stress” Fps had neglected effect on both (K Aci & K Ec2). The 
relations between calculated and predicted values are shown in Fig. 15b,e.

Using EPR technique.
Finally, the developed EPR model was limited to 5th level polynomial, for 4 inputs, there are 126 possible terms 
(70 + 35 + 15 + 5 + 1 = 126) as follows:

GA technique was applied on these 126 terms to select the most effective five terms to predict the values 
of (K Aci & K Ec2) values. The output is illustrated in Eqs. 6 and 7 and the fitness of both models is shown in 
Fig. 15c,f. The average error % and  R2 values were 3.9% & 3.5%—0.966 & 0.974 for (K Aci & K Ec2) respectively.

Discussion
Longer spans required thicker and heavier slabs, to reduce the own weight, stronger concrete is used which lead 
to thinner slabs and smaller columns. This combination of thin slab and small columns has two disadvantages 
(1) large deflection and (2) punching problem. The deflection problem is solved using post-tension technology 
while the punching still a problem. The stronger the concrete (UHPC) the thinner the slab and the more seri-
ous punching problem, that is why this research focused on this point. Moreover, there is no design codes for 
(UHPC) nor (PT-UHPC), all the current design cods are limited to (Fc’ = 70 MPa) as mentioned in the introduc-
tion, accordingly, their predictions are not accurate, this research proposed correction factors to make the code 
formulas predictions more closer to the experimental results (more accurate).

During the conducted literature review surveying, many previous researches conferenced in UHPC slabs 
and PT slabs where found and summarized, however, no previous researches were fund regarding the punch-
ing capacity of PT-UHPC slabs except the two references published by the  authors2,3. Those references were 
concerned in figure out the impact of four parameters on the punching capacity of the PT-UHPC slabs namely 
concrete strength (Fcu), shear reinforcement (Ash.Fy), average pre-stressing stress (Fps) and the aspect ratio 
of the column (L/B). The impact of each one of these parameters was discussed in details in terms of ultimate 
capacity, failure mechanism, stiffness and energy dissipation. Accordingly, these items will not be discussed 
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Figure 14.  Relative importance of input parameters.
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again in this research, this discussion will be concerned in the outcomes of each phase of the used methodology 
could be discussed as follows:

The outcome of phase1 is the verified typical FEM model. The verifications results showed in Table 5 indi-
cated that the FEM punching capacity equals the experimental one with maximum error ± 4% and ± 13% for 
deformations. These variations are very acceptable considering the random errors in experimental work due to 
measurements tolerances, variation in materials, temperature effects and many other minor factors. Accordingly, 
the FEM is considered verified. Comparing these variance with the design code formulas variances (± 60% for 
ACI & ± 100% for EC2) showed how accurate is the FEM.

Figure 15.  Relation between predicted and calculated (K Aci & K Ec2) values using the developed models.
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By the end of phase 2, a complete parametric study were successfully generated as early planned before 
conducting the experimental work. The role of thumb is (3–10) reorders for each variables, accordingly the 81 
records are quite enough for 4 variables. The most effective factors on punching and their ranges were determined 
from literature, the three values for each factor were chosen at lower, mid and upper boundaries of the range. 
About 10% of the whole parametric study (9 samples) was tested experimentally and the results were published 
in 2 papers and used to verify the FEM model, the rest 90% of the parametric study were tested numerically 
using the verified FEM.

The generated database was divided in to training set (80%) and validation set (20%) as recommended in 
literatures. then both sets were statistically analyzed to insure that they have the almost the same statistical 
characteristics and that the selected parameters values covers all the considered range without gaps. Besides 
that, Pearson correlation analysis indicated the impact ranking of each parameter.

Finally, the outcomes of phase 3 are three predictive models for the correction factors of ACI-318 and EN2 
codes. The utilized techniques were selected as they are the most suitable (AI) techniques for regression appli-
cations and because they depends on different (AI) approaches. The fittings of the three developed models are 
graphically presented in Fig. 15, summarized in Table 10 and compared using Tylor charts in Fig. 16.

The 16 records validation dataset (20% of the total dataset) was used to test the fitting of all the predictive 
models and to insure that there is no over-fitting. The results of both training dataset and validation dataset were 
graphically presented side by side in the same chart (black and white dots) in Fig. 15 to illustrate that both sets 
had the same fitting. These charts showed that the best fitting line id almost at 45 degrees (y ≈ x) which means 
that the mean values from FEM and predictive models are the same, Also, the  (R2) values are more than 0.9 
which indicated a limited scattering from the mean values.

Table 10 compares the fittings of the predictive models in terms of (SSE) and (Error %) where (Error% = RMSE/
Mean), accordingly the prediction accuracy may be defined as (1-Error%). The numbers indicated that ANN is 
the most accurate model then the EPR and lastly the GP.

Tylor charts in Fig. 16 compared the fitting of the predicting models based on three statistical measurements 
RSME, SD and correlation coefficient. The closer the prediction point to the experimental one the better perfor-
mance of the technique, besides that, the higher the correlation coefficient the better the model fitting. Accord-
ingly, the charts indicated the same order as Table 10. However, the fitting is not the only strength point for the 

Table 10.  Accuracies of developed models.

Item Technique Model SSE Avg. Error % R2

K Aci GP Equation 4 0.259 4.8 0.943

ANN Figure 9(a), Table 6 0.100 3.0 0.980

EPR Equation 6 0.174 3.9 0.966

K Ec2 GP Equation 5 0.269 4.1 0.965

ANN Figure 9(b), Table 7 0.102 2.5 0.988

EPR Equation 7 0.200 3.5 0.974

Figure 16.  Comparing the accuracies of the developed models using Taylor charts.
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predictive model, simplicity and applicability are also respectable strength points. From simplicity point of view, 
GP & EPR are much simpler that ANN and more manually applicable since they are both closed form equations.

Conclusions
This paper proposes correction factors for ACI-318 and EC2 design codes to extend the validity of their punch-
ing capacity provisions to include the post tensioned ultrahigh performance concrete PT-UHPC flat slabs. These 
correction factors were developed using three different Machine Learning (ML) techniques. The utilised data-
base in the ML models was generated using FEM parametric study which used a validated FEM model against 
experimental test results from previously published work. The proposed correction factors are functions of the 
concrete compressive strength (Fcu), PT strands layout (in terms of the average pre-stressing stress in the punch-
ing zone) (Fps), shear reinforcement capacity (Ash.Fy) and the aspect ratio of the column (L/B). The outcomes 
of this research could be concluded as follows:

• The developed finite element model is successfully validated against the experimentally tested PT-UHPC flat 
slabs in terms of ultimate punching capacity and midpoint deflection with error of 3.8% and 12.7% respec-
tively.

• All models showed almost the same level of accuracy (95–97%) for the ACI-318 correction factor (K Aci) 
and (96–97.5%) for the EC2 correction factor (K Ec2)

• Using the proposed PT-UHPC correction factors with original codes formulas for punching capacity 
enhances the prediction accuracy from about (50%- 60%) to more than (95%)

• Although the predicting accuracies are almost the same for all models, but (GP) & (EPR) models have the 
advantage of simplicity as their outputs are closed form formula which could be used manually unlike the 
outputs of the (ANN) mode which are two weight matrixes that can’t be implemented manually.

• The results indicated that both correction factors (K Aci & K Ec2) depended mainly on the “characteristic 
strength of the concrete” (Fcu). In addition, “the aspect ratio” (L/B) showed significant impact on the (K 
Aci), while “the tensile capacity of shear reinforcement” (Ash.Fy) significantly affected the (K Ec2). Finally, 
“the average pre-stressing stress” (Fps) had neglected effect on both (K Aci & K Ec2).

• Like any other regression technique, the generated formulas are valid within the considered range of param-
eter values, beyond this range; the prediction accuracy should be verified.

Possible directions for future studies

• Extend the validation of the developed correction factors as this research is limited to concrete with compres-
sive strength of 100 MPa, 120 MPa and 140 MPa.

• Investigate of the influence of other parameters such as different levels of prestressing.
• Applying UHPC with mild reinforcement only (no prestressing)
• Modification of the current applied design codes equations.
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