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Bayesian active learning 
with model selection for spectral 
experiments
Tomohiro Nabika 1, Kenji Nagata 2, Masaichiro Mizumaki 3, Shun Katakami 1 & 
Masato Okada 1*

Active learning is a common approach to improve the efficiency of spectral experiments. Model 
selection from the candidates and parameter estimation are often required in the analysis of spectral 
experiments. Therefore, we proposed an active learning with model selection method using multiple 
parametric models as learning models. Important points for model selection and its parameter 
estimation were actively measured using Bayesian posterior distribution. The present study 
demonstrated the effectiveness of our proposed method for spectral deconvolution and Hamiltonian 
selection in X-ray photoelectron spectroscopy.

Experimental design to reduce the cost of experiments is a fundamental challenge from science to industry and 
has been extensively  studied1. A sequential experimental design, which selects the measurement point sequen-
tially, has been realized by active  learning2.

In spectral experiment, two active learning methods have been primarily evaluated. One method is to use 
a Gaussian process regression (GPR) model as a learning  model3–8. As this approach is model-agnostic, it can 
be applied to an experiment without a formulated physical model. However, its application for the parameter 
estimation of physical models might be a  challenge9. Another issue is the approach for measurement  noise2.

The other method is to fix a physical model before the experiment and use it as a learning  model10–13. This 
approach is suitable for the parameter estimation of physical models, but cannot be applied to the experiment 
where the physical model is not fixed.

However, in the analysis of experimental data, a physical model is selected from the candidates and then its 
parameters are estimated. To improve the efficiency of such experiments, active learning with model selection 
for parametric models is required. Active learning with model selection has been separately studied in various 
fields such as linear  regression14, labeling  problems15, and kernel selection for  GPR16. However, none of these is 
applicable to spectral experiments.

In this study, we propose an active learning with model selection method using multiple parametric models 
as learning models to improve the model selection and its parameter estimation for spectral experiments. First, 
the model and its parameter posterior distribution are calculated; then, they are used to select the next meas-
urement for model selection and its parameter estimation. The posterior probabilities are approximated using 
the exchange Monte Carlo  method17,18, which allows our methods to be applied to complex physical models.

The results of the present study demonstrated the effectiveness of the proposed method for spectral deconvo-
lution and Hamiltonian selection in X-ray photoelectron spectroscopy (XPS). In the numerical experiment, our 
method improved the accuracy of model selection and its parameter estimation while reducing the experiment 
time compared with the experiment without active learning or those with active learning using GPR.

Bayesian model selection and its parameter estimation
We consider the problem of selecting the physical model M from the candidates M = {M1, . . . ,MK } and estimat-
ing its parameter θM . Let D = {xi , yi}

N
i=1 be the data, where xi is the measurement point and yi is the observed 

value. If the model M and its parameter θM are given, the probability of the data D is given by
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where the observed value yi is assumed to be independently generated.
From Bayes’ theorem, the posterior probability of model M and its parameter θM is given by

where p(M) and p(θM) are the prior probabilities of model M and its parameter θM , respectively. The numerical 
computation of these posterior distribution can be realized by the exchange Monte Carlo  method17,18.

Bayesian active learning with model selection for parametric models
The objective of the active learning is to maximize the estimation accuracy of model M and its parameter θM 
by sequentially selecting the next measurement point. In this study, we propose an active learning method to 
select the next measurement point based on two criteria: the expected improvement of the parameter estimation 
and that of the model selection (Fig. 1). The detailed equation transformations are given in the supplementary 
materials.

Active learning criterion for parameter estimation
When {x, y} is added to the data D, the information gain of the posterior distribution of the parameter θM is 
represented by

where H(p) is the entropy of p(·) . Therefore, the expected gain provided by x is

where px,θ (y) = p(y|x, θM ,M) , pD(θM) = p(θM |D,M) , px,D(y) = p(y|x,D,M) =
∫
p(y|x, θM ,M)pD(θM)dθ , and 

KL(p||q) is the Kullback–Leibler (KL) divergence between p and q19. From convexity of KL divergence, IM(x) 
is bounded as follows:

When the model M is expressed as

(1)p(D|M, θM) =

N∏

i=1

p(yi|xi ,M, θM),

(2)p(M|D) =

∫
p(D|θM ,M)p(θM)p(M)dθM∑

M∈M

∫
p(D|θM ,M)p(θM)p(M)dθM

,

(3)p(θM |D,M) =
p(D|θM ,M)p(θM)∫
p(D|θM ,M)p(θM)dθM

,

(4)JM(x; y) = H(p(θM |D,M))−H(p(θM |D ∪ {x, y},M)).

(5)IM(x) =

∫
JM(x; y)p(y|x,D,M)dy

(6)=

∫

�

KL(px,θM ||px,D)pD(θM)dθM ,

(7)IM(x) ≤

∫ ∫
KL(px,θM ||px,θ ′M )pD(θM)pD(θ

′
M)dθ ′MdθM

(8)= ĨM(x)

(9)p(y|x, θM ,M) = Poisson(y; fM(x; θM))

Figure 1.  Criteria for active learning. (a) Parameter estimation. The gray line represents data D and θ1, θ2 follow 
p(θM |D,M) . ĨM(x) corresponds to the difference between fM(x; θ1) and fM(x; θ2) integrated numerically over 
p(θM |D,M) . (b) Model selection. The gray line represents data D and θ1, θ2 follow p(θMs |D,Ms), p(θMc |D,Mc) , 
respectively. Ĩs,c(x) corresponds to the difference between fMs (x; θ1) and fMc (x; θ2) integrated numerically over 
p(θMs |D,Ms) and p(θMc |D,Mc).
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KL divergence of px,θM and px,θ ′M is calculated as follows:

where fM(x; θM) is a physical model, and y follows Poisson distribution. By setting M = M̂ = argmaxp(M|D) , 
ĨM(x) can be calculated numerically with pD(θM) , which is obtained by the exchange Monte Carlo method.

Therefore, we consider selecting the next measurement point x that maximizes ĨM(x).

Active learning criterion for model selection
The aforementioned criterion improves the accuracy of parameter estimation when M̂ is a true model. Here, 
we consider the criterion to make M̂ a true model. When data is small, a higher signal-to-noise ratio can make 
complex structures in spectral data less discernible, leading to a higher likelihood of selecting simpler  models20. 
Therefore, we consider the criterion to select samples that favors the more complex model.

Let the second-best model M ′ = argmaxM �=M̂p(M|D) , two competitive models {Ms,Mc} = {M̂,M ′} , and 
Ms have a smaller parameter dimension than Mc . (Specifically, if M̂ is simpler than M ′ , Ms = M̂ and Mc = M ′ ; 
otherwise, Ms = M ′ and Mc = M̂ ). We consider the following criterion to make p(Mc|D ∪ {x, y}) bigger than 
p(Ms|D ∪ {x, y}):

where C is a constant independent of x.
p(y|x,D,Mc)

p(y|x,D,Ms)
 is referred to as the Bayes factor, a concept well-explored in Bayesian decision  theory21,22.

From convexity of KL divergence, Is,c(x) is bounded as follows:

Ĩs,c(x) can be calculated with pD(θMc ), pD(θMs ) , which are obtained by the exchange Monte Carlo method.
Therefore, the next measurement point x that maximizes Ĩs,c(x) is also selected.

Spectral deconvolution
Our proposed method was applied to the spectral deconvolution in XPS, which poses a challenge in estimating 
the number of peaks and their  parameters20.

Problem setting
Let MK be a model with K peaks, the parameter set θMK be θMK = {{ak ,µk , σk}

K
k=1,B} , and the physical model 

fMK (x; θK ) be fMK (x; θK ) =
∑K

k=1 ak exp
(
− (x−µk)

2

2σ 2
k

)
+ B (where ak ,µk , σk , and B correspond to the peak 

intensity, peak position, peak width, and background intensity, respectively). Since the measurement is performed 
by photon counting in XPS, the probability distribution of the number of observed photons p(y|fM(x; θM)) is 
Poisson(y; fM(x; θM)× T) with measurement time T.

Detailed algorithm for spectral deconvolution
To apply our method, a set of candidate models must be given in advance; however, in the Bayesian spectral 
deconvolution, the number of peaks K can take any integer. Therefore, we consider changing the candidate 
model set sequentially.

We define the initial model set as M = {M1,M2,M3} . At each step, let K̂ be the number of peaks of the best 
predicted model M̂ ( M̂ = MK̂ ). The following model set was used in the next estimation:

In addition, in the spectral measurement, a short time measurement is performed first, followed by a long 
time measurement. The specific algorithm that takes these considerations into account is shown in Algorithm 1.

(10)=
fM(x; θM)y exp(−fM(x; θM))

y!
,

(11)KL(px,θM ||px,θ ′M ) = fM(x; θ ′M)− fM(x; θM)+ fM(x; θ ′M) log
fM(x; θM)

fM(x; θ ′M)
,

(12)Is,c(x) =

∫
log

p(Mc|D ∪ {x, y})

p(Ms|D ∪ {x, y})
p(y|x,D)dy

(13)=

∫
log

p(y|x,D,Mc)

p(y|x,D,Ms)
p(y|x,D,Mc)dy + C.

(14)
Is,c(x)− C

≤

∫ ∫
KL(px,θMc

||px,θMs
)pD(θMc )pD(θMs )dθMcdθMs

(15)= Ĩs,c(x)

(16)M =

{
{M1,M2,M3} (K̂ = 1)
{MK̂−1,MK̂ ,MK̂+1}. (otherwise)
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Require: Number of measurement points per one ex-
periment n, Number of experiments k, Measurement
points set X = {xi}Ni=1

Ensure: Data D = {(xi, yi)}N+n×k
i=1

1: Measure y1, ..., yN with x1, ..., xN .
2: Data D = {(xi, yi)}i∈{1,...,N}
3: Candidate model set M = {M1,M2,M3}
4: for i ∈ {1, ..., k} do
5: M̂ = M

K̂
= argmaxMK∈Mp(MK |D)

6: Ms,Mc is the best and second best model in M.
(Mc is more complex than Ms)

7: Calculate criteria {Ĩ
M̂
(xi)}xi∈X , {Ĩs,c(xi)}xi∈X .

8: Select n
2 points {x′

1, ..., x
′
n
2
} in descending order of

{Ĩ
M̂
(xi)}xi∈X .

9: Select n
2 points {x′

n
2 +1, ..., x

′
n} in descending order

of {Ĩs,c(xi)}xi∈X .
10: Measure {y′1, ..., y′n} in {x′

1, ..., x
′
n}.

11: D = D ∪ {(x′
1, y

′
1), ..., (x

′
n, y

′
n)}

12: if K̂ = 1 then
13: M = {M1,M2,M3}
14: else
15: M = {M

K̂−1,MK̂
,M

K̂+1}
16: end if
17: end for

Algorithm 1.  Sequential experiment for Bayesian spectral deconvolution.

Conventional methods
We compare our method with the following two conventional methods.

Passive learning
Passive learning measures the same measurement time at all measurement points. This method is the most com-
mon method in spectral experiments.

Active learning with GPR
In active learning with GPR, a GPR model is used as a learning model, and the next measurement point that 
maximizes the expected improvement of the measured value estimation is selected. A detailed algorithm is given 
in the supplementary materials.

Result
Let the true model be the model M3 with K = 3 peaks, and the true values of the parameters 
θ∗M3

= {{a∗k ,µ
∗
k , σ

∗
k }

3
k=1,B

∗} be as follows:

The modeling function fM3(x; θ
∗
M3

) is shown in Fig. 2.
Let the measurement time for one measurement in active learning T be T = 1 , number of measurement points 

per one experiment n = 10 , and the candidate set of measurement points X  be X = {157+ 0.025(i − 1) (eV)}400i=1 . 
The prior distributions are shown in the supplementary materials.

The flow of the measurement is shown in Fig. 3. The signal-to-noise ratio is poor at all points at first. However, 
as the experiment progresses, the signal-to-noise ratio near the peaks improves due to focused measurements. 
The data and the fitting by the MAP estimator ( ̂θM3 = {{âk , µ̂k , σ̂k}

K
k=1, B̂} = argmax

θ

p(θ |D,M3)) when the total 

measurement time is 2400 are shown in Fig. 4 (the parameter indices are set so that µ1 < µ2 < µ3 ). This figure 
shows that the proposed method focuses on the measurement points near the peaks that are considered to be 
important in the spectral deconvolution.

(17)

(
a∗1
a∗2
a∗3

)
=

(
0.587
1.522
1.183

)
,

(
µ∗
1

µ∗
2

µ∗
3

)
=

(
161.032
161.852
162.677

)
,

(18)

(
σ ∗
1

σ ∗
2

σ ∗
3

)
=

(
0.341
0.275
0.260

)
, B = 0.1.
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In addition, we calculated p(K = 3|D) and p(θM3 |D,M3) when the total measurement time is {400+ 100i}36i=0 . 
Figure 5A shows the result of the model selection. Active learning with GPR does not improve the model selection 
because of the high intensity measurement noise. However, our method improves the model selection compared 
to passive learning. Figure 5B shows the 99% credible interval of the parameter estimation of peak positions 
µ1,µ2,µ3 . Our method narrowed the interval width and improved the parameter estimation.

Moreover, the results of 10 independent measurements were compared: (a) passive learning with total meas-
urement time 2400, (b) active learning with total measurement time 2400, and (c) passive learning with total 
measurement time 7200. Figure 6 shows the result of the model selection. Figure 7 shows the parameter estima-
tion accuracy. Here, we defined the parameter estimation accuracy Wµ1 ,Wµ2 ,Wµ3 for µ1,µ2,µ3 as follows:

Figure 2.  Value of the modeling function fM3
(x; θM3

) and the example of the observed data {xi , yi}400i=1 when 
T = 6.

Figure 3.  Flow of the proposed method for spectral deconvolution. The upper figure shows the observed values 

per measurement time ȳi =
∑

xj=xi
yj

ti
 , and the lower figure shows the total measurement time per measurement 

point ti = #{j|xj = xi} × T . Although the signal-to-noise ratio of the initial data is poor at all measurement 
points, the signal-to-noise ratio of the data near the peak is improved by repeating the experiments.
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where

(19)Wµi = max
α∈[0.005,0.995]

|µ∗
i − µi,α |

Figure 4.  Data and fitting obtained by experiments on the spectral deconvolution. The upper figure shows 
that the number of photons observed per measurement time ȳi and the fitting by the MAP estimator. The lower 
figure shows the total measurement time per measurement point. (a,d) Passive learning. (b,e) Active learning 
with GPR. (c,f) Proposed method.

Figure 5.  (A) Model selection results. The horizontal axis is the total measurement time; the vertical axis, the 
probability of the true model; the blue line, the result of passive learning; the green line, the result of active 
learning with GPR; and the orange line, the result of our method. (B) 99% credible interval of the parameter 
estimation of peak positions µ1,µ2,µ3 . The horizontal axis is the total measurement time. The gray area 
represents the result of passive learning; the colored area, the result of our method; and the dotted lines, the true 
value of µ1,µ2,µ3.
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Both results show that our method improved the estimation accuracy and shortened the measurement time.

Hamiltonian selection
The Hamiltonian selection in  XPS23 was also considered in this study.

Problem setting
Let M2 be a model using a two-state Hamiltonian, H2 , and M3 be a model using a three-state Hamiltonian H3 , 
and let M = {M2,M3} be a set of candidate models. Let θM2 = {�,V ,Ŵ,Ufc , b} and θM3 = {�,V ,Ŵ,Ufc ,Uff , b} . 
The physical model fM2(x; θM2) and fM3(x; θM3) are shown in the supplementary materials. As the measure-
ment is performed by photon counting in XPS, the probability distribution of the number of observed photons 
p(y|fM(x; θM)) is considered to be Poisson(y; fM(x; θM)× T) with measurement time T.

Detailed algorithm for Hamiltonian selection
Unlike in the case of spectral deconvolution, the model set M = {M2,M3} is fixed. The specific algorithm is 
shown in Algorithm 2. 

(20)µi,α = min
µ

{(∫

µi<µ

p(µi|D,K)dµi

)
> α

}
.

Figure 6.  Bar graphs of p(M1|D), p(M2|D), p(M3|D), p(M4|D) for the 10 independent trials. (a) Passive 
learning with a total measurement time of 2400. (b) Proposed method with a total measurement time of 2400. 
(c) Passive learning with a total measurement time of 7200.

Figure 7.  Boxplots represent the accuracy of parameter estimation of the peak positions. The left panel, middle 
panel, and right panels show the boxplots of Wµ1

,Wµ2
 , and Wµ3

 respectively. (a) Passive learning with a total 
measurement time of 2400. (b) Proposed method with a total measurement time of 2400. (c) Passive learning 
with a total measurement time of 7200.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3680  | https://doi.org/10.1038/s41598-024-54329-w

www.nature.com/scientificreports/

Require: Number of measurement points per one ex-
periment n, Number of experiments k, Measurement
points set X = {xi}Ni=1

Ensure: Data D = {(xi, yi)}N+n×k
i=1

1: Measure y1, ..., yN with x1, ..., xN .
2: Data D = {(xi, yi)}i∈{1,...,N}
3: M = {M2,M3}
4: for i ∈ {1, ..., n} do
5: M̂ = argmaxMP (M |D), Ms = M2,Mc = M3.
6: Calculate criteria {Ĩ

M̂
(xi)}xi∈X , {Ĩs,c(xi)}xi∈X .

7: Select n
2 points {x′

1, ..., x
′
n
2
} in descending order of

{Ĩ
M̂
(xi)}xi∈X .

8: Select n
2 points {x′

n
2 +1, ..., x

′
n} in descending order

of {Ĩs,c(xi)}xi∈X .
9: Measure {y′1, ..., y′n} in {x′

1, ..., x
′
n}.

10: D = D ∪ {(x′
1, y

′
1), ..., (x

′
n, y

′
n)}

11: end for

Algorithm 2.  Sequential experiment for Bayesian Hamiltonian Selection.

Conventional methods
We compare our method with passive learning and active learning with GPR as in the case of spectral 
deconvolution.

Result
Let the true model be the model M3 with H3 and the true values of its parameters be as follows:

This true parameter is derived  from23. The physical function fM3(x; θKLdivergenceoM3) with the true param-
eter θ∗M3

= {�∗,V∗,Ŵ∗,U∗
fc ,U

∗
ff , b

∗} is shown in Fig. 8. The peak around x = 5 is small, indicating that the model 
selection from model M2 that generates two peaks and model M3 that generates three peaks is difficult. Let the 
measurement time for one measurement in active learning T be T = 1 , number of measurement points per one 
experiment n = 10 , and the candidate set of measurement points X  be X = {−30+ 0.125(i − 1)}400i=1 . The prior 
distribution is shown in the supplementary materials.

The flow of the measurement is shown in Fig. 9. The signal-to-noise ratio is poor at all points at first. However, 
as the experiment progresses, the signal-to-noise ratio near the peaks improves due to focused measurements. 
The data and the fitting by the MAP estimator ( ̂θM3 = argmax

θ

p(θ |D,M3)) when the total measurement time is 

(21)�∗ = 7.66,V∗ = 0.76,Uff = 10.5,

(22)Ufc = 12.7, Ŵ = 0.7, b = 0.

Figure 8.  Plot of the modeling function fM3
(x; θ∗M3

) and the example of the observed data {xi , yi}400i=1 when 
T = 25 . The peak around x = 5 is small, indicating the difficulty of the model selection.
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Figure 9.  Flow of the proposed method for Hamiltonian selection. The upper figure shows the observed values 

per measurement time ȳi =
∑

xj=xi
yj

ti
 , and the lower figure shows the total measurement time per measurement 

point ti = #{j|xj = xi} × T . It can be observed that the area near the peaks, particularly near the small peak 
around x = 5 , is measured intensively.

Figure 10.  Data and fitting obtained by experiments on the Hamiltonian selection. The upper figure shows 
that the number of photons observed per measurement time ȳi and the fitting by the MAP estimator. The lower 
figure shows the total measurement time per measurement point. (a,d) Passive learning. (b,e) Active Learning 
with GPR. (c,f) Proposed method.
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10,000 are shown in Fig. 10. This figure shows that the proposed method focuses on the area near the peaks, 
particularly near the small peak around x = 5.

In addition, we calculated p(M3|D) and p(θM3 |D,M3) when the total measurement time is {400+ 300i}32i=0 . 
Figure 11A shows the result of the model selection. As in the previous section, active learning with GPR did not 
improve the model selection because of the high intensity measurement noise. However, our method improved 
the model selection compared to passive learning. Figure 11B shows the 99% credible interval of the parameter 
estimation of �,Ŵ,Ufc . Our method narrowed the interval width and improved the parameter estimation.

Moreover, 10 independent measurements were performed, and the following results were compared: (a) pas-
sive learning with total measurement time of 10,000, (b) active learning with total measurement time of 10,000, 
and (c) passive learning with total measurement time of 40,000. Figure 12 shows the result of the model selection. 
Figure 13 shows the accuracy of parameter estimation. Here, we defined the accuracy of parameter estimation 
W�,WŴ ,WUfc

 for �,Ŵ,Ufc as follows:

where

(23)W� = max
α∈[0.005,0.995]

|�∗ −�α|,

(24)WŴ = max
α∈[0.005,0.995]

|Ŵ∗ − Ŵα|,

(25)WUfc
= max

α∈[0.005,0.995]
|U∗

fc − Ufc,α |,

(26)�α = min
�

{(∫

�<�∗
p(�|D,M3)d�

)
> α

}
,

Figure 11.  (A) Model selection results. The horizontal axis is the total measurement time; the vertical axis is the 
probability of the true model; the blue line is the result of passive learning; the green line is the result of active 
learning with GPR; and the orange line is the result of our method. (B) 99% credible interval of the parameter 
estimation of �,Ŵ,Ufc . The horizontal axis is the total measurement time. The gray area indicates the result of 
passive learning, while the colored area indicates the result of our method; the dotted lines represent the true 
value �,Ŵ,Ufc.

Figure 12.  Bar graphs of p(M2|D), p(M3|D) for the 10 independent trials. (a) Passive learning with a total 
measurement time of 10,000. (b) Proposed method with a total measurement time of 10,000. (c) Passive 
learning with a total measurement time of 40,000.
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Both results show that our method improved the estimation accuracy and shortened the measurement time.

Conclusion and future work
We developed an active learning method using multiple parametric models as learning models to improve the 
accuracy of model selection and parameter estimation in spectral experiments. In our method, the next measure-
ment points that are important for model selection and its parameter estimation were selected using the model 
and its parameter posterior distribution. We applied our method to two spectral experiments, namely spectral 
deconvolution and Hamiltonian selection. In both experiments, the proposed method improved the model 
selection and accuracy of parameter estimation compared with passive learning and active learning with GPR.

To apply our method to a broader range of actual spectral experiments, we need to consider the follow-
ing points. Firstly, there is a concern about the calculation cost of the proposed method. To reduce the actual 
experimental time using the proposed method, the computational time of the Monte Carlo method should be 
sufficiently small compared to the experiment time. Nevertheless, in cases with a large number of parameters, the 
exploration range of the Monte Carlo method expands, leading to longer convergence times. Additionally, the 
computation time per iteration often scales proportionally with the number of measurement points. Therefore, 
in scenarios with a high number of measurement points, such as in the case of high-dimensional spectral data, 
the measurement time can significantly increase. To mitigate computational time, one approach is to employ the 
concept of sequential Monte Carlo  methods24, utilizing samples obtained from previous simulations to perform 
sampling from the new posterior distribution. Moreover, the convergence can be improved by appropriately 
setting the prior distribution using prior knowledge about the  experiment25.

Another challenge is adjusting the Monte Carlo parameters automatically. The Monte Carlo method has many 
parameters and setting them up for each experiment is difficult. Thus, an algorithm like  NUTS26 to adjust the 
Monte Carlo parameters will be required.

Finally, our method is only applicable when candidate models are known in advance. However, background 
functions often have limited prior knowledge, making modeling challenging in many cases. Such challenges can 
be solved by using semi-parametric  models27.

Data availability
The data and codes that support the findings of this study are available from the corresponding author upon 
request.
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