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Applying the new multi‑objective 
algorithms for the operation 
of a multi‑reservoir system 
in hydropower plants
Syed Mohsen Samare Hashemi , Amir Robati * & Mohammad Ali Kazerooni 

The optimal operation of the multi-purpose reservoir system is a difficult, and, sometimes, non-
linear problem in multi-objective optimization. By simulating biological behavior, meta-heuristic 
algorithms scan the decision space and can offer a set of points as a group of solutions to a problem. 
Because it is essential to simultaneously optimize several competing objectives and consider relevant 
constraints as the main problem in many optimization problems, researchers have improved their 
ability to solve multi-objective problems by developing complementary multi-objective algorithms. 
Because the AHA algorithm is new, its multi-objective version, MOAHA (multi-objective artificial 
hummingbird algorithm), was used in this study and compared with two novel multi-objective 
algorithms, MOMSA and MOMGA. Schaffer and MMF1 were used as two standard multi-objective 
benchmark functions to gauge the effectiveness of the proposed method. Then, for 180 months, the 
best way to operate the reservoir system of the Karun River basin, which includes Karun 4, Karun 
3, Karun 1, Masjed-e-Soleyman, and Gotvand Olia dams to generate hydropower energy, supply 
downstream demands (drinking, agriculture, industry, environmental), and control flooding was 
examined from September 2000 to August 2015. Four performance appraisal criteria (GD, S, Δ, and 
MS) and four evaluation indices (reliability, resiliency, vulnerability, and sustainability) were used in 
Karun’s multi-objective multi-reservoir problem to evaluate the performance of the multi-objective 
algorithm. All three algorithms demonstrated strong capability in criterion problems by using multi-
objective algorithms’ criteria and performance indicators. The large-scale (1800 dimensions) of the 
multi-objective operation of the Karun Basin reservoir system was another problem. With a minimum 
of 1441.71 objectives and an average annual hydropower energy manufacturing of 17,166.47 GW, the 
MOAHA algorithm demonstrated considerable ability compared to the other two. The final results 
demonstrated the MOAHA algorithm’s excellent performance, particularly in difficult and significant 
problems such as multi-reservoir systems’ optimal operation under various objectives.
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Due to numerous decision variables caused by the multiplicity of factors and depending on the time step required 
in exploitation (such as monthly, weekly, or daily), the optimum exploitation of water systems as an undeniable 
necessity is usually a large-dimension problem in complex optimization problems. The multiplicity of reservoirs 
with different purposes, including supply of downstream needs, electric energy production, and flood control, 
adds to the complexity of optimization operation problems.

Optimal exploitation requires formulating an objective function and then maximizing or minimizing it. A 
literature review shows that desired functions are usually diverse, complex, and have many extrema. As such, 
maximizing or minimizing them through linear and definite methods is impossible. Besides, objective func-
tions have several variations1,2. The existence of local and multiple extrema in problems such as the exploitation 
of water systems has led to the development of meta-heuristic methods to optimize objective functions. The 
genetic algorithm (GA) was introduced in 1975 by Holland3 for an optimization process. In this algorithm’s first 
water resource applications, Esat4 used GA to examine four reservoir problems. Then, Oliveria and Loucks5 and 
Wardlaw and Sharif6 utilized this algorithm in water resources problems.
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Since it is essential to simultaneously optimize several competing objectives and consider relevant constraints 
as the main problem in many optimization problems, researchers have increased optimization algorithms’ capa-
bility in solving multi-objective problems by developing complementary multi-objective algorithms. Exam-
ples include the strength Pareto evolutionary algorithm (SPEA)7, Pareto envelope-based selection algorithm 
(PESA)8, non-dominated sorting genetic algorithm-II (NSGA-II)9, multi-objective particle swarm optimiza-
tion (MOPSO)10, multi-objective water cycle algorithm (MOWCA)11, and multi-objective grey wolf optimizer 
(MOGWO)12.

The artificial hummingbird algorithm (AHA), developed by Zhao et al.13, is a novel algorithm designed to 
enhance exploration and exploitation capabilities. The multi-objective version of the AHA was used and adapted 
to optimal exploitation problems for water systems in the multi-reservoir system of the Karun River due to AHA’s 
greater ability to explore and extract than standard algorithms; besides, it was necessary to obtain optimization 
algorithms that suited the complexity of multi-reservoir and multi-objective water systems (Karun 1, Karun 3, 
Karun 4, Gotvand Olia, and Masjed-e-Soleyman dams). Additionally, the MOAHA multi-objective algorithm was 
examined in Karun’s multi-objective-multi reservoir problems in accordance with different objectives, including 
supply and demand, electric energy production, and flood management.

The development of algorithms with this level of strength was prompted by the need to solve problems that 
consider multiple objectives concurrently. The multi-objective water cycle algorithm (MOWCA), multi-objective 
gray wolf algorithm (MOGWO), multi-objective moth swarm algorithm (MOMSA), and other algorithms have 
all been developed for this purpose. A novel multi-objective artificial hummingbird algorithm (MOAHA) was 
developed in the current research to address multi-objective problems. The extraordinary performance of the 
developed algorithm in solving complicated and large-scale problems, such as problems of exploitation of multi-
objective reservoir systems, is one of its key advantages over other multi-objective algorithms currently in use. 
Furthermore, its performance was compared with two new multi-objective algorithms, the multi-objective moth 
swarm algorithm (MOMSA) and the multi-objective material generation algorithm (MOMGA).

A review of the literature on reservoir operation
Chen14 used a genetic method for reservoir multi-objective optimization. This optimization was done for the 
long-term operation of the reservoir. The results showed that the genetic algorithm was useful, especially in 
non-linear systems. Chen et al.2 used another type of genetic algorithm to optimize reservoir consumption 
based on the objective functions of maximum power plant production and water storage. The feature of the lat-
ter algorithm was preventing premature convergence during the normal genetic algorithm process. Schardong 
et al.15 used a multi-objective evolutionary approach for suitable reservoir exploitation. Using the multi-objective 
algorithm of differential evolution (MODE), they made optimal use of part of a complex reservoir system that 
supplied water for about 20 million people in urban areas. The studied objectives included minimizing shortages 
(the difference between demand and allocated water), maximizing water quality, and minimizing the pump-
ing cost. The developed algorithm (MODE) was also compared with the multi-objective genetic algorithm and 
non-dominant sorting (NSGA-II).

The proposed algorithm (MODE) provides a closer convergence to the actual Pareto front than the NSGA-II 
algorithm. Qaderi et al.16 exploited the reservoir system using a water cycle algorithm (WCA). First, they used 
the water cycle algorithm to solve the problems of 4 and 10 benchmark reservoirs and then used this algorithm 
to solve the problem of exploiting the reservoir system of the Gorgan River basin. Their results showed that 
water cycle algorithm provided a suitable estimate with 0.5 and 1% difference compared to the global optimum, 
respectively, in problems of 4 and 10 reservoirs. They also reported the superiority of the water cycle algorithm 
compared to GA and PSO. Liu et al.17 used flood control and electric energy production functions to exploit 
the storage dam of three valleys in China optimally. For this purpose, they utilized the progressive optimality 
algorithm (POA) to determine the optimal utilization of overflows and smooth support vector machine model 
(SSVM) to exploit real-time reservoirs. The studied methods for the short-term operation of the reservoir reduced 
the risk of flooding and increased hydropower production during the flood season.

Afshar and Hajiabadi18 suggested a novel technique known as parallel cellular automata (PCA) to optimize 
the performance of a multi-objective reservoir. They used the two opposing objectives of producing energy and 
providing water as their primary function. Different time scales of 60, 120, 240, and 480 months were consid-
ered to test the operation of the proposed algorithm, and the results were compared with those of the NSGA-II 
algorithm. The proposed method was superior to the NSGA-II algorithm by increasing the problem scale and 
requiring less computing time. Takada et al.19 developed a method to create the best operational command curves 
for the Dao Teing Reservoir, one of the largest multi-purpose reservoirs in Vietnam. They determined command 
curves via a modified complex evolutionary method. Experimental findings demonstrated that the suggested 
optimization strategy efficiently searched for the best command curves.

Shen et al.20 proposed a novel large-scale energy transmission optimization model in 2020 to support China’s 
interprovincial hydropower system (IHS) operation. This multi-objective optimization model was developed 
for the monthly use of IHS, with peak-shaving daily requirements in mind. Peak-shaving significantly increased 
with a relatively small decrease in energy production according to the obtained Pareto solutions that examined 
the interdependence between peak-shaving and energy production objectives. To identify compatible command 
curves, Thongwan et al.21 optimized a simulation model of Thailand’s Ubolrat reservoir using conditional tabu 
search algorithms (CTSA) and conditional genetic algorithms (CGA). Based on the findings, the multi-objective 
command curves created by CGA were more successful than CTSA in reducing the frequency of floods and 
drought conditions in the future. Zhang et al.22 improved the multi-objective flame-butterfly optimization algo-
rithm based on R-dominance to solve the multi-objective optimal exploitation model of reservoirs with power 
production, environmental protection, and navigation objectives (R-IMOMFO). Based on its comparisons with 
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five other algorithms, the R-IMOMFO algorithm yielded a group of solutions with a strong distribution and 
excellent convergence to the problem of the optimal exploitation of reservoirs. The findings of the exploitation 
revealed an apparent conflict between the demand for navigation and the environment. Liu et al.23 used the 
NSGA-II algorithm and the lion pride algorithm (LPA) to maximize the use of bi-objective reservoirs. The LPA 
algorithm ran for bi-objective optimization problems about two to four times faster than NSGA-II because it 
performed better in convergence and divergence than NSGA-II.

Ahmadianfar et al.24 introduced an enhanced differential evolution (EDE) algorithm to extract the optimal 
policies of hydropower multi-reservoir systems. The EDE had powerful global ability and faster convergence than 
the original DE. Kumar and Yadav25 proposed the self-adaptive multi-population multi-objective Jaya algorithm 
(SAMP-MOJA) to extract multi-purpose reservoir operation policies. The results were compared with those of 
the MOJA and the MOPSO algorithms. SAMP-JA outperformed JA, the PSO, and IWO regarding maximum 
hydropower generation and the algorithm convergence rate. Mansouri et al.26 employed an improved version of 
the fuzzy multi-objective PSO algorithm (f-MOPSO) to optimize the reservoir operation under climate change. 
The results indicated the superior performance of f-MOPSO to the NSGA-II in meeting the water demands and 
holding the reservoir storage sustainable. Nguyen27 used the optimization approach to determine the optimal 
water discharge scenario in the operating multi-purpose reservoirs in the Red River basin. There was increasing 
economic benefit from saved water and hydropower generation during peak hours.

Furthermore, the economic value added by the power generation of three reservoirs was about 401.7 billion 
VND. Fang et al.28 developed an accelerated version of gradient-based optimization (AGBO) to solve a complex 
multi-reservoir hydropower system. The optimal results showed that the method was superior to the other 
advanced optimization algorithms for maximizing the load demands in the hydropower system.

A review of the literature on the Karun basin
Sharifi et al.29 developed a new fitness-distance-balance selection method in the moth swarm algorithm (FDB-
MSA) to optimize the hydropower generation of a real five-reservoir system along Karun River. The results 
revealed the superiority of FDB-MSA to GA and PSO; the smallest difference (3.41%) was observed between 
nominal and optimal power generation compared to the PSO (6.58%) and GA (33.89%). Also, Sharifi et al.30 
investigated the capability of 14 new robust evolutionary algorithms (EAs) in optimizing energy generation from 
the Karun-4 hydropower reservoir in the Karun basin. The overall results indicated the promising capability 
of some EAs for optimal operation of hydropower reservoirs. Ahmadianfar et al.31 aimed to extract nonlinear 
operating rules of the great Karun basin multi-reservoir systems; for this purpose, they developed a self-adap-
tive teaching learning-based algorithm with differential evolution (SATLDE). The SATLDE achieved superior 
precision and reliability than other methods. The results also revealed that SATLDE increased the total power 
generation by up to 23.70% compared to other advanced optimization methods. Vahabzadeh et al.32 developed 
a comprehensive energy simulation model (CESNeX) for energy-water-food nexus system analysis for the great 
Karun basin water resources system. The results indicated the desirable performance of the proposed simula-
tor model in the Karun basin. Mostaghimzadeh et al.33 proposed a long lead time forecast model applying 
an ensemble approach to manage the great Karun multi-reservoir system. The proposed model significantly 
improved the final results. Ahmadianfar et al.34 developed the influential flower pollination algorithm (IFPA) 
for the real-world five-reservoir hydropower system in the Karun basin. The IFPA achieved better total power 
production compared to other algorithms, including adaptive guided differential evolution (AGDE), composite 
DE (CODE), hybridizing sum-local search optimizer (HSLSO), improved teaching learning-based optimization 
(ITLBO), self-adapting control parameters in DE (jDE), self-adaptive TLBO (SATLBO), and a multi-strategy 
hybrid of DE and particle swarm optimization (MS-DEPSO).

The Karun multi-purpose multi-reservoir system is the largest system of cascade reservoirs in Iran. It is one 
of Iran’s most important and strategic reservoir systems and provides more than 90% of the country’s renewable 
hydropower energy. The main advantage of the Karun system is that it is multi-purpose (water supply, energy 
generation, and flood control) and has five cascade reservoirs (Karun-4, Karun-3, Karun-1, Masjed-e-Soleyman, 
and Gotvand Olia dams), which make it a complex, large-scale optimization problem.

Given the above, the operation of large-scale multi-reservoir multi-objective systems is complicated, and 
we need robust algorithms to obtain the best operation policies for such problems. The best operational policy 
yields the minimum total deficit during the operational period while considering power generation and flood 
control objectives simultaneously. The powerful multi-objective algorithms should solve this problem as an 
integrated model.

To the best of the authors’ knowledge, limited studies have applied the MOAHA algorithm for water resources 
planning and management in limited studies, particularly for the optimal operation of multi-reservoir system. 
Therefore, the MOAHA multi-objective algorithm was used for optimal multi-objective exploitation of the multi-
reservoir system of Karun, one of the most important water resources systems in Iran. Besides, its performance 
was compared with two new multi-objective algorithms, MOMSA and MOMGA.

Materials and methods
There are four significant storage dams (Gotvand Olia, Karun 1, Karun 3, and Karun 4) and a hydropower dam 
(Masjed-e-Soleyman) on the Karun River in the Karun basin, one of the richest basins in Iran: Due to 32 power 
plant units with a combined capacity of over 8500 MW (Table 1) for each of the dams, the system has a signifi-
cant impact on supplying hydroelectric energy. With a nominal annual electricity output of 18,248.7 GW, it 
provides more than 90% of the nation’s total hydroelectric energy (Dezab Consulting Engineering Co., 2019). The 
67,257 km2 Karun watershed is located between 48° 10′ and 52° 30′ east longitude and 30° 20′ and 34° 05′ north 
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latitude. Figure 1 depicts the Gotvand Olia, Masjed-e-Soleyman, Karun 1, Karun 3, and Karun 4 dams, which 
are all situated on the main branch of the Karun River in succession, along with the location of the Karun basin.

Each hydropower plant comprises several independent power production units with a specific production 
capability (PPC). Each hydroelectric power facility also has a specific production efficiency to indicate its effec-
tiveness. The quantity of electricity generated by each power plant is based on the efficiency coefficient over a par-
ticular time frame. The percentage of times a power plant runs at maximum efficiency throughout an operational 
period is denoted by this coefficient. The Karun basin’s electric reservoir system has proven successful over several 
months of operation, and each power plant can produce energy for at least 5–8 h every day for at least 1 month. 
Table 1 lists information about the electric power plants in the Karun River basin investigated for this study35.

The specified system’s quantity and quality of exploitation are subject to stochastic influences, including the 
input flow to each reservoirs and multiple uses in the main electricity sector production of Iran, all of which 
multiply the importance of planning and justify any effort to optimize the objectives of the mentioned system, 
including hydropower generation.

Utilized data
In this study, 180-month time-series data, from 2000 to 2015, were used for the optimal operation of water 
resources in the Karun basin. The utilized data include net evaporation, river inflow, and total demands in the 
Gotvand Olia, Masjed-e-Soleyman, Karun 1, Karun 3, and Karun 4 dams (Table 2).

Problems with multi‑objective optimization
While constrained by an MOP, multiple-objective functions must be minimized (or maximized) concurrently36. 
Therefore, MOP can be explained as follows:

where fi(�x) is the i-th singular objective function, Rd is the d-dimensional solution space, gi and hi are the i-th 
equal and unequal constraints, respectively.

In single-objective optimization, it is simple to compare various solutions using interface functions, and 
algorithms can only present one solution as the overall best solution. However, the interface operators lose their 
effectiveness in multi-objective optimizations because it is challenging to evaluate solutions with many objectives 
as the objectives contend with one another. It is essential to locate another interface operator for comparison with 
all objectives. In this instance, Pareto’s dominance of the topic resulted in sensible solutions that weigh several 
objectives. The key definitions provided by Pareto for MOP minimization are listed below.

Definition 1  (Pareto dominance37) vector �x dominates vector �y (denoted as �x ≤ �y ) if:

Definition 2  (Pareto optimal) If and only if a strategy �x is considered Pareto optimal:

Definition 3  (Pareto optimal set) The definition of the Pareto optimum set (PS) is as follows:

(1)Minimal functionf (�x) =
[

f1(�x), . . . , fi(�x), . . . , fn(�x)
]

�x ∈ Rd

(2)Limitations

{

gi(�x) ≤ 0 i = 1, . . . ,P
hj(�x) ≤ 0 i = 1, . . . , q

(3)Low ≤ �x ≤ up Low ∈ Rd , up ∈ Rd

(4)∀i ∈ {1, . . . .,m}, fi(�x) ≤ fi
(

�y
)

and ∃j ∈ {1, . . . .,m}, fi(�x) ≤ fi
(

�y
)

.

(5)
{

¬∃�y ∈ Rd |�y < �x
}

.

(6)PS =
{

�x, �y ∈ Rd |¬∃�y < �x
}

.

Table 1.   Details of the hydroelectric infrastructure at Gotvand Olia, Masjed-e-Soleyman, Karun 4, Karun 3, 
and Karun 135.

Parameter Unit Karun 4 Karun 3 Karun 1 Majed-e-Soleiman Gotvand

Number of power plant units Number 4 8 8 8 4

Power of each unit Megawatt (MW) 250 250 250 250 375

The total capacity of power plant units Megawatt (MW) 1000 2000 2000 2000 1500

Average annual energy production Gigawatt hours (GWH) 2190.6 3890.8 3951.9 3959.8 4255.6

Efficiency of hydropower generation % 92 92.4 90 92 93

Perfomance coefficient % 25 22 23 23 32

Power plant tail-water level Meters above mean sea level (masl) 840 665 365 240 75
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Definition 4  (Pareto optimal front) This is how the Pareto optimum front (PF) is described:

When dealing with MOPs, finding a PS rather than a singular optimal solution is an obvious requirement. 
A typical technique for storing and recovering PS in the optimizer process creates an external archive with a 
particular number. Figure 2 illustrates the relationship between the MOPs’ main ratios. In Fig. 2, the continuous 
line represents PF, and x1 is the PF’s Pareto-optimal solution. x1 is better than x2, x3, and x4. Since x3 has a higher 
value for f2 and a smaller value for f1 than x4, x3 and x4 do not take precedence over each other.

(7)PF =
{

f (�x)|�x ∈ PS
}

.

Figure 1.   The location of each dam in the Karun basin.
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Standard deviation (distance from the mean)
The standard deviation calculates the density of non-dominant solutions near the initial solution. MOPs are 
commonly used to maintain the distribution of solutions obtained in PF9. Based on the fitness values of each 
objective function, all of the solutions in the set of non-dominant solutions are arranged in ascending order. The 
average length of the rectangle sides for each solution, xi, is determined by the neighboring solutions xi−1 and 
xi+1. These numbers stand for the solution xi’s mean standard deviation. It is typical to assume that the distance 
from the set of solutions with the minimum and maximum values of the objective function is infinite. A greater 
range of solutions is possible at a greater distance from the density of solutions. Figure 3 displays the separation 
from data congestion with two objectives.

Random archiving38, grid archiving10, and ε-Pareto archiver39 are some popular techniques for maintaining 
external archives. The random archiver randomly selects and removes the non-dominated solutions from the 
archive. The grid archiver partitions the target space into numerous hypercubes, and each hypercube saves the 
non-dominated solutions. Then, a preset number of the solutions are eliminated to distribute the remaining ones 
equally. A hypercube with two or more non-dominated solutions is archived using the ε-Pareto algorithm, but 
only the solution closest to the hypercube origin is kept. The value of ε determines how many hypercubes are 
broken up into the objective space.

Artificial hummingbird algorithm (AHA)
Zhao et al.13 developed the bio-based algorithm known as AHA to handle single-objective optimization problems. 
It can be categorized as a swarm algorithm. This program was created based on how hummingbirds naturally 
forage. Three foraging behaviors—guided, territorial, and migratory—are modeled by AHA during the optimiza-
tion process. Axial, diagonal, and omnidirectional are the three types of flight mimicked by foraging behaviors. 

Table 2.   Utilized data range in the study area.

Dams Data range Net evaporation (mm) Average river inflow (MCM) Total water demands (MCM)

Gotvand Olia

Minimum 56.4 1.8 525.7

Mean 182.5 175.6 725.7

Maximum 306.5 999.3 941.9

Masjed-e-Soleyman

Minimum 45.4 0.7 0.5

Mean 167.4 166 0.6

Maximum 302.5 918.8 0.7

Karun 1

Minimum 46.3 92.4 0.4

Mean 158.9 306 0.6

Maximum 292.9 2304.2 1.2

Karun 3

Minimum 43.5 17.1 0.2

Mean 148.8 139.8 0.3

Maximum 271.9 589.8 0.5

Karun 4

Minimum 42.4 84.7 0.1

Mean 143.8 377.5 0.4

Maximum 257.5 1503 1.2

Figure 2.   Schematic diagram of the relationship between dominant parameters in MOPs.
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A visit table also imitates how hummingbirds use their memories to select their preferred food sources. The key 
components in AHA are briefly described below13.

Multi‑objective artificial hummingbird algorithm (MOAHA)
MOAHA was first proposed by Zhao et al.40 for MOPs. Three major components are integrated into MOAHA 
as follows to perform multi-objective optimization effectively:

(1)	 An external archive is introduced into MOAHA to save a fixed number of optimal non-dominated solutions 
during iterations.

(2)	 A dynamic elimination-based crowding distance (DECD) method is employed to efficiently maintain the 
archive during the entire optimization process, aiming to improve the solution diversity significantly.

(3)	 A solution update mechanism based on NDS is developed and used to refine non-dominated solutions in 
the solution update phase, remarkably contributing to solutions’ convergence.

Solution update strategy based on NDS
In AHA, in each iteration, after performing guided foraging or territorial foraging, the current solution is replaced 
with the candidate solution if the fitness value of the candidate solution is better than that of the current solution, 
or the current solution will remain unchanged. However, in MOAHA, dominance relation with many objectives 
makes solution updating complicated. The selection of solution update strategy will directly affect convergence 
towards the true PF.

In MOAHA, a solution update strategy based on NDS is proposed. In this strategy, all solutions are sorted by 
the NDS approach; solutions dominated by fewer solutions have a higher dominance hierarchy, and all solutions 
are assigned different ranks according to their non-dominated levels.

(1)	 When the front on which the candidate solution of the ith individual lies is better than the front on which 
the current solution of the ith individual lies, the current solution of the ith individual is replaced by its 
candidate solution. In Fig. 4a, the candidate solution belongs to F2 front, the current solution belongs to F3 
front, and the F2 front is better than the F3 front. In this case, the candidate solution will replace the current 
solution.

(2)	 When both the candidate and current solutions of the ith individual belong to the same front, there is a 
probability of 50% to choose between the two to update the current solution of the ith individual with the 
candidate solution. Figure 4b depicts this case.

(3)	 When the front on which the candidate solution of the ith individual lies is worse than the front on which 
the current solution of the ith individual lies, the current solution will be retained for the next iteration. 
This case is described in Fig. 4c. This solution update strategy is defined as follows:

where Fp is the pth front in NDS.

(8)xi(t + 1) =











vi(t + 1) vi ∈ Fp, xi ∈ Fq and p < q
�

vi(t + 1)
xi(t)

vi ∈ Fp, xi ∈ Fq, p = q and rand < 0.5
vi ∈ Fp, xi ∈ Fq, p = q and rand ≥ 0.5

xi(t) vi ∈ Fp, xi ∈ Fq, and p > q

Figure 3.   Crowding distance of two-objective solutions.
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Dynamic elimination‑based crowding distance (DECD)
The crowding distance is an effective parameter-free method to enhance the diversity of solutions9, so it is fre-
quently employed in many MOAs to maintain a fixed-size external archive by removing excessive solutions with 
smaller crowding distance. However, whenever a solution is removed, the sorting of the crowding distance of 
the remaining solutions will be changed. Then, the next solution to be removed in terms of the initial crowding 
sorting may not be the one with current crowding sorting, which will reduce solution diversity in the external 
archive. Figure 5 displays the sorting change of the crowding distance before and after a solution is removed. 
Evidently, sorting the subsequent crowding distance is changed when the solution with the smallest crowding 
distance (x4) is removed. The next solution to be removed will be x5 according to the original sorting of the 
crowding distance in Fig. 5a.

Nevertheless, x6 should be removed according to the updated sorting of crowding distance in Fig. 5b. The 
archiving procedure based on crowding distance is ineffective in maintaining the sustainable diversity of PS. Thus, 
the external archive with DECD is proposed. When the solution with the current minimal crowding distance in 
PS is removed, only the crowding distances of the immediately adjacent solutions to remove the solution must 
be updated, and the crowding distances of the rest of the solutions do not change.

Before the ith solution with the current smallest crowding distance is removed, the crowding distances of the 
last and next solutions adjacent to the ith solution are given as follows, respectively:

(9)











dk(xi−1) = |fk(xi)−fk(xi−2)|
max (fk)−min(fk)

D(xi−1) =
m
�

k=1

dk(xi−1)

Figure 4.   (a) The front on which the candidate solution lies is better than the front on which the current 
solution lies, (b) both the candidate solution and current solution belong to the same front, and (c) the front on 
which the candidate solution lies is worse than the front on which the current solution lies.

Figure 5.   (a) Sorting of crowding distance before solution × 4 is removed, and (b) sorting of crowding distance 
after solution × 4 is removed.
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After the ith solution with the current smallest crowding distance is removed, the crowding distances of the 
last and next solutions adjacent to the ith solution are changed as follows, respectively:

where dk(xi−1) is the side length of the cuboid of the (i−1)th solution, and D(xi−1) is the crowding distance of the 
(i−1)th solution. Figure 6 illustrates the change of the crowding distance of the solutions adjacent to the removed 
one using DECD for two objectives. When n solutions are removed for establishing an external archive using 
the DECD method, only crowding distances of 2n solutions need to be recalculated. Liu and Chen41 proposed 
a crowding distance elimination (CDE) method for improving solution diversity. Luo et al.42 devised a dynamic 
crowding distance-based diversity maintenance strategy (DCDDMS) to enhance solution diversity horizontally. 
DECD, CDE, and DCD-DMS are similar in that the sorting of the residual solutions is reconsidered whenever a 
solution with the minimum crowding distance so far is removed. The difference among them is that whenever the 
solution with the current minimum crowding distance is removed, the crowding distances of residual solutions in 
the other methods are recalculated. In contrast, only the crowding distances of the immediately adjacent solutions 
to the removed solution in the DECD method are recalculated. The DECD method reduces the computational 
complexity of computing the crowding distance of solutions from O(TMN2) to O(TMN).

Figure 7 shows external archiving procedures based on crowding distance and DECD for two objectives. 
There are 100 non-dominated solutions in Fig. 7a, in which 50 must be removed. Figure 7b, c display the external 
archives based on crowding distance and DECD, respectively. Figure 8 shows external archiving procedures based 
on crowding distance and DECD for three objectives. There are 100 non-dominated solutions in Fig. 8a, in which 
50 must be removed. Figure 8b, c depict external archives based on crowding distance and DECD, respectively. 
Evidently, the solutions in the external archiving based on the DECD method maintain better diversity and 
distribution than those in the external archiving based on the crowding distance.

Guided foraging
In AHA, a hummingbird tends to move to the food source with the highest visit level when performing guided 
foraging. When there are multiple food sources with the highest visit level, the one with the best fitness is selected 
as the target food source for foraging. In MOAHA, when there are multiple food sources with the highest visit 
level, the one in the better front based on NDS is selected as the target food source. If there are still multiple 
solutions in the same better front, one is randomly selected as the target food source.

After a hummingbird visits the target food source using Eq. (8), the visit level of the target food source for 
this hummingbird in the visit table is set to 0, and then the visit levels of the other food sources are increased 
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Figure 6.   Change of the crowding distance of solutions adjacent to the removed one using DECD for two 
objectives. (a) Crowding distances of xi−1 and xi+1 before xi is removed, and (b) crowding distances of xi−1 and 
xi+1 after xi is removed.
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by 1. After performing guided foraging, a new food source (candidate solution) is obtained, and the solution 
update strategy based on NDS is performed.

If this new food source meets the requirement of update condition in Eq. (9), this hummingbird will abandon 
the previous food source and station in this new food source (candidate solution). Otherwise, it still rests on the 
previous food source. This solution update results in the visit level update of the food source for all other hum-
mingbirds. If the solution update succeeds for a hummingbird, the visit level of the updated food source should 
be set to the highest level of the other food sources plus 1 for every other hummingbird. If the solution update 
fails for a hummingbird, the visit level does not change.

The following example (a two-objective minimization problem) shows how each hummingbird’s target food 
source is selected and how the visit table is modified when employing the solution update strategy.

In Fig. 9a, assume that four hummingbirds are placed on different food sources, and all visit levels in the 
visit table are initialized to 0. The first hummingbird finds the food sources of other hummingbirds x2, x3, and 
x4 that have the same highest level; since x3 dominates both x2 and x4, the food source of the hummingbird x3 is 
treated as the target source of the first hummingbird. After the first hummingbird performs guided foraging via 
Eq. (8), the visit level of the food source of the hummingbird x3 is set to 0, and the visit levels of the food sources 
of hummingbirds x2 and x4 are increased by 1. Since the current solution × 1 dominates the candidate solution 
v1, x1 is not updated by v1 (if a solution dominates another solution, the front of this solution is better than the 
front of the other solution).

In Fig. 9b, the second hummingbird finds the food sources of other hummingbirds x1, x3 and x4 with the same 
highest level, since x1 dominates both x3 and x4, the food source of hummingbird x1 is treated as the target source 
of the second hummingbird. After the second hummingbird performs guided foraging via Eq. (8), the visit level 
of the food source of the hummingbird x1 is set to 0, and visit levels of the food sources of the hummingbirds x2 
and x4 are increased by 1. Since the candidate solution v2 dominates the current solution x2, x2 is updated by v2, 
and the visit level of the source of the hummingbird x2 for each of the other hummingbirds is modified to the 
highest visit level increased by 1 in every corresponding row.

In Fig. 9c, the third hummingbird finds the food sources of the hummingbird x2 that has the highest level, 
so the food source of the hummingbird x2 is treated as the target source of the third hummingbird. After the 
third hummingbird performs guided foraging via Eq. (8), the visit level of the food source of the hummingbird 
x2 is set to 0, and visit levels of food sources of the hummingbirds x1 and x4 are increased by 1. Since the current 
solution x3 dominates the candidate solution v3, x3 is not updated by v3.

Figure 7.   (a) Pareto optimal front for two objectives, (b) external archive based on crowding distance, and (c) 
external archive based on DECD.

Figure 8.   (a) Pareto optimal front for three objectives, (b) external archive based on crowding distance, and (c) 
external archive based on DECD.
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In Fig. 9d, the fourth hummingbird finds the food source of the hummingbird × 2 that has the highest visit 
level, and the food source of the hummingbird × 2 is treated as the target source of the fourth hummingbird. After 
the fourth hummingbird performs guided foraging via Eq. (8), the visit level of the food source of the humming-
bird × 2 is set to 0, and visit levels of the food sources of the hummingbirds × 1 and × 3 are increased by 1. Since 
candidate solution v4 dominates the current solution × 4, × 4 is updated by v4, and the visit level of the source of 
the hummingbird × 4 for each of the other hummingbirds is modified to the highest visit level increased by 1 in 
every corresponding row. When one iteration is achieved for the four hummingbirds, their updated solutions 
and visit table are shown in Fig. 10.

Territorial foraging
When a hummingbird performs a local search in its territory, a new food source is produced as a candidate solu-
tion. The mathematic equation simulating the territorial foraging of hummingbirds is given below to improve 
the solution diversity in MOAHA:

where xa(t) is a solution randomly chosen from the external archive.
When a hummingbird performs territorial foraging, the visit levels of the food sources of other hummingbirds 

are increased by 1. After completing the territorial foraging, a new food source (candidate solution) is found, 
and the solution update is performed according to Eq. (13). If the solution update succeeds, the visit level of the 
updated food source is set to the highest level of the other food sources plus 1; if the solution update fails, the 
visit level does not change. The pseudocode of the territorial foraging strategy of MOAHA is described in Fig. 9, 
showing the update of the visit table when the first hummingbird performs territorial foraging.

For brevity, Fig. 11 only shows the solution update procedure of the first hummingbird in territorial foraging. 
Based on Fig. 11a, when the first hummingbird performs territorial foraging in its local region, the visit levels of 
other hummingbirds × 2, × 3, and × 4 are increased by 1. After performing territorial foraging, since candidate 
solution v1 dominates the previous solution × 1, the previous solution × 1 is replaced by the candidate solution 
v1, and the source of the hummingbird × 1 for each of the other hummingbirds is modified to the highest visit 

(13)
{

vi(t + 1) = xi(t)+ D · b · xi(t)rand < 0.5
vi(t + 1) = xi(t)+ D · b · xa(t)rand ≥ 0.5

Figure 9.   Update of visit table and solutions when performing guided foraging in MOAHA.
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level increased by 1 in every corresponding row. Figure 11b shows the updated solution and visit table after the 
first hummingbird performs the territorial foraging.

Note that the solution update procedure is the same for both guided foraging and territorial foraging; the 
difference between them in the updating visit table is that the visit level of the visited food source is initialized to 
0 in guided foraging, while this step is not implemented in territorial foraging as a hummingbird visits its own 
territory instead of the existing food source of other hummingbirds.

Migration foraging
For AHA, when performing migration foraging, the hummingbird located at the food source with the worst 
nectar-refilling rate tends to migrate to a new food source produced randomly in the entire search space. The food 
source with the worst nectar-refilling rate is the solution with the worst fitness in all the solutions. For MOAHA, 
the food sources with the worst nectar-refilling rate are defined as the solutions in the worst front based on NDS.

The migration foraging of hummingbirds in MOAHA is expressed as follows:

(14)
{

wor ∈ Fend
xwor(t + 1) = Low + r ·

(

Up− Low
)

Figure 10.   Updated visit table of hummingbirds after one iteration.

Figure 11.   Update of visit table and solutions when performing territorial foraging in MOAHA.
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where Fend is the worst front, r is the rand number in [0, 1], and Up and Low are the upper and lower boundaries. 
When migration foraging is completed, the visit table is updated, and the update procedure is similar to those 
of the other two foraging strategies.

Multi‑objective artificial hummingbird algorithm (MOAHA)
MOAHA begins with a random group of solutions by creating an external archive with a fixed number for a par-
ticular multi-objective optimization task and initializing a random population of hummingbirds. After initializing 
a visit table, all non-dominated solutions from the original population are recorded in the archive. Each time, 
MOAHA has a 50% chance of choosing between territorial foraging and guided foraging. When a hummingbird 
participates in guided foraging, it usually shifts its position concerning the target food supply determined by 
the visit table and dominance relationship. When a hummingbird is territorially foraging, it shifts its position 
toward the community in its area. The solution update based on NDS is performed in line with Eq. (8) following 
the completion of one forage, which modifies the visit table.

Migration foraging is used every 2n iterations, and the visit table and worst-front solutions are both randomly 
initialized in the search field.

At the end of each iteration, non-dominated solutions in the new population are added to the archive. The 
external archiving mechanism based on DECD is triggered if the archive size exceeds the predetermined limit. 
These processes are repeated until the maximum number of iterations is reached. The PF is eventually returned 
along with the ideal non-dominated solutions from the archive. The MOAHA diagram is explained in Fig. 12.

This is a theoretical investigation of combining different techniques.

(1)	 MOAHA has an internal external archive with a preset size that can store and recover non-dominated 
optimal solutions. Archives may be a great resource for all MOAs. Solutions are managed in archives 
using the DECD technique. The literature has established that the crowing distance method is suitable for 
maintaining solution variety. Contrarily, the one-step elimination method of crowding distance is useful 

Figure 12.   The flowchart of MOAHA.
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for maintaining archives. The phase-out technique can greatly improve the distribution of solutions. As a 
result, the DECD approach can considerably improve the consistency and diversity of the solutions.

(2)	 The NDS approach can divide all the solutions into multiple fronts, allowing for easy comparison of both the 
existing and potential solutions based on front ranks9. Better non-dominated solutions can then be archived 
and handed on to the following iteration to aid in the search operations of the other users. Therefore, a 
solution updating method with NDS can improve the algorithm’s ability to converge to optimal solutions.

(3)	 Since MOAHA does a global search using the same methods as AHA, convergence may result. The perfor-
mance of searches in terms of exploration, exploitation, and convergence has been theoretically assessed for 
these procedures, three foraging methods, and a visit table40. Because MOAHA receives all the advantages 
of AHA, searchers can perform both exploitation and exploration in the same manner. The main difference 
between the two is that while AHA simply stores one optimal solution and later fine-tunes it, MOAHA 
looks through various non-dominated solutions and saves them to the archives.

Other multi‑objective algorithms
Multi‑objective moth swarm algorithm (MOMSA)
Single-objective MSA, proposed by Mohamed et al.43, is inspired by the behavior of moths in nature. Moths 
try to hide from predators during the day while looking for food resources at night with a celestial navigation 
technique. They fly in a straight line over a long distance by steering their locomotion in a steady angle relative 
to moonlight as the celestial far-distant point of light. In the MSA, the possible solution is represented by the 
position of the light source, and the quality of this solution is considered the luminescence intensity of the light 
source. Three groups of moths (pathfinders, prospectors, and onlookers) are considered in the MSA. Pathfinders 
can find the best position over the optimization space with the First-In, Last-Out principle to guide the movement 
of the main swarm. Prospectors tend to wander into a random spiral path near the light sources marked by the 
pathfinders. Onlookers drift directly toward the best global solution (moonlight) achieved by the prospectors43.

The dominant features of the algorithm (such as moonlight and pathfinder moth) must be properly defined 
to convert MSA into an efficient multi-objective optimization algorithm. In normal optimization problems for 
MSA, only one objective function should be minimized or maximized. In this condition, three types of moths, 
including pathfinder, prospector, and onlooker, follow the process of searching and reaching the final objective 
in three stages of cognition, transverse orientation, and constellation orientation. The prospector moths ran-
domly move in a maze toward the best pathfinder moths (responsible for guiding the prospectors). Following 
this process, the onlooker moths move directly toward the best global optimal solution (moonlight) detected 
by the prospectors. The extraordinary performance of the MSA algorithm in solving single-objective problems, 
proven in various studies, has turned it into one of the most powerful metaheuristic algorithms44,45. A multi-
objective moth swarm algorithm (MOMSA) with the capability of solving complex and large-scale problems 
was proposed by Sharifi et al.44 to solve multi-objective constrained problems. Since more than one function 
must be maximized in MOPs, the definition for selecting the type of moths and the best value (moonlight) is 
changed in MSA to the multi-objective space. The crowding-distance mechanism selects the most efficient (best) 
solutions in the population as the pathfinder moths and moonlight (global optimum). Sharifi et al.44 presented 
a full description of the method and key components of the MOMSA algorithm.

Multi‑objective material generation algorithm (MOMGA)
The MGA algorithm, a metaheuristic algorithm recently developed by Talatahari et al.46, considers the general 
aspects of material generation in nature, along with the basic and advanced principles of chemistry, including 
chemical compounds and chemical reactions46.

The multi-objective version of MGA for solving multi-objective optimization problems was presented by 
Nouhi et al.47. MOMGA has three new mechanisms for solving multi-objective optimization.

The first mechanism introduced into MGA is the archive, which serves as a storage facility for storing or 
restoring the derived Pareto optimal solutions. The archive has a single controller that manages which solutions 
are added to the archive and when the archive is full. There is a limit to the number of solutions that can be 
stored in the archive. The residents of the archive are compared to the non-dominated solutions created. Three 
major scenarios are possible:

	 I.	 If at least one member in the archive dominates the new solution, it is not allowed to enter the archive.
	 II.	 The new solution may be added to the archive if it dominates at least one solution in the archive by omit-

ting the one already in the archive.
	 III.	 If the new and archive solutions do not dominate each other, the new solution is added to the archive.

The grid mechanism included in MGA is the second effective technique for enhancing non-dominated solu-
tions in the archive. If the archive is full, the grid technique will be utilized to reorganize the object space’s seg-
mentation and find the most populated area to eliminate a solution. The additional member should be included 
in the least crowded segment to boost the variety of the final approximated Pareto optimal front. As the number 
of possible solutions in the hypercube increases, the possibility of deleting a solution rises. If the archive is full, 
the most crowded areas are chosen first, and a solution from one of them is randomly deleted to make way for 
the new solution. When a solution is placed outside the hypercubes, a special case arises. All segments in this 
scenario have been expanded to fit the most recent solutions. As a result, the segments of alternative solutions 
can also be changed.
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Due to Pareto optimality, solutions in a multi-objective search space cannot be compared; hence, the leader 
selection mechanism is the last machine in MGA. Consequently, MGA includes a leader selection method to 
address this problem.

The search leaders guide the other search candidates to possible areas of the search space to attain a solution 
close to the global optimum. As previously stated, the archive contains only the best non-dominated solutions. 
The leader selection mechanism chooses the least crowded portions of the search space and presents the best as 
non-dominated answers.

A full description of the MOMGA algorithm is provided by Nouhi et al.47.

Performance criteria for MOPs
GD48, S49, Δ50, and MS36 are the four performance parameters used in this study to assess the performance of 
the exploitation algorithms.

where d is the Euclidean distance between the i-th member in PFg and the closest member in PFoptimal, where 
NPF is the total number of members discovered in the Pareto front. The best GD criterion that can be obtained 
is zero, which indicates that PFg is precisely on the optimal line or PFoptimal.
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lowest value of S in PFg leads to the best uniform distribution. As a result, if all non-dominated solutions are 
distributed equally throughout PFg, the value of S is zero.

where in PFoptimal and PFg, df and dl represent the separation between extremum solutions (beginning and finish-
ing points). The distance di separate any point in PFg and the closest point in PFotpimal.

This metric represents a graph’s point-to-point distance. The value of Δ is always greater than zero, and a 
lower value indicates a better distribution and spread of solutions.

When Δ is zero, it is a perfect condition showing that di = d for all non-dominant points.

where f max
i  and f min

i  are, respectively, the maximum and minimum values of the ith objective in PFg, and Fmax
i  

and Fmin
i  are the maximum and minimum of the ith target in PFoptimal, respectively. A higher MS score indicates 

a wider range of solutions.
Generally, the performance criteria of multi-objective problems are used to evaluate the performance of 

multi-objective algorithms. The closer the GD, S, and Δ criteria to zero and the higher the MS criterion, the 
greater the superiority and performance of the multi-objective algorithm.

Long‑term multi reservoir‑multi objective simulation–optimization model
The optimal monthly release rates from the dams’ reservoirs serve as the decision factors in the multi-reservoir, 
multi-objective optimization model. In succession, these release values in the system of five Karun dam reser-
voirs include releases intended to satisfy downstream demand, control flooding, and provide electric energy. The 
MOAHA algorithm has 1800 decision variables in the system because the planning horizon for this study is 180 
months (from 2000 to 2015). Reservoir downstream needs and releases from energy outputs are the decision 
variables, while storage volume and input to reservoirs are the state variables for each time. The volume of the 
river, the height of evaporation, the height of precipitation, and the volume of requirements every month are 
the input data for the model.

For deterministic optimization of the reservoir system in reservoir problems, the usual objective function 
is as follows:

In this context, t stands for the intended period index, T for the number of exploitation periods, Z for the tar-
get that should be minimized or maximized, Ret is the release, and St is the storage in period t. As a fundamental 
relationship in the state-space equations, the conservation of mass in the system is as follows:
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Thus, Qt is the inflow during period t, Spt is the overflow during period t, and Losst is the loss during period 
t. The upper and lower storage volume limitations should be set to meet the needs of renewable flood control 
volume objectives and ensure a minimum level of balance for reservoir dead volume and power plant operation.

In these equations, SMin and SMax are the minimum and maximum storage volumes,ReMin and ReMax are the 
minimum and maximum release volumes, respectively.

Evaporation is used to evaluate reservoir losses while accounting for the non-linear relationship between 
reservoir surface and volume based on Eqs. (23) to (25):

In these equations, a, b, and c are constant coefficients for converting reservoir volume to the corresponding 
level of the reservoir, respectively, Evt the average drop during period t (evaporation minus precipitation) in 
millimeters, At  the average level of reservoir during period t in square kilometers, and At and At+1 the amount 
of level in reservoir at beginning and end of period t.

The objectives of providing downstream needs, flood control, and electric energy production are considered 
for the optimal use of the reservoir system. Three outlets—an electrical outlet, a downstream demand supply 
outlet, and a flood control outlet—are considered for the reservoir system. In various exploitation modes, water 
is released first from the electrical outlet, then from the supply outlet, and finally, from the flood control outlet.

In this way, the other two outlets are not used until the electricity outlet is used to its maximum capacity, and 
after using the demand–supply outlet to its maximum capacity, the flood control outlet is utilized. RePowerMax  is the 
maximum output capacity for power production, ReDeMax is the maximum output capacity for demand supply, 
and ReFCMax is the maximum output capacity for flood control, all measured in million cubic meters. Note that in 
this instance, Ret is between zero and the total of the maximum output of reservoir, and RePowert  , ReDet  and ReFCt  
respectively denote the quantity of release from electric output, demand supply, and flood control measured in 
a million cubic meters for each period t.

Operating the reservoir system for downstream demands supply
In this case, the goal is to minimize the sum of squared difference from the requirement in period t, displayed 
as the following equation:

Here, f1 is the sum of the squared difference of monthly release ( RePowert + ReDet  ) from requirement in period 
t, DeMax is the maximum monthly requirement of the reservoir, and Det is the amount of requirement.

Operating the reservoir system for flood control
Here, all the equations are like the exploitation for satisfying downstream needs, and only the objective function 
is as follows:

Here, Stargett  is the desired flood control volume in t period per million cubic meters. In the introduced objec-
tive function, the objective is to keep a constant volume around Stargett  in all the exploitation periods. In fact, if 
the reservoir volume is more than the desired volume, the objective is flood control; if it is less than the desired 
volume, the objective of supplying downstream needs will not be met and will cause deviation from Stargett  in 
each period.

Operating the reservoir system for hydropower energy generation
One must consider the problem’s complexity in terms of constraints and nonlinear conditions to make the best 
use of electricity. For this purpose, the final objective function, including minimizing the lack of production 
power compared to the installed capacity of power plants, was used according to Eq. (28).

(20)St+1 = St + Qt − Ret − Spt − Losst

(21)SMin ≤ St ≤ SMax

(22)ReMin ≤ Ret ≤ ReMax

(23)Losst = Evt × At/1000

(24)At = (At + At+1)/2

(25)At = a× S2t + b× St + c
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T
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Here, Pi,t is the production energy of reservoir i in period t per MW, and PPCi is the installation capacity of 
reservoir i per MW. According to Eqs. (29) to (40), additional constraints and criteria were applied to optimize 
hydropower production:

where ei,t is the reservoir power plant’s efficiency, assumed to be constant over all periods, and g is the accelera-
tion of the earth’s gravity, which is equal to 9.81 m per square second. PFi is the reservoir power plant’s operat-
ing coefficient, and Mult is the ratio of million cubic meters to cubic meters per second over the course of a 
time interval of t. Hi,t represents the average water level of reservoir i for t meters, Hi,t+1 represents the water 
level of reservoir i at the start of period t (meters), TWi,t represents the water level of reservoir i at the end of 
period t (meters), a0i , a1i , a2i , a3i and a4i indicate the constant coefficients used to convert reservoir volume to 
the corresponding height in reservoir i, constant coefficients of conversion b0i , b1i , b2i , b3i and b4i output water 
from the power plant to the elevation of the reservoir i, RPSi,t dentoes the volume of water that overflows from 
reservoir i’s hydropower outlet during the t period, and RPi,t shows the volume of water released from reservoir 
i’s hydroelectric outlet during period t to generate electricity. Reservoir i’s natural river influx during period t is 
represented by Qi,t , its overflow is denoted by Spi,t , and its overall volume loss over time is represented by Lossi,t . 
Ai,t and Ai,t+1 , which shows the reservoir i’s water level at the start and end of t period, respectively, represents the 
reservoir i’s water level in square kilometers. Evi,t represents the amount of reservoir i’s water lost in millimeters 
in period t (evaporation minus precipitation). SMin i is the minimum storage volume of the reservoir i, SMax i is 
the maximum storage volume of the reservoir i and ReMin i and ReMax i are the minimum and maximum release 
volumes of the reservoir i, respectively. The constant coefficients of conversion for the reservoir volume to the 
corresponding level of the reservoir are c0i , c1i , c2i , c3i and c4i . The reservoir i’s lowest and maximum release vol-
umes are denoted by ReMin i and ReMax i , respectively. RePoweri,t  is a function of RePoweri−1,t  . The power and amount of 
hydroelectric energy the reservoir discharged over time t. Power is the amount of water released from a reservoir’s 
hydroelectric output over a given time span t.

Performance metrics for reservoirs
The final and most crucial phase in employing optimization and simulation models to exploit reservoirs is the 
evaluation of operation policies.

Reliability
Reliability can be defined in two ways: time and volume. Time reliability means the percentage of periods when 
the system fully supplies the existing needs and does not fail. The following equation is used to determine this 
parameter’s value.

(28)MinF =
N
∑

i=1

T
∑

t=1

(

1− Pi,t

PPCi

)

(29)Pi,t = g × ei,t ×
RPi,t

PFi
/Mult ×

(

Hi,t − TWi,t

)

/1000

(30)Hi,t =
(

Hi,t +Hi,t+1

)

/2

(31)Hi,t = a0i + a1i · Si,t + a2i · S2i,t + a3i · S3i,t + a4i · S4i,t

(32)TWi,t = b0i + b1i · RePoweri,t + b2i ·
(

RePoweri,t

)2 + b3i ·
(

RePoweri,t

)3 + b4i ·
(

RePoweri,t

)4

(33)RPSi,t = RePoweri,t − RPi,t

(34)0 ≤ Pi,t ≤ PPCi

(35)Si,t+1 = Si,t + Qi,t + RePoweri−1,t − RePoweri,t − Spi,t − Lossi,t

(36)Lossi,t = Evi,t × Ai,t/1000

(37)Ai,t =
(

Ai,t + Ai,t+1

)

/2

(38)Ai,t = c0i + c1i · Si,t + c2i · S2i,t + c3i · S3i,t + c4i · S4i,t

(39)SMin i ≤ Si,t ≤ SMax i

(40)ReMin i ≤ Rei,t ≤ ReMax i
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where NDef stands for the overall number of failures experienced during the operation period, Dei for the 
demand value experienced during the i period, Rei for the output value experienced during the i period, and Rel 
for the system’s reliability experienced during the i period. The higher the value of this parameter, the higher the 
time reliability of the system51.

Vulnerability
This indicator measures the intensity of system failures and is derived from the equation below51:

where Val is the system’s vulnerability, Dei is the amount of demand in period i, Rei is the output value in period 
I, and t is the total number of exploitation periods.

Resiliency
This index demonstrates the system’s capacity to alter the state of affairs. Reversibility is the likelihood that a 
system will resume its desired condition after failure51. The equation below can be used to calculate this param-
eter’s value.

where Defi is the deficiency in the i-th period, and 
T
N

i = 1
() is the number of times the condition in parentheses 

happened.

Sustainability index
This index aggregates system performance requirements into a general index based on the following reservoir 
performance indicators, and aims to enable comparison and decision-making between various scenarios52.

Reliability, resiliency, vulnerability, and sustainability criteria are used to compare different algorithms in 
reservoir operation problems. The closer the reliability, resiliency, and sustainability indicators to 100% and the 
closer the vulnerability index to 0%, the greater the success in the investigated problem.

Multi‑objective criteria problems
Problem 1 of the Schaffer benchmark
A benchmark problem was provided by Schaffer53 to assess the effectiveness of multi-objective optimization 
techniques. This univariate convex problem has two objectives that must be minimized (Eq. 45). This test problem 
has served as a reliable benchmark. Almost every multi-objective EA has been tested on this problem.

This criterion seeks to minimize f1 and f2 simultaneously. The Pareto optimum sites are located in the region 
where x ∈ [0, 2], as shown in Fig. 13. There is a trade-off between two functions that grow and decrease within 
this interval because f1 and f2 increase outside of it.

Problem 2 of the MMF1 benchmark
A benchmark concern for CEC 2020 is MMF1. The most recent and official multimodal-multiobjective bench-
mark set is the CEC 2020. The CEC 2020 benchmark set includes four distinct kinds of benchmark problems: 
convex linear, convex nonlinear, concave, and concave linear. The shapes of the objective functions and the spaces 
of the choice variables distinguish these benchmark problems.

The Pareto front (PF) and Pareto optimum set (PS) equations and forms for MMF1 are as follows:

where the search space is x1 ∈ [− 1, 1] and x2 ∈ [1, 3].

(41)Rel =
(

1− NDef

T

)

× 100, NDef = number(Dei > Rei)

(42)Val = max

{

(Dei − Rei)

Dei

}

× 100, i = 1, 2, . . . , t

(43)Res =

T
N

i = 1
(Defi+1 = 0| Defi�0)

T
N

i = 1
(Defi > 0)

× 100 i = 1, 2, . . . , T

(44)SI = {Rel× Res× (1− Vul)}1/3

(45)

Minimize f (x) =
(

f1(x), f2(x)
)

Subject to f1(x) = x2

f2(x) = (x − 2)2

(46)
{

f1 = |x1 − 2|
f2 = 1−√|x1 − 2| + 2(x2 − sin(6π |x1 − 2| + π))2
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Pareto global sets (PSs) are:

where 1 ≤ x1 ≤ 3 , and the global Pareto Front (PF) is:

where 0 ≤ f1 ≤ 1 . Its actual PS and PF are shown in Fig. 14.
Liang et al.54 provide more details on the additional characteristics of the CEC benchmark set problems. The 

MOAHA multi-objective algorithm’s performance in this work was tested and verified using the two benchmark 
challenges described above.

(47)
{

x1 = x1
x2 = sin(6π |x1 − 2| + π)

(48)f2 = 1−
√

f1

Figure 13.   The Schaffer problem’s ideal Pareto front.

Figure 14.   The actual PSs and PF of MMF1.
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Results and discussion
Multi‑objective criteria problems
The MOAHA, MOMSA, and MOMGA algorithms, programmed in MATLAB, had to be assessed for perfor-
mance and capability. For this purpose, two well-known multi-objective standard benchmark functions were 
utilized.

The effectiveness of the utilized algorithms was assessed using four widely used evaluation criteria: GD, S, Δ, 
and MS. The results of the multi-objective benchmark functions Schaffer and MMF1’s standard multi-objective 
evaluation criteria are illustrated in Table 3.

Table 3 shows that all three algorithms performed well in two standard benchmark functions under investiga-
tion. The MOAHA algorithm performed better than the other two algorithms with the performance criteria of 
GD = 0.00095, S = 0.58155, Δ = 0.20375, and MS = 4.00020 in the Schaffer problem and GD = 0.00095, S = 0.58155, 
Δ = 0.20375, and MS = 4.00020 in the MMF1 problem. The MOAHA algorithm located non-dominated solutions 
with the shortest distance from the PFoptimal in two benchmark functions under investigation and had a suitable 
distribution. Besides, the MOAHA algorithm converged well with the PFoptimal (GD criterion).

Regarding the metric of spacing (S), the MOAHA algorithm had a better distribution of non-dominant solu-
tions (criterion S) in the studied benchmark functions. These results are more visible in Fig. 15.

Figure 15A–C show the Pareto front resulting from applying the MOAHA, MOMSA, and MOMGA algo-
rithms in the Schaffer and MMF1 standard multi-objective benchmark functions.

Figure 15 displays a graphic comparison between the precise and calculated Pareto fronts using the MOAHA, 
MOMSA and MOMGA multi-objective algorithms to solve the studied multi-objective problems. The ideal 
Pareto front, optimal distribution, and acceptable distribution for non-dominated solutions were all successfully 
covered by the MOAHA multi-objective algorithm (Fig. 15). Based on Fig. 15 and Table 3, the performance of 
all the utilized algorithms was satisfactory. All three algorithms yielded suitable Pareto fronts in terms of cover-
age and diversity.

A multi‑objective simulation–optimization model of the Karun Basin reservoir system
The recently developed MOAHA, MOMSA, and MOMGA algorithms were used to solve the multi-objective sim-
ulation–optimization model of the Karun basin reservoir system for a long-term period of 15 years (2000–2015). 
Table 4 presents the values of multi-objective algorithms setting parameters for Karun multi-objective multi-
reservoir system operation. This table provides the best values of multi-objective algorithms’ parameters based on 
the sensitivity analysis. Furthermore, the population size, the number of iterations, and the Pareto front archive 
size were considered the same for a fair comparison.

Three objective functions were established for this model: minimizing the overall shortage in the downstream 
demands supply, reducing the overall discrepancy between reservoir volume and the volume required for flood 
control, and maximizing the total output power of hydropower plants (minimizing the total difference between 
the production power and the installed capacity of the power plant). These objective functions usually have an 
inverse relationship with each other; therefore, to achieve one of the objectives, one must inevitably stray from the 
other objectives. This problem can be resolved to some degree by using multi-objective optimization techniques 
and identifying the mode that best suits all the objectives.

The top values of the MOAHA, MOMSA, and MOMGA algorithms for objective functions corresponding 
to the Pareto front are displayed in Table 5.

The Pareto front’s finest optimal point was chosen to minimize the sum of objective functions and man-
aged to simultaneously bring all three objectives to the global optimum (Table 5). The MOAHA algorithm with 
OF1 = 188.73, OF2 = 610.83, OF3 = 642.15, and total objectives of 1441.71 had a better performance than the 
other two algorithms in the complex and large-scale problem of multi-objective optimal operation of the Karun 
basin reservoir system. After the MOAHA algorithm, the MOMSA algorithm with OF1 = 369.03, OF2 = 627.37, 
OF3 = 472.4 and total objectives of 1468.8, and the MOMGA algorithm with OF1 = 189.03, OF2 = 613.88, 
OF3 = 657.7 and total objectives of 1478.61 had the best results, respectively. The CPU run time for MOAHA 
was 13345s, while the value for MOMSA and MOMGA was 14970s and 15479s, respectively. This indicates 
that the MOAHA was the fastest algorithm in running the code achieving impressive results in a shorter time.

Figure 16 shows the Pareto front generated by the MOAHA, MOMSA, and MOMGA multi-objective algo-
rithms in three dimensions from the values of the three objective functions (downstream demand–supply, 
hydropower energy production, and flood control).

Table 3.   The outcomes of the multi-objective algorithm’s evaluation parameters in standard benchmark multi-
objective functions.

Benchmark problems GD S Δ MS

MOAHA
Schaffer 0.00095 0.58155 0.20375 4.00020

MMF1 0.00833 0.07660 0.17832 1.00000

MOMSA
Schaffer 0.00097 0.67311 0.77148 3.98541

MMF1 0.00648 0.08074 0.39362 0.99089

MOMGA
Schaffer 0.00114 0.56104 0.71763 4.00245

MMF1 0.03097 0.07813 0.86098 0.92085
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Here, the closer the solution points are to the origin of the coordinates (the lower the Pareto front level), the 
more appropriate they are. Based on Fig. 16, the Pareto front for all three algorithms (MOAHA, MOMSA, and 
MOMGA) had an appropriate distribution of solutions around the Pareto front (had an outstanding quality in 
terms of coverage and diversity). As seen in the 3D views, the Pareto front obtained by the MOAHA algorithm 
has good diversity and coverage, which means all the non-dominated solutions were distributed uniformly along 
the Pareto front. This proves the high capability of this algorithm in simultaneously optimizing all three objective 
functions (OF1, OF2, OF3) of the Karun problem.

Figure 17 depicts the amounts of hydropower energy produced by the MOAHA, MOMSA, and MOMGA 
algorithms and actual exploitation conditions in the long-term statistical period of 180 months for Gotvand Olia, 
Masjed-e-Soleyman, Karun 1, Karun 3, and Karun 4 dams.
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Figure 15.   (a) The Pareto front resulting from the MOAHA algorithm in multi-objective benchmark 
functions (a) Schaffer (b) MMF1. (b) The Pareto front resulting from the MOMSA algorithm in multi-objective 
benchmark functions (a) Schaffer (b) MMF1. (c). The Pareto front resulting from the MOMGA algorithm in 
multi-objective benchmark functions (a) Schaffer (b) MMF1.

Table 4.   Values of multi-objective algorithms parameters for Karun multi-objective multi-reservoir system.

MOAHA Iterations Number of variables Pareto front archive size Size of population –

100 1800 500 500 –

MOMSA
Iterations Number of variables Pareto front archive size Number of search agents Number of pathfinders

100 1800 500 500 100

MOMGA
Iterations Number of variables Pareto front archive size Number of adaptive grid –

100 1800 500 500 –
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According to Fig. 17, the amount of energy produced by the MOAHA algorithm was higher than the other 
two algorithms, and the actual operating conditions were closer to the power plant’s production capacity. The 
average energy produced by MOMSA, MOAHA, and MOMGA algorithms in the Karun basin reservoir system 
for 15 years was 17,166.47, 15,669.70, and 9026.31 GW per year, respectively, which is slightly better than the 
average actual exploitation in the 15 years (11,294.84 GW per year). The results indicate a 51.98% superiority of 
the MOAHA algorithm in hydropower energy production for the reservoir system of the Karun basin compared 
to the actual exploitation conditions.

The performance indicators of water systems are essential criteria in evaluating the accuracy of management 
methods of these systems. Table 6 presents the results of indicators used in multi-objective optimal exploita-
tion management of the reservoir system of the Karun basin using the new MOAHA, MOMSA, and MOMGA 
algorithms and actual conditions exploitation.

According to Table 6, the MOAHA algorithm ranked first among the applied algorithms with an average sus-
tainability index of 88.76%. The average values of reliability, resiliency, and vulnerability for this algorithm were 
91.78 (Rel), 90.53 (Res), and 14.59 (Vul), respectively. After that, the MOMSA algorithm (Rel = 94.56, Res = 94.71, 
Vul = 18.59, and Sus = 86.73%), followed by the actual exploitation (Rel = 90.09, Res = 85.17, Vul = 30.52, and 
Sus = 78.87%) and the MOMGA algorithm (Rel = 82.67, Res = 80.48, and Vul = 36.08, and Sus = 74.86%), ranked 
two to four, respectively. The new MOAHA algorithm has a significant advantage in managing the multi-objective 
exploitation of the Karun basin reservoir system.

Here, the results of this study are compared with those of similar studies on the optimal operation of reser-
voirs. Based on Table 7, two criteria (the increase in the total power generation by the utilized model and the 
sustainability index of the studied water resource system optimized by the models) were employed to compare 
the performance of the utilized models. Regarding the increase in the total power generation, the MOAHA and 
MOMSA models (developed in the present study) increased the total power generation by up to 50.78% and 
37.37% compared to the actual exploitation conditions, respectively. Ahmadianfar et al.31 developed an SATLDE 
algorithm that could raise the total power generation by up to 23.70%. The performance of their algorithm was 
comparable with the performance of the MOMSA and MOMGA algorithms of the present study, but its perfor-
mance is far from that of the MOAHA algorithm. Therefore, among the four algorithms applied for the optimal 
operation of reservoirs, the MOAHA was superior in terms of total power generation. Note that each algorithm 
was developed for a specific area, and this problem should be considered in the comparisons.

In terms of the sustainability index, the best results were obtained by MOAHA (88.76%), MOMSA (86.73%), 
and MOMGA (74.86%) of the present study, and followed by the SPEA-II (46.09%) and NSGA-II (22.73%) 
developed by Sharifi et al.55.

Table 5.   The objective functions that correlate to the Pareto front as a result of the examined methods.

MOMGA MOMSA MOAHA

Pareto front NoOF3 OF2 OF1 OF3 OF2 OF1 OF3 OF2 OF1

592.87 636.59 384.42 472.40 627.37 369.03 642.1488 610.8271 188.735 1

528.28 617.86 1679.71 475.86 640.38 380.20 638.372 601.9697 288.2918 2

529.50 612.56 2779.33 487.63 635.36 479.23 626.7036 594.0727 1587.117 3

558.13 629.92 782.01 549.97 677.15 286.81 633.8203 589.73 687.3864 4

568.25 560.65 1382.24 547.92 679.65 286.86 636.5542 602.8733 488.0196 5

592.81 637.03 384.42 570.08 683.44 387.64 627.5982 597.0686 1087.156 6

607.86 628.46 285.43 660.91 692.44 295.25 638.7393 592.8084 587.7673 7

657.70 631.88 189.03 662.65 693.12 294.55 1636.394 587.4367 187.9897 8

704.76 563.03 690.49 662.38 694.73 193.90 675.505 592.072 591.9026 9

711.96 579.10 491.22 626.89 699.56 291.83 679.7486 588.7152 491.4279 10

714.82 577.71 491.35 647.53 699.89 193.04 679.3162 590.755 591.8041 11

717.08 589.34 392.17 629.74 700.57 292.19 665.6961 545.3682 1690.363 12

721.65 573.52 491.90 651.35 704.97 193.52 674.0022 548.0283 1390.303 13

724.02 576.31 292.07 691.56 707.85 196.86 674.4901 546.1013 1290.303 14

726.94 579.96 192.46 716.41 712.00 198.21 692.9982 575.1266 792.4417 15

727.95 570.35 292.09 719.43 716.12 198.39 665.0339 599.5215 389.5457 16

727.96 569.15 292.79 727.70 717.10 198.92 1658.245 577.5739 488.3745 17

1662.25 613.60 189.06 663.69 693.71 295.19 1658.674 554.3481 689.0188 18

1700.97 592.48 191.22 475.12 604.93 1977.73 677.3143 577.2137 691.2642 19

1716.94 562.33 491.56 451.70 607.15 2478.54 664.6564 601.1212 389.5457 20

1478.61 1468.80 1441.71 Minimum total objectives

3921.39 3537.3 2902.04 Maximum total objectives

15,479.01 14,970.13 13,345.16 CPU run time (s)
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Conclusion
This study employed a multi-objective version of the MOAHA artificial hummingbird algorithm to solve complex 
and large-scale multi-objective problems. The results were compared with two novel multi-objective algorithms 
with proven results in numerous studies, i.e., MOMSA and MOMGA. Two standard multi-objective benchmark 
functions, Schaffer and MMF1, were used to check the efficiency of the novel multi-objective algorithms. The 
performance of the new multi-objective algorithms was also evaluated using four performance assessment cri-
teria (GD, S, Δ, and MS). The multi-reservoir-multi-objective optimal operation problem for the Karun basin 
reservoir system was coded and modeled in MATLAB to minimize the total shortfall in supplying downstream 
needs, the total difference in reservoir volume from the required volume for flood control, and the total dif-
ference in production power from the installation capacity of the power plants. The uncertainties (or potential 
limitations) regarding the utilized data and the modeling procedure can be taken into consideration in future 
studies. Reservoir performance indices, including reliability, vulnerability, reversibility, and stability indices, 
were utilized to evaluate exploitation policies from different algorithms. The results of applying the investigated 
multi-objective algorithms in solving the standard Schaffer and MMF1 multi-objective problems showed that 
all three multi-objective algorithms successfully covered the optimal Pareto front and the optimal distribution 
for non-dominant solutions. Meanwhile, the MOAHA multi-objective algorithm had the best performance. 
The results of the effectiveness of these algorithms in solving the complex and large-scale problem of multi-
reservoir-multi-objective optimal exploitation of Karun basin reservoir system demonstrated the superiority 
of the MOAHA algorithm with an increase in the problem’s size and complexity (Karun 4, Karun 3, Karun 1, 
Masjid Soleyman, and Gotvand Olia dams) in a long-term period of 180 months with 1800 decision variables, 
indicating the acceptable results of this algorithm. The MOAHA algorithm performed well with OF1 = 188.73, 
OF2 = 610.83, OF3 = 642.15, and a minimum of 1441.71 objectives. Considering the importance of hydropower 
energy production in hydropower systems, maximizing hydropower energy production, which was one of the key 
objectives in the Karun basin simulation optimization model, was analyzed using the algorithms. The findings 
demonstrated that the MOAHA algorithm was competent as it produced 17,166.47 GW of energy compared to 
the MOMSA, MOMGA, and actual exploitation conditions (which produced 15,669.70, 9026.31, and 11,294.84 

Figure 16.   The Pareto front obtained from the implementation of different algorithms in the problem of multi-
objective operation of the reservoir system of the Karun basin (a) MOAHA (b) MOMSA (c) MOMGA.
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GW of energy annually, respectively) for the Karun basin reservoir system over the 180 months (from September 
2000 to August 2015). The CPU run time of the algorithms, which is an important criterion, was also studied. The 
CPU run time for the MOAHA was 13345s, while the MOMSA and MOMGA values were 14970s and 15479s, 
respectively. This indicates that the MOAHA was the fastest algorithm in running the code and achieved impres-
sive results in a shorter time. Finally, the performance indicators of water systems, which are essential criteria in 
evaluating the accuracy of management methods of these systems, showed that the average sustainability index 
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Figure 17.   The energy produced in the studied reservoirs by different multi-objective algorithms in the long-
term statistical period of 180 months (a) Karun 4 (b) Karun 3 (c) Karun 1 (d) Masjed-e-Soleyman (e) Gotvand 
Olia.
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obtained from MOAHA, MOMSA, and MOMGA in the Karun basin reservoir system was 88.76, 86.73, and 
74.86, respectively; these values suggest the acceptable performance of the MOAHA algorithm in managing the 
multi-objective exploitation of the Karun basin reservoir system. Given the new MOAHA algorithm’s strong 
performance and capability as a contemporary multi-objective optimization method in various optimization 
problems, researchers are advised to use the mentioned algorithm for problems related to hydrology and water 
resources, particularly multi-reservoir multi-purpose systems.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Table 6.   The results of performance indicators of water systems in multi-objective optimal exploitation 
management of the reservoir system of the Karun basin using the MOAHA, MOMSA and MOMGA 
algorithms.

Reservoir Index MOAHA MOMSA MOMGA Actual

Karun4

Reliability 100 100 97.78 100

Resilience 100 100 80 100

Vulnerability 0 0 39.95 0

Sustainability 100 100 77.74 100.00

Karun3

Reliability 100 100 98.33 99.41

Resilience 100 100 100 100

Vulnerability 0 0 26.56 58.62

Sustainability 100 100 89.72 74.37

Karun1

Reliability 100 100 97.22 100

Resilience 100 100 100 100

Vulnerability 0.051 0.041 14.06 0.054

Sustainability 99.98 99.99 94.19 99.98

Masjed-e-Soleyman

Reliability 100 100 98.89 100

Resilience 100 100 100 100

Vulnerability 0 0 30.39 0

Sustainability 100 100 88.30 100.00

Gotvand Oliya

Reliability 58.89 72.78 21.11 51.04

Resilience 52.65 73.56 22.38 25.86

Vulnerability 72.89 92.89 69.43 93.92

Sustainability 43.80 33.64 24.35 20.02

Average

Reliability 91.778 94.556 82.666 90.09

Resilience 90.53 94.712 80.476 85.172

Vulnerability 14.5882 18.5862 36.078 30.5188

Sustainability 88.76 86.73 74.86 78.87

Table 7.   Comparison of different algorithms in the optimal operation of reservoirs.

Criteria References Algorithm Result (%)

Increasing the total power generation (%)

Ahmadianfar et al.31 SATLDE 23.70

Current study
MOMSA 37.37

MOAHA 50.78

Sustainability index (%)

Sharifi et al.30
NSGA-II 22.73

SPEA-II 46.09

Current study

MOMGA 74.86

MOMSA 86.73

MOAHA 88.76



26

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3607  | https://doi.org/10.1038/s41598-024-54326-z

www.nature.com/scientificreports/

References
	 1.	 Nandalal, K. D. W. & Sakthivadivel, R. Planning and management of a complex water resource system: Case of Samanalawewa 

and Udawalawe reservoirs in the Walawe river, Sri Lanka. Agric. Water Manag. 57(3), 207–221 (2002).
	 2.	 Chen, L., McPhee, J. & Yeh, W. W. G. A diversified multiobjective GA for optimizing reservoir rule curves. Adv. Water Resour. 

30(5), 1082–1093 (2007).
	 3.	 Holland, J. H. Adaptation in Natural and Artificial Systems (The University of Michigan Press, 1975).
	 4.	 East, V. Water resources system optimization using genetic algorithms. In Hydroinformatics’ 94, Proceedings, 1st International 

Conference on Hydroinformatics, Balkema, Rotterdam, The Netherlands (1994). ‏
	 5.	 Oliveira, R. & Loucks, D. P. Operating rules for multireservoir systems. Water Resour. Res. 33(4), 839–852 (1997).
	 6.	 Wardlaw, R. & Sharif, M. Evaluation of genetic algorithms for optimal reservoir system operation. J. Water Resour. Plan. Manag. 

125(1), 25–33 (1999).
	 7.	 Zitzler, E. & Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE 

Trans. Evol. Comput. 3(4), 257–271 (1999).
	 8.	 Corne, D. W., Knowles, J. D. & Oates, M. J. The Pareto envelope-based selection algorithm for multiobjective optimization. In 

International Conference on Parallel Problem Solving from Nature 839–848 (Springer, 2000).
	 9.	 Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. 

Comput. 6(2), 182–197 (2002).
	10.	 Coello, C. C. A., Pulido, G. T. & Lechuga, M. S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. 

Comput. 8(3), 256–279 (2004).
	11.	 Sadollah, A., Eskandar, H. & Kim, J. H. Water cycle algorithm for solving constrained multi-objective optimization problems. 

Appl. Soft Comput. 27, 279–298 (2015).
	12.	 Mirjalili, S., Saremi, S., Mirjalili, S. M. & Coelho, L. D. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion 

optimization. Expert Syst. Appl. 47, 106–119 (2016).
	13.	 Zhao, W., Wang, L. & Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applica-

tions. Comput. Methods Appl. Mech. Engrg. 388, 114194 (2022).
	14.	 Chen, L. Real-coded genetic algorithm optimization of long-term reservoir operation. J. Am. Water Resour. Assoc. 39(5), 1157–1165 

(2003).
	15.	 Schardong, A., Simonovic, S. P. & Vasan, A. Multi-objective evolutionary approach to optimal reservoir operation. J. Comput. Civ. 

Eng. 27(2), 139–147 (2013).
	16.	 Qaderi, K., Akbarifard, S., Madadi, M. R. & Bakhtiari, B. Optimal operation of multi-reservoirs by water cycle algorithm. In 

Proceedings of the Institution of Civil Engineers-Water Management, Vol. 171, No. 4, 179–190 (Thomas Telford Ltd., 2018).
	17.	 Liu, X. et al. Multi-objective reservoir operation during flood season considering spillway optimization. J. Hydrol. 552, 554–563 

(2017).
	18.	 Afshar, M. H. & Hajiabadi, R. A novel parallel cellular automata algorithm for multi-objective reservoir operation optimization. 

Water Resour. Manag. 32(2), 785–803 (2018).
	19.	 Takada, A., Hiramatsu, K., Trieu, N. A., Harada, M. & Tabata, T. Development of an optimizing method for the operation rule 

curves of a multipurpose reservoir in a Southeast Asian watershed. Paddy Water Environ. 17(2), 195–202 (2019).
	20.	 Shen, J. et al. Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands. 

Renew. Sustain. Energy Rev. 120, 109617 (2020).
	21.	 Thongwan, T., Kangrang, A. & Prasanchum, H. Multi-objective future rule curves using conditional tabu search algorithm and 

conditional genetic algorithm for reservoir operation. Heliyon 5(9), e02401 (2019).
	22.	 Zhang, Z. et al. Improved Multi-objective Moth-flame Optimization Algorithm based on R-domination for cascade reservoirs 

operation. J. Hydrol. 581, 124431 (2020).
	23.	 Liu, D., Huang, Q., Yang, Y., Liu, D. & Wei, X. Bi-objective algorithm based on NSGA-II framework to optimize reservoirs opera-

tion. J. Hydrol. 585, 124830 (2020).
	24.	 Ahmadianfar, I., Samadi-Koucheksaraee, A. & Bozorg-Haddad, O. Extracting optimal policies of hydropower multi-reservoir 

systems utilizing enhanced differential evolution algorithm. Water Resour. Manag. 31(14), 4375–4397 (2017).
	25.	 Kumar, V. & Yadav, S. M. Multi-objective reservoir operation of the Ukai reservoir system using an improved Jaya algorithm. Water 

Supply 22(2), 2287–2310 (2022).
	26.	 Mansouri, M., Safavi, H. R. & Rezaei, F. An improved MOPSO algorithm for multi-objective optimization of reservoir operation 

under climate change. Environ. Monit. Assess. 194(4), 261 (2022).
	27.	 Nguyen, D. T. Operating multi-purpose reservoirs in the red river basin: hydropower benefit optimization in conditions ensuring 

enough water for downstream irrigation. Sustainability 15(6), 5444 (2023).
	28.	 Fang, Y. et al. An accelerated gradient-based optimization development for multi-reservoir hydropower systems optimization. 

Energy Rep. 7, 7854–7877 (2021).
	29.	 Sharifi, M. R., Akbarifard, S., Qaderi, K. & Madadi, M. R. Developing MSA algorithm by new fitness-distance-balance selection 

method to optimize cascade hydropower reservoirs operation. Water Resour. Manag. 35, 385–406 (2021).
	30.	 Sharifi, M. R., Akbarifard, S., Madadi, M. R., Qaderi, K. & Akbarifard, H. Optimization of hydropower energy generation by 14 

robust evolutionary algorithms. Sci. Rep. 12(1), 7739 (2022).
	31.	 Ahmadianfar, I., Samadi-Koucheksaraee, A. & Asadzadeh, M. Extract nonlinear operating rules of multi-reservoir systems using 

an efficient optimization method. Sci. Rep. 12(1), 18880 (2022).
	32.	 Vahabzadeh, M., Afshar, A., Molajou, A., Parnoon, K. & Ashrafi, S. M. A comprehensive energy simulation model for energy-

water-food nexus system analysis: A case study of the great Karun water resources system. J. Clean. Prod. 418, 137977 (2023).
	33.	 Mostaghimzadeh, E., Ashrafi, S. M., Adib, A. & Geem, Z. W. A long lead time forecast model applying an ensemble approach for 

managing the great Karun multi-reservoir system. Appl. Water Sci. 13(6), 124 (2023).
	34.	 Ahmadianfar, I., Samadi-Koucheksaraee, A. & Razavi, S. Design of optimal operating rule curves for hydropower multi-reservoir 

systems by an influential optimization method. Renew. Energy 211, 508–521 (2023).
	35.	 Dezab Consulting Engineering CO. Systematic studies report on Dez and Karun basin. Water resources planning studies. Ministry 

of Energy of Iran, 1st edn. (2019).
	36.	 Zitzler, E., Deb, K. & Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 

173–195 (2000).
	37.	 Ngatchou, P., Zarei, A. & El-Sharkawi, M. Pareto multi objec- tive optimization. In Proceedings of the 13th International Conference 

on Intelligent Systems Application to Power Systems 84–91 (2005).
	38.	 Britto, A. & Pozo, A. Using archiving methods to control convergence and diversity for many-objective problems in particle swarm 

optimization. In 2012 IEEE Congress on Evolutionary Computation 1–8 (IEEE, 2012).
	39.	 Laumanns, M., Thiele, L., Deb, K. & Zitzler, E. Combining convergence and diversity in evolutionary multiobjective optimization. 

Evol. Comput. 10(3), 263–282 (2002).
	40.	 Zhao, W. et al. An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance 

for solving engineering design problems. Comput. Methods Appl. Mech. Engrg. 398, 115223 (2022).



27

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3607  | https://doi.org/10.1038/s41598-024-54326-z

www.nature.com/scientificreports/

	41.	 Liu, J. & Chen, X. An improved NSGA-II algorithm based on crowding distance elimination strategy. Int. J. Comput. Intell. Syst. 
12(2), 513–518 (2019).

	42.	 Luo, B., Zheng, J., Xie, J. & Wu, J. Dynamic crowding distance? A new diversity maintenance strategy for MOEAs. In 2008 Fourth 
International Conference on Natural Computation, Vol. 1, 580–585. (IEEE, 2008). ‏

	43.	 Mohamed, A. A. A., Mohamed, Y. S., El-Gaafary, A. A. & Hemeida, A. M. Optimal power flow using moth swarm algorithm. Electr. 
Power Syst. Res. 142, 190–206 (2017).

	44.	 Sharifi, M. R., Akbarifard, S., Qaderi, K. & Madadi, M. R. A new optimization algorithm to solve multi-objective problems. Sci. 
Rep. 11(1), 20326 (2021).

	45.	 Sharifi, M. R., Akbarifard, S., Madadi, M. R., Akbarifard, H. & Qaderi, K. Comprehensive assessment of 20 state-of-the-art multi-
objective meta-heuristic algorithms for multi-reservoir system operation. J. Hydrol. 613, 128469 (2022).

	46.	 Talatahari, S., Azizi, M. & Gandomi, A. H. Material generation algorithm: A novel metaheuristic algorithm for optimization of 
engineering problems. Processes 9(5), 859 (2021).

	47.	 Nouhi, B., Khodadadi, N., Azizi, M., Talatahari, S. & Gandomi, A. H. Multi-objective material generation algorithm (MOMGA) 
for optimization purposes. IEEE Access 10, 107095–107115 (2022).

	48.	 Veldhuizen, D. A. & Lamont, G. B. Multiobjective evolutionary algorithm research: A history and analysis. Technical Report 
TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technol-
ogy, Wright-Patterson AFB, Ohio (1998).

	49.	 Schott, J. R. Fault tolerant design using single and multicriteria genetic algorithm optimization (No. AFIT/CI/CIA-95-039). AIR 
FORCE INST OF TECH WRIGHT-PATTERSON AFB OH (1995).

	50.	 Deb, K. Multi-objective Optimization Using Evolutionary Algorithms Vol. 16 (Wiley, 2001).
	51.	 Hashimoto, T., Stedinger, J. R. & Loucks, D. P. Reliability, resilience, and vulnerability criteria for water resource system performance 

evaluation. Water Resour. Res. 18(1), 14–20 (1982).
	52.	 Sandoval-Solis, S., McKinney, D. C. & Loucks, D. P. Sustainability index for water resources planning and management. J. Water 

Resour. Plan. Manag. 137(5), 381–390 (2011).
	53.	 Schaffer, J. D. Multiple objective optimization with vector evaluated genetic algorithms. Ph.D. dissertation, Vanderbilt Univ., 

Nashville, TN (1984).
	54.	 Liang, J. J., Qu, B. Y., Gong, D. W. & Yue, C. T. Problem Definitions and Evaluation Criteria for the CEC 2019 Special Session on 

Multimodal Multiobjective Optimization (Zhengzhou University, 2019).
	55.	 Sharifi, M. R., Akbarifard, S., Madadi, M. R., Qaderi, K. & Akbarifard, H. Application of MOMSA algorithm for optimal operation 

of Karun multi objective multi reservoir dams with the aim of increasing the energy generation. Energy Strat. Rev. 42, 100883 
(2022).

Author contributions
S.M.S.H.: Methodology, writing, original draft preparation, data analysis. A.R.: Conceptualization, data collec-
tion, supervision. M.A.K.: Visualization, review, supervision.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Applying the new multi-objective algorithms for the operation of a multi-reservoir system in hydropower plants
	A review of the literature on reservoir operation
	A review of the literature on the Karun basin
	Materials and methods
	Utilized data
	Problems with multi-objective optimization
	Standard deviation (distance from the mean)
	Artificial hummingbird algorithm (AHA)
	Multi-objective artificial hummingbird algorithm (MOAHA)
	Solution update strategy based on NDS
	Dynamic elimination-based crowding distance (DECD)
	Guided foraging
	Territorial foraging
	Migration foraging
	Multi-objective artificial hummingbird algorithm (MOAHA)
	Other multi-objective algorithms
	Multi-objective moth swarm algorithm (MOMSA)
	Multi-objective material generation algorithm (MOMGA)
	Performance criteria for MOPs

	Long-term multi reservoir-multi objective simulation–optimization model
	Operating the reservoir system for downstream demands supply
	Operating the reservoir system for flood control
	Operating the reservoir system for hydropower energy generation
	Performance metrics for reservoirs
	Reliability
	Vulnerability
	Resiliency
	Sustainability index

	Multi-objective criteria problems
	Problem 1 of the Schaffer benchmark
	Problem 2 of the MMF1 benchmark


	Results and discussion
	Multi-objective criteria problems
	A multi-objective simulation–optimization model of the Karun Basin reservoir system

	Conclusion
	References


