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A comparative study of federated 
learning methods for COVID‑19 
detection
Erfan Darzi 1*, Nanna M. Sijtsema 2,3 & P. M. A. van Ooijen 2,3

Deep learning has proven to be highly effective in diagnosing COVID‑19; however, its efficacy is 
contingent upon the availability of extensive data for model training. The data sharing among 
hospitals, which is crucial for training robust models, is often restricted by privacy regulations. 
Federated learning (FL) emerges as a solution by enabling model training across multiple hospitals 
while preserving data privacy. However, the deployment of FL can be resource‑intensive, necessitating 
efficient utilization of computational and network resources. In this study, we evaluate the 
performance and resource efficiency of five FL algorithms in the context of COVID‑19 detection using 
Convolutional Neural Networks (CNNs) in a decentralized setting. The evaluation involves varying the 
number of participating entities, the number of federated rounds, and the selection algorithms. Our 
findings indicate that the Cyclic Weight Transfer algorithm exhibits superior performance, particularly 
when the number of participating hospitals is limited. These insights hold practical implications for the 
deployment of FL algorithms in COVID‑19 detection and broader medical image analysis.
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Coronaviruses comprise a family of viruses known to cause respiratory and intestinal illnesses in both humans 
and animals. Among these viruses, the variants responsible for COVID-19, SARS, and MERS epidemics have 
gained notable attention. In cases of COVID-19, certain individuals might develop severe complications, includ-
ing pneumonia, which can be detected through lung CT scans. Studies have indicated that chest imaging plays 
a crucial role in the diagnosis of COVID-19 in individuals exhibiting severe symptoms. In this domain, deep 
learning methods, especially Convolutional Neural Networks (CNNs), have proven to be highly effective in 
assisting radiologists in performing various image analysis tasks related to the diagnosis of COVID-191.

Deep learning models developed specifically for detecting COVID-19 infections have exhibited remarkable 
potential in identifying infected regions in CT scans and X-ray images. However, the training of these deep learn-
ing models necessitates access to ample and diverse medical datasets, which are typically collected from multiple 
sources. A majority of the current approaches rely on a centralized server for aggregating data from various 
healthcare institutions. This approach poses a challenge, as medical images often contain sensitive and confi-
dential patient information, which is not permissible to share beyond the confines of the originating institution.

Federated learning (FL) emerges as a viable solution to this challenge by decentralizing the training process 
and retaining the data at its source. In a federated learning framework, distinct clients participate in the train-
ing process in a distributed manner using their local data. Specifically, each client independently trains a model 
utilizing its dataset and subsequently shares the model parameters with other participants. Crucially, the actual 
data does not leave the local premises, thereby maintaining the confidentiality of sensitive patient information. 
This approach facilitates collaborative learning without compromising data privacy.

FL can differ from centralized data sharing in a number of ways. While both approaches aim to optimize their 
learning objective, FL algorithms have to account for the fact that communication with clients takes place over 
unreliable networks with very limited upload speeds. So unlike the centralized setting in which computation is 
generally a bottleneck, in FL communication might be the bottleneck.

In this study, a framework was developed to facilitate collaboration among hospitals by employing multiple 
data sources for the detection of COVID-19 infections via FL. The framework’s decentralized data distribution 
ensures privacy, as data remains stored  locally2.
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Background and Related works
Federated learning has demonstrated efficacy in an array of imaging modalities, including Magnetic Reso-
nance Imaging (MRI)3,4, X-ray5, retinal  imaging5, as well as in applications such as brain tumor  segmentation6,7, 
 diagnosis8, and treatment  selection7. In particular, Federated Learning (FL) has proven to be a valuable tool for 
supporting physicians in their decision-making process regarding the treatment of COVID-19 patients. A land-
mark study that involved 20 institutions across five continents found that FL played a significant role in shaping 
patient treatment  plans9. The study employed chest radiography images in conjunction with clinical information 
to determine the appropriate level of care and oxygen requirements for patients afflicted with COVID-19. It was 
observed that FL improved the performance of the predictive model, especially for institutions with smaller data-
sets, compared to using only local data for model training. Additionally, it was found that healthcare facilities with 
smaller datasets often had underrepresented categories due to a low number of patients in certain classes. The 
implementation of FL led to a notable improvement in predictions for these underrepresented patient categories.

Recent research has focused on the classification of scan images to distinguish between COVID-19 patients 
and healthy individuals, as well as identifying lesion areas. The primary application of AI in managing COVID-
19 patients has been the interpretation of radiology images, especially chest CT scans. The detection of lung 
alterations through these scans plays an important role in optimizing patient management and guiding treatment 
 decisions10–12. Several studies have also explored 3D Convolutional neural  networks13 and COVID-19 detection 
with a limited number of training samples.

While the majority of these studies report favorable accuracy, they often presume a centralized environment 
wherein a single data center has access to all data. However, a few studies have successfully applied distributed 
learning for COVID-19 detection, employing global aggregation models such as model averaging in federated 
learning  settings14,15, or within a blockchain  framework16. These studies have pointed to certain limitations of 
existing algorithms, such as high communication  overhead17, as well as convergence issues or catastrophic for-
getting when the number of participating hospitals  increases3,18.

To the best of our knowledge, this is the first study to undertake a comparative analysis of multiple FL algo-
rithms under uniform, controlled conditions in medical imaging. This comparison is crucial for evaluating the 
practical applicability of these algorithms. Such a comprehensive comparison is instrumental for advancing the 
understanding and implementation of FL in practical applications.

To evaluate the existing methods from multiple perspectives, we have implemented the most popular models 
and compared them in terms of performance, communication overhead, and computation burden. In the context 
of clinical tasks, our study is closely aligned with the current efforts in leveraging artificial intelligence for the 
diagnosis and management of COVID-19. The clinical relevance of our research is underscored by the significant 
role of chest imaging, particularly lung CT scans, in the early detection and treatment planning for COVID-19 
patients. This is supported by numerous studies that highlight the effectiveness of deep learning, especially CNNs, 
in assisting radiologists in analyzing chest imaging for COVID-19 diagnosis. Our work extends this paradigm 
by employing federated learning, a method that not only leverages the advantages of deep learning in clinical 
imaging but also addresses critical concerns regarding data privacy and the decentralized nature of medical data.

Federated learning, in our study, is positioned as a solution to the challenges posed by traditional centralized 
data aggregation methods, especially in terms of privacy and data security in medical settings. The importance 
of our approach is further amplified considering the diverse and distributed nature of healthcare data across 
different institutions. The collaborative framework of federated learning, where multiple clients contribute to 
the training process without sharing raw data, is particularly relevant for clinical scenarios where patient con-
fidentiality is paramount. This approach is in line with recent research that has explored distributed learning in 
medical imaging and its potential to improve diagnostic accuracy, particularly in facilities with limited data. Our 
comparison of multiple federated learning algorithms under realistic conditions aims to provide insights into 
their practical applicability, addressing limitations identified in previous studies such as high communication 
overhead and convergence challenges.

Thus, our study not only contributes to the technical field of federated learning but also holds significant 
implications for its clinical application in the management of COVID-19, particularly in enhancing the diagnostic 
process through collaborative and privacy-preserving AI models.

Algorithms
Centralized data sharing
In Centralized Data Sharing (CDS), data is stored in a central location and is accessible to all clients. This stands 
in contrast to federated and decentralized data sharing methods, where data is stored across multiple locations 
and accessed by either a single user or a limited number of users. CDS serves as a baseline for comparing other 
algorithms.

Federated averaging
As shown in Algorithm 1, Federated Averaging involves an iterative learning procedure comprising local and 
global steps. In this process, each data owner trains a model received from a global server on its local dataset 
through local  iterations19. Subsequently, the global server aggregates the updated local models to update the 
global model. This global model is then distributed to clients for the subsequent round. The optimization problem 
for Federated Averaging can be expressed as:

(1)wt+1 =

N
∑

i=1

piw
t
i ,w

t
i = argmin

wi

(

L(Di;w
t)
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where N is the number of data owners, L(Di;w
t) is a loss function indicating global model parameters 

wt of local datasets, and pi is the probability of selecting client i. Local optimization can be formulated as 
w
(t+1)
i ← w(t) − η · ∇L(w(t);Di) , where η is the learning rate. The global model can be updated based on the 

local models wi and is shared for aggregation:

Data: D = {D1,D2, . . . ,DN}, Global Model w(0),

Learning Rate η
Result: Updated Global Model w(T )

1 for each round t = 1, 2, . . . , T do
2 for each client i = 1, 2, . . . , N do
3 Calculate the average gradient over dataset Di:

∇̄Li = 1
|Di|

∑
x∈Di

∇L(w(t−1);x)

4 Update local model: w
(t)
i = w(t−1) − η · ∇̄Li

5 Aggregate local updates: w(t) =
N∑
i=1

piw
(t)
i

Algorithm 1.  Federated averaging.

Data: D = {D1,D2, . . . ,DN}, Global Model w(0),

Learning Rate η, Client Batch Size C
Result: Updated Global Model w(T )

1 for each round t = 1, 2, . . . , T do
2 Select a random subset of clients S ⊂ D with

|S| = C
3 for each client i ∈ S do
4 Compute gradient ∇L(w(t−1);Di)

5 Aggregate gradients:

w(t) = w(t−1) − η ·
∑
i∈S

1
|S|∇L(w(t−1);Di)

Algorithm 2.  Federated stochastic gradient descent.

Federated stochastic gradient descent
Federated Stochastic Gradient Descent, or  FedSGD20, presented in Algorithm 2 is a variant of Federated Averag-
ing (FedAvg) that employs a large-batch synchronous approach for multi-client learning.

From the total pool of clients, a subset is selected in each global training round, and this subset is defined by 
S . The size of S is determined by the fraction C , which represents the proportion of the total clients to be involved 
in each round of training. Specifically, |S| = C × N where N is the total number of clients.

In each global round, the global server dispatches the latest global model to the clients in the selected subset 
S . Each client in this subset then performs local training on their dataset for a predetermined number of epochs. 
After local training, the global model is updated based on the local models obtained from each client in S , a 
process similar to that in FedAvg.

However, FedSGD is distinct in its approach to gradient computation. In FedSGD, the gradient is calculated 
over the batch of selected clients, as defined by the subset S . The fraction C , therefore, determines the size of 
this batch. This approach allows for training with large batches when desired, as the gradient computation is 
efficiently distributed across the selected subset of clients.

The optimization problem for FedSGD can be expressed as follows:

where η is the learning rate, pi is the probability of selecting client i and L is the loss function. The key difference 
between FedAvg and FedSGD lies in the use of large-batch synchronous approach in FedSGD. This approach has 
been shown to outperform the naive asynchronous SGD training due to the increased accuracy and efficiency, as 

(2)w(t+1) =

N
∑

i=1

piw
(t)
i

(3)w(t+1) = w(t) − η ·

C
∑

i=1

pi · ∇L(w(t);Di)
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compared to the local training approach used in  FedAvg20,21. Additionally, FedSGD has been shown to be more 
robust to non-IID data distributions, compared to  FedAvg20.

Cyclic weight transfer
Federated learning techniques have been widely used in medical image processing tasks using a method known 
as cyclic weight transfer (CWT)5, as shown in Algorithm 3. This method involves training models on individual 
clients for a number of iterations and then cyclically sharing the updated weights with the following client. 
However, the existing CWT algorithm faces a notable challenge, as it lacks the ability to effectively manage inter-
client variability in training data or labels. To ensure the practical application of CWT, it is crucial to develop a 
version that can handle the common variations observed in a majority of real-world medical imaging  datasets2.

Data: D = {D1,D2, . . . ,DN}, Initial Model M(0)

Result: Cyclically Updated Model M(N) after R
rounds

Input: Number of rounds R
1 for r = 1 to R do
2 for each client Ci ∈ D do
3 Train M(i) on Di for the r-th round

4 Pass M(i) to the next client Ci+1 (or C1 if

i = N )

Algorithm 3.  Cyclic weight transfer with stopping criteria.

Data: D = {D1,D2, . . . ,DN}, Initial Model M(0)

Result: Sequentially Updated Model M(N)

1 for each client Ci ∈ D do
2 Train M(i) on Di

3 Pass M(i) to the next client Ci+1 (if exists)

Algorithm 4.  Single weight transfer.

Data: D = {D1,D2, . . . ,DN}, Initial Model M(0),

Client Batch Size C
Result: Stochastically Updated Model Mfinal

1 for each round t = 1, 2, . . . , T do
2 Select a random subset of clients S ⊂ D with

|S| = C
3 for each client Ci ∈ S do
4 Train M(t) on Di

5 Pass M(t) to a randomly selected next client

Cnext ∈ S

Algorithm 5.  Stochastic weight transfer.

Single weight transfer
Single weight transfer (SWT) is another FL method widely used in the medical imaging domain. In Single weight 
transfer, models are trained in each client with its local data, and then the updated model is transferred to the 
next client, as described in Algorithm 4. The difference between this method and CWT is that here the model 
passes each client only  once18.

Stochastic weight transfer
In stochastic weight transfer (STWT)22, we select a subsample of clients and train them in a cyclic manner. 
Similar to FedSGD, a ratio defines the number of selected clients to the total number of clients in each federated 
round, as shown in Algorithm 5.

Figure 1 provides a visual representation of the introduced algorithms. The update mechanisms of CWT, SWT, 
and STWT have distinct implications for the convergence and robustness of the federated learning process. CWT 
ensures that each client contributes to the model in a fixed order, which may lead to uniform convergence across 
clients. SWT avoids the potential for cyclic bias but does not guarantee that all clients will contribute equally, 
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as the model does not revisit clients. STWT’s random client selection can provide a more robust convergence, 
especially in the presence of non-IID data, by preventing the model from overfitting to a particular sequence of 
clients. Additionally, the probability of selection pi can be incorporated into the SWT and STWT formulations 
to reflect the likelihood of each client being chosen for model updates, differentiating these methods from CWT.

Experiment
Dataset
Our experiments used two publicly available data sources, the Tongji hospital  dataset23 and Brazil’s SARS-CoV-2 
 dataset24 Tongji dataset consists of 349 chest CT-scans of COVID-19 positive and 397 scans of healthy subjects, 
all low-resolution CT modalities. Brazil’s SARS-CoV-2 dataset consists of 2482 samples, 1252 scans of COVID-
19-infected patients, and 1230 healthy subjects collected from multiple hospitals in Sao Paulo, Brazil. The datasets 
are approved by the corresponding ethical committees of each hospital, Public Hospital of Sao Paulo (HSPM), 
and Tongji Hospital in Wuhan, China. Train and test sets were obtained randomly from the aggregated datasets. 
Table 1, shows data distribution.

Preprocessing
Images were selected as 2D slices in greyscale. Preprocessing included randomly cropping between 0.5 to full 
size, random horizontal flipping, and intensity normalization. CT-slices were all resized to 224× 224 pixels with 
interpolation. Figure 2 shows samples of processed images.

Figure 1.  Illustration of FL models and algorithms: (a) Federated averaging, where clients train on a local batch 
of data. (b) FedSGD, in which a subset of clients is selected, and each performs a single step of SGD before 
sending model updates to the server. (c) Cyclic Weight Transfer (CWT), where clients train locally and pass the 
model to the next client, repeating the cycle. (d) Single Weight Transfer (SWT), where the model passes through 
each client only once. (e) Stochastic Weight Transfer (STWT), in which the model is sequentially passed 
through clients, with participating clients in each round being sampled randomly.

Table 1.  Data distribution.

Class Dataset Samples Train Test

COVID
Brazil 1252

1451 150
Tongji 349

Non-COVID
Brazil 1230

1477 150
Tongji 397
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Training
ResNet-18 is used as the backbone deep learning model. ResNet-18 comprises one initial block cascaded to 
four middle blocks. The initial block is made of convolutional, batch normalization, ReLU, and pooling layers. 
Middle blocks have the same layers, connected with straight and skip connections. The model is pre-trained on 
ImageNet  dataset25 with a CrossEntropy loss function and learning rate of 0.05. Each federated round consisted 
of 20 internal epochs for each client and batches of 16 samples in each iteration. For models which use mini-
batch training, like STWT and FedSGD, a subset of clients is randomly selected. Similar to training, test data 
was split into mini-batches, and the results were averaged across batches. We performed training with various 
participating clients and federated rounds to evaluate their effect on final performance. Models were also trained 
in a centralized, non-federated setting as well as local data training as comparison baselines. In the local train-
ing method, models were trained on data from each client individually and tested on a composite test set from 
other clients. For balanced testing, the 300 test samples (150 COVID-positive and 150 COVID-negative) were 
equally distributed among clients, ensuring each received a representative mix for evaluation. This setup aimed 
to emulate real-world conditions where clients train on local data but are tested on diverse external data. Figure 3 
shows the data distribution among clients.

Evaluation
Standard classification metrics, accuracy, recall, precision, and F1 score, were used as our evaluation criteria. 
We also evaluated the level of communication, the amount of transferred data in each algorithm, and the com-
putational complexity of the models.

Results
Here, the result for the setting with 10 participating clients and a maximum of 10 rounds is presented. The results 
are average performance among clients for all the federated rounds. Table 2 shows the results.

Assesing the impact of training rounds
To evaluate the effect of number of rounds, models with 3, 5, 10 and 15 rounds were tested. The test results 
are shown for both centralized and FL algorithms. Table 6 shows the results of our experiment. The increasing 

Figure 2.  Sample CT slices of COVID-19 images (top row) and Non-COVID images (bottom row).

Figure 3.  Data distribution of each client in the simulated federated setting.
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number of rounds correlates with higher accuracy of the global model. For sequential algorithms like CWT,SWT, 
STWT, defining a stopping criterion is essential for efficient and effective training. For CWT, as presented in 
Algorithm 3, we introduce a predetermined number of rounds, R, as the stopping criterion. This number is cho-
sen based on empirical analysis where we monitor the loss curve to identify a point of diminishing returns. But 
we have also did a further examination or effect of various rounds. Typically, this is when the loss curve begins 
to flatten, indicating that additional rounds of training yield minimal improvements. The number of training 
rounds necessary to reach this point can vary depending on the dataset’s complexity, the diversity of data across 
clients, and the model’s architecture. In our experiments, we observed that the loss curve tends to flatten after 
a certain number of rounds, which we use to define our stopping criterion. However, this number might need 
adjustment for different datasets or federated learning configurations.

Assessing the influence of client participation
To evaluate the number of clients on the FL network, we examined scenarios with 3,5, and 8 participating clients. 
We trained each of the clients in 20 internal epochs. The number of Federated rounds for all the algorithms 
(except SWT) was 10. The average test results are shown in the Fig. 4.

Assessing the effect of data imbalance
In our study, we aimed to evaluate the performance of federated learning models under non-IID conditions. 
Specifically, we assigned one data class per client to four clients: one with COVID-positive and another with 
COVID-negative samples from the Tongji dataset, and two more with COVID-positive and negative samples 
respectively from the Brazil dataset. This configuration inevitably led to biases in the clients towards the class 
of samples they were trained on. Our experiment was consistent with previous tests in terms of parameters: 20 
internal epochs, and multiple training rounds which are detailed in Table 3. We observed significant variability 
in precision and recall among individual clients, with some showing values as high as 91.2% and others as low as 
10.32%. This variation was dependent on whether the clients received COVID-positive or Non-COVID samples.

Our observations indicate a decrease in accuracy ranging from 5 to 15% for FedAVG and FedSGD methods 
under these conditions. The performance of other methods closely resembled that of a random classifier, a result 
that was expected given the highly heterogeneous data setup. Sequential models, in particular, exhibited chal-
lenges in this environment. These findings suggest that in cases of extreme label imbalance, such as one or two 
clients having exclusively one class of data, methods like FedAVG and FedSGD are more aptly suited.

Communication can also be a bottleneck in this setting. In methods like federated averaging, the lower bounds 
for total communicated data are proportional to ∼ 2NT where the total rounds are represented by T and the count 
of involved clients is denoted by N. In CWT, this lower bound is ∼ NT. In our setting, we use a ResNet 101 model. 
We calculated the overall transferred data for the different number of rounds. As expected, the experiments show 

Table 2.  Comparison of FL algorithms on classification of COVID-19 data for 10 clients, averaged 
performance in all the 10 rounds for iterative methods, with baseline methods at the bottom.

Method Accuracy (%) Recall (%) Precision (%) F1 score (%)

FedAVG 66.72 70.02 43.80 51.7

FedSGD 65.17 68.24 43.86 47.75

CWT 87.75 89.00 88.67 87.52

SWT 64.60 74.33 65.55 59.66

STWT 84.21 84.09 83.33 81.71

CDS 87.75 89.57 87.93 87.19

Local 58.18 60.40 32.38 45.77

Table 3.  Effect of number of rounds on accuracy and averaged performance metrics for FL algorithms in 
highly heterogeneous setting.

Method

Number of rounds and accuracy Performance metrics (avg. every round)

3 rounds 5 rounds 10 rounds 15 rounds Accuracy (%) Recall (%) Precision (%) F1 score (%)

FedAVG 50.17% ↓(− 5.88%) 54.24% ↓(− 9.54%) 59.19 ↓(− 10.45%) 67.04% ↓(− 3.69%) 58.12 60.71 42.04 45.87

FedSGD 51.30% ↑(+ 0.42%) 52.29% ↓(− 3.61%) 60.59% ↓(− 14.99%) 64.25% ↓(− 12.69%) 60.09 56.97 41.44 32.18

CWT 49.95% ↓(− 30.82%) 51.30% ↓(− 38.48%) 50.84% ↓(− 40.43%) 54.39% ↓(− 39.17%) 51.75 55.06 41.10 47.62

SWT – – – – 48.60 47.42 34.78 49.30

STWT 48.38% ↓(− 42.35%) 51.65% ↓(− 32.32%) 50.64% ↓(− 38.80%) 49.01% ↓(− 43.99%) 50.91 54.02 38.64 44.71

CDS 85.06% (± 0.00%) 81.56% (± 0.00%) 91.06% (± 0.00%) 91.04% (± 0.00%) 87.75 89.57 87.93 87.19

Local 43.89% ↓(− 3.26%) 40.75% ↓(− 11.43%) 48.98% ↓(− 11.33%) 47.12% ↓(− 15.68%) 46.62 50.01 29.64 39.43
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that when clients are selected randomly, the communication time tends to be shorter compared to scenarios 
involving participation from all clients. Moreover, our analysis of computational costs indicates that models 
that do not rely on sequential processing generally demand higher computational resources compared to their 
sequential counterparts. The computation results are presented in Table 4, which shows the results based on the 
running time for a maximum of 5 federated rounds for iterative methods. The detailed results for computational 
and communication evaluations can be found in Tables 4 and 5, respectively.

Discussion
Our results show that FL has comparable performance to centralized data sharing, with the advantage of keeping 
data private. With large volumes of data and after high number of rounds, centralized data sharing and cyclic 
weight transfer have the highest accuracy.

Sequential models are susceptible to catastrophic forgetting, where a global model performs well on the 
latest client it has seen while having poor performance in other clients. Conversely, in algorithms like FedAvg 
and FedSGD, the models are averaged asynchronously after all the clients have finished their training. So the 
trajectory is smoother and overall improving with more communication rounds. Local test results can have a 
high variance when passing through clients sequentially, indicating the catastrophic forgetting effect.

Models like FedAvg, and FedSGD, in which all the clients have identical copies of one global model, are 
slower and more challenging to converge compared to sequential models like CWT and STWT. Also, FedAvG 
and FedSGD require more training resources due to active server participation, resulting in more computation 
and network consumption. Stochastic client selection is an efficient way of training. Stochastic models save 
significant time and resources while having similar performance to full client participation. Overall, CWT and 
STWT have best results in terms of model accuracy and computation times. These findings could be practical 
in further federated deployments in medical institutions.

Sequential models like CWT and STWT perform better than non-sequential models on fewer training rounds. 
For example, after three rounds of training, STWT and CWT both reach 96% accuracy, while FedAvG reaches 
66%, and FedSGD performs equally to a random classifier. As the training proceeds, FedAVG and FedSGD gradu-
ally improve with more global rounds.The concept of sequential models is similar to fine-tuning26 in centralized 
deep learning, so in cases where a hospital temporarily joins an FL network, or there is an urgency in training, 
sequential models are a better option.

When passing the model to the next client in CWT, ensuring the stability of training is crucial. One strategy 
is to implement a learning rate schedule that decreases as the number of rounds increases. This approach helps 
in stabilizing the learning process, especially in the later stages of training. Additionally, employing techniques 
like client-wise normalization or standardization of data can mitigate the impact of inter-client variability. This 
is particularly important in medical image processing tasks where data heterogeneity is a significant challenge.

In contrast, SWT, involves a single pass of the model through each client. This approach reduces the likelihood 
of cyclic bias but does not ensure equal contribution from all clients. The strategy here focuses more on efficient 
utilization of diverse data without revisiting clients, which can be beneficial in scenarios where data distribution 
is relatively uniform across clients.

STWT, adds another dimension by randomly selecting a subset of clients in each round. This method is 
advantageous in handling non-IID data as it prevents the model from overfitting to a specific client sequence. 
By incorporating a probability of selection for each client, STWT can adaptively focus on clients that provide the 
most informative updates, thus enhancing the robustness and convergence of the learning process.

More training rounds do not always lead to a better global model. Although average performance on all clients 
improves, more global rounds lead to worse performance for some clients. The global model can overfit some 
clients, leading to lower performance on  others27. Some studies suggested early stopping and fine-tuning to local 

Table 4.  Computation time for FL algorithms across varying numbers of clients.

Method 3 clients (s) 5 clients (s) 8 clients (s) 10 clients (s)

FedAVG 8934 8975 9002 9030

FedSGD 8810 8853 9013 9052

CWT 5119 5450 5383 5556

STWT 2805 5243 6101 6129

SWT 543 547 589 618

Table 5.  Comparison of total transferred data (GB).

Method 3 rounds 5 rounds 10 rounds 15 rounds

FedAVG 1.371 2.286 4.571 6.857

FedSGD 0.823 1.371 2.743 4.114

CWT 0.686 1.143 2.286 3.428

STWT 0.411 0.686 1.371 2.057
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dataset after global training is  finished28. In all the algorithms, more clients resulted in slower convergence. This 
effect is stronger in the FedAvg algorithm. In FedAVG, the Global model must compromise between potentially 
disparate local  minima29. Methods such as adaptive or stochastic selection of clients and momentum-based 
models help faster  convergence30. Our results suggest that stochastic client participation is close to full client 
participation. The average results of four trials with varying rounds, shown in Table 6 indicate that stochastic 
client participation in FedSGD results in 5.23% performance loss and 40% less bandwidth consumption com-
pared to FedAvg. In STWT, it results in only 1.25% less accuracy but saves 40% of communication and 11.3% 
of computation. These results are in accordance with prior studies, showing that, in theory, stochastic and full 
client participation have similar global  minima31. Stochastic client selection can be advantageous when there 
are limited resources, or in larger networks with occasionally unavailable clients.

We recommend the non-sequential approaches, such as FedAVG, FedSGD and their variants as effective fed-
erated learning methods for heterogeneous COVID-19 detection tasks. This recommendation is based on several 
key observations. FedAVG has demonstrated high resilience to the non-IID nature of our datasets. Despite the 
inherent data variability and imbalances, FedAVG consistently showed more reliable performance across different 
clients. Also, Given the extensive size of the datasets, particularly the Brazil dataset, FedAVG’s ability to efficiently 
handle large volumes of data while maintaining computational feasibility stands out. Our experiments indicate 
that FedAVG, while simplistic in its approach, offers a strong balance between accuracy and generalizability.

We did not assume any shift in clients’ data. A more comprehensive analysis should consider the effect of the 
domain and distribution shifts on the performance of the algorithms. Also, inter-client data variability and the 
effect of heterogenous clients could be a future line of research.

Conclusion
FL enables extensive collaborations of hospitals to address medical imaging problems while keeping data private. 
Real-world implementation requires consideration of efficiency and hardware requirements in addition to model 
performance, especially in the healthcare field, which generally has limited infrastructure. We implemented five 
FL algorithms for COVID-19 detection and analyzed their efficiency and accuracy. Our results suggest that FL 
algorithms have comparable performance to centralized data sharing, with the advantage of keeping data private. 
They also show that the sequential methods are a better option in most of the scenarios. This study can be helpful 
in the deployment of FL systems in COVID-19 detection and medical image analysis in general. It is crucial to 
acknowledge the potential limitation of catastrophic forgetting, particularly in the context of federated learning 
with larger datasets. Catastrophic forgetting occurs when a learning model, upon being trained on new data, 
loses the information previously learned, as we have observed on our experiments. This challenge is particularly 
relevant when applying federated learning methods to extensive and diverse datasets, where the balance between 
learning new patterns and retaining previously acquired knowledge is critical. Our study provides foundational 
insights, but future research should carefully consider and address this phenomenon, especially when scaling up 

Table 6.  Effect number of rounds on accuracy of FL algorithms for 10 clients, 20 internal epochs.

Method 3 rounds (%) 5 rounds (%) 10 rounds (%) 15 rounds (%)

FedAVG 56.05 63.78 69.64 70.73

FedSGD 50.88 55.9 75.59 76.94

CWT 80.77 89.78 91.27 93.56

STWT 90.73 83.97 89.44 93.01

CDS 85.06 81.56 91.06 91.04

Local 47.15 52.18 60.31 62.80

Figure 4.  Accuracy of FL algorithms with different number of clients.
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to larger, more complex datasets. Recognizing and mitigating catastrophic forgetting is essential for ensuring the 
robustness and reliability of federated learning models in practical, real-world applications.

Data availability
The datasets used in this study are publicly available. The Tongji hospital dataset and Brazil’s SARS-CoV-2 dataset 
used can be accessed on Kaggle at the following links: https:// www. kaggle. com/ datas ets/ ahmed tronic/ covid- 19 
and https:// www. kaggle. com/ datas ets/ plame nedua rdo/ sarsc ov2- ctscan- datas et.
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