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Carbon emissions of power 
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systems
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The study investigates the optimization of life cycle carbon emissions in smart sustainable energy 
systems through power transformation and transmission project power load predictions. Firstly, a 
multi-task learning-based short-term user load forecasting technique is developed, where the power 
load curves of multiple residential customers are grouped and classified using the K-means clustering 
method. Additionally, the Bidirectional Long Short-Term Memory (BiLSTM) technique is introduced 
to anticipate the power load intelligently. Secondly, a life cycle carbon emission assessment model 
for the power transmission and transformation project (PTTP) is constructed based on the life 
cycle assessment (LCA) method, which divides the project’s life cycle into four stages: production, 
installation and construction, operation and maintenance, and demolition. Finally, an experimental 
evaluation of this model is conducted. The results demonstrate that compared with the baseline 
model Long Short-Term Memory (LSTM), this model achieves a significantly lower average Mean 
Absolute Error (MAE) at 3.62% while achieving significantly higher accuracy in power load forecasting 
at 94.34%. A comprehensive examination of carbon emissions across all four phases reveals that 
overall carbon emissions are highest during the operation and maintenance stage followed by the 
equipment production stage and installation/construction stage, with the lowest overall carbon 
emissions observed. Hence, this study endeavors to forecast power load demand with precision 
and identify the principal determinants of carbon emissions in power engineering. By discerning 
and managing these key factors, an optimal, energy-efficient intelligent power load scheme can be 
derived.

In the contemporary global context, anthropogenic actions, including the combustion of fossil energy, deforesta-
tion, and extensive agricultural practices, have given rise to substantial emissions of greenhouse gases. Conse-
quently, there has been a persistent escalation in the concentration of greenhouse gases within the atmosphere. 
Climate change has exacerbated the frequency and intensity of natural disasters such as floods, droughts, and 
hurricanes, which have resulted in crop failures and harmed the livelihoods of farmers. Impoverished regions 
often lack sufficient resources and infrastructure to cope with these disasters, rendering their resilience more 
fragile and intensifying issues of poverty. Simultaneously, climate change has precipitated environmental changes, 
including heightened air pollution and increased occurrences of heatwaves, posing a direct threat to human 
health. According to the World Health Organization, millions of people worldwide suffer from heat-related 
illnesses annually, with approximately 20% of cases resulting in  fatalities1. Owing to the exigencies of climate 
change and the imperative for sustainable energy, the energy industry is expediting the shift towards renewable 
and clean energy sources, encompassing solar and wind energy, as well as other forms of zero-emission  energy2,3. 
Within this transformative paradigm, Power Transmission and Transformation Projects (PTTP) assume a pivotal 
role in ensuring the dependable distribution and integration of renewable energy throughout the entire energy 
 system4. However, the processes of constructing, operating, and maintaining PTTP inherently give rise to carbon 
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emissions, prompting significant concern against the backdrop of contemporary imperatives for sustainable 
development and the imperative to reduce carbon emissions (referred to as “double carbon”)5.

Therefore, as a crucial component of the energy system, what specific magnitude does the carbon emissions 
of the entire life cycle of the power transmission and transformation (PTT) engineering occupy? Addressing 
this question involves positing hypotheses about the potential adverse environmental impacts of carbon emis-
sions during the construction and operation phases of PTT  projects6,7. Subsequent derived hypotheses suggest 
that within the hierarchical arrangement of carbon emissions throughout the life cycle of PTT engineering, the 
total carbon emissions during the operation and maintenance phase are the highest, followed by the equipment 
production phase, with the installation and construction phase exhibiting the lowest total carbon emissions. 
Addressing these inquiries and hypotheses becomes imperative for investigating the carbon emissions of PTT 
engineering over its entire life cycle under the context of low-carbon environmental benefits. Such an explora-
tion holds significant practical significance for the development and construction of intelligent and sustainable 
energy systems.

Mitigating carbon emissions stands as a collective challenge confronting global society. Within the realm of 
carbon-emitting sources, the power system holds the potential to contribute to the development of sustainable 
energy systems and alleviate its deleterious impact on the climate through a comprehensive understanding of the 
carbon emissions emanating from PTTP throughout their entire life cycle. Positioned as a highly integrated and 
intelligent energy infrastructure, the intelligent sustainable energy system aspires to furnish a clean, sustainable, 
efficient, and reliable energy  supply8,9. This system leverages advanced technology and intelligent control meth-
odologies to diminish reliance on traditional fossil fuels; nonetheless, the smart grid itself generates greenhouse 
gases, underscoring the importance of carbon emission assessment in elucidating the greenhouse gas content 
within the environment. Life Cycle Assessment (LCA) emerges as a systematic approach for evaluating the 
environmental impact of products, processes, or systems, with one of its central objectives being the assessment 
of carbon emissions. Broadly categorized, LCA encompasses process-based LCA, economic input–output LCA, 
and hybrid  LCA10. Typically, unfolding across four principal stages—inventory, assessment, interpretation, and 
improvement. LCA involves data collection and modeling during the inventory phase, environmental impact 
analysis during the assessment phase, result elucidation during the interpretation phase, and formulation of 
improvement recommendations based on the evaluation outcomes during the improvement  phase11,12. Numer-
ous scholars have conducted pertinent research on the current status of energy transition and carbon emissions, 
as outlined in Table 1.

In summary, through an analysis of the studies by the aforementioned scholars, it is evident that while there 
have been significant advancements in research on energy transition, challenges still persist. These challenges 
include issues related to energy storage, the reliability of energy supply, and the practical implementation of 
carbon emission reduction. Moreover, in carbon emission research, more scholars have focused on the entire 
lifecycle of carbon emissions of buildings, with very few extending these studies to the field of electrical engi-
neering. Therefore, the innovation of this study lies primarily in its comprehensive and in-depth exploration 
of carbon emissions in power transmission projects within smart sustainable energy systems. Firstly, the study 
introduces the K-means clustering and Bidirectional Long Short-Term Memory (BiLSTM) algorithm, designing 
a short-term user load forecasting scheme based on multi-task learning. Secondly, a carbon emission assessment 
of each phase of power transmission projects is conducted using the LCA method, revealing the highest carbon 
emissions during the operational maintenance phase, followed by the equipment production phase, and the low-
est carbon emissions during the installation and construction phases. Finally, the model’s performance is experi-
mentally evaluated to validate its effectiveness. This study provides robust methods and strategies for achieving 

Table 1.  Compilation of literature on intelligent energy transition and carbon emissions.

Scholar Research methodology Role or effect

Murshed et al.13 They investigated the role of renewable energy transition and global trade
This approach underscored the critical role of renewable energy, emphasiz-
ing the importance of international trade cooperation and providing crucial 
insights for achieving carbon neutrality goals

Bouyghrissi et al.14 They focused on Morocco’s emission reduction goals, particularly emphasizing 
the significance of renewable energy transformation

Results demonstrated that the shift toward renewable energy was a primary 
factor in reducing carbon dioxide emissions

Bacanin et al.15 They employed a metaheuristic algorithm to optimize the energy load predic-
tion of deep learning models

The method pointed out the potential for enhancing prediction accuracy, 
offering a more effective tool for energy management

Vakulchuk et al.16 They examined strategies to attract more investments in renewable energy The approach highlighted the pivotal role of renewable energy in regional 
sustainable development

Rinne et al.17 They compared the LCA and carbon footprints of concrete and wooden 
residential buildings in Finland

The method provided important insights into the environmental impact of 
different building types, aiding decision-makers in better understanding the 
significance of sustainable building choices

Joensuu et al.18 They discussed LCA methods for buildings in the context of a circular 
economy

The approach held significant implications for promoting sustainability and 
resource utilization efficiency in the field of architecture

Lu et al.19 They utilized dynamic LCA methods to analyze the carbon footprint of future 
solar energy in the United States

The method offered key information for the sustainability and environmental 
impact of solar energy

Zhang et al.20 They conducted an economic analysis of hydrogen production in provincial-
level power grids in China

The approach facilitated the transformation of power systems, considering the 
impact of carbon emissions

Yang et al.21 They proposed carbon emission improvement methods for independent 
energy production within the power grid context

This method provided a foundation for accurately assessing and managing the 
carbon footprint of power systems
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intelligent and energy-efficient electricity load schemes. Additionally, it offers crucial guidance and references 
for understanding and controlling the key factors influencing carbon emissions in power transmission projects.

The following is how the remaining portions of this study are organized: “Method” focuses on the research 
methodology, encompassing the construction of a power demand forecasting scheme for power transmission 
projects within smart sustainable energy systems, as well as the development of a lifecycle-based carbon emis-
sion calculation model for power transmission projects. The section also includes an evaluation and analysis 
of the performance of the constructed models. “Results and discussion” presents the experimental results and 
discussions, offering a detailed analysis of both the model’s performance and the outcomes of the experiments. 
“Conclusions and prospects” serves as the conclusion, summarizing the key findings of this study and outlining 
potential directions for future studies.

Method
In this section, for the transmission and transformation projects in the intelligent sustainable energy system, the 
intelligent algorithm is first introduced to build the power demand forecasting scheme, and then the lifecycle-
based carbon emission calculation model is established. These methods are designed to understand the role 
of transmission and transformation projects in sustainable energy systems, as well as the carbon emissions of 
their whole life cycle. The performance evaluation analysis of the model will help evaluate its reliability and 
applicability.

Power transformer analysis in intelligent sustainable energy system
Sustainable energy pertains to energy sources capable of satisfying present demands without compromising the 
ability of future generations to meet their own needs. Such sources are characterized by their capacity to curtail 
carbon emissions throughout energy production and consumption processes, exhibiting minimal environmental 
impact and the potential for continuous  provision22,23. The categorization of these sources is presented in Table 2.

The electricity produced through sustainable energy sources is subsequently conveyed to the intelligent, 
sustainable energy system. The PTTP assumes the responsibility for transmitting renewable energy-generated 
power to the consumption destination, ensuring the dependable distribution and integration of energy, as illus-
trated in Fig. 1.

In Fig. 1, within the intelligent sustainable energy system, the PTTP achieves real-time monitoring and 
management of the power system through intelligent sensors, communication systems, and data analysis. All 
components within the PTTP must collaborate synergistically to facilitate the seamless distribution of renewable 
 energy24. Notably, artificial intelligence algorithms are instrumental in predicting power demand, coordinating 
renewable energy supply, managing energy storage systems, and harmonizing the operation of diverse power 
grid segments to ensure overall balance and security.

Power demand forecast and analysis of PTTP
The PTTP incorporates a deep learning algorithm to forecast power demand, optimize the operation of various 
components, maintain power system equilibrium and safety, and enhance the efficiency, reliability, and sustain-
ability of the PTTP. This initiative aims to mitigate the pronounced fluctuations and uncertainties arising from 
residents’ behaviors impacting total  load25. Consequently, the study advocates for the implementation of a multi-
task learning-based short-term residential load forecasting system, as illustrated in Fig. 2.

In Fig. 2, the depicted process comprises two primary stages: the allocation stage and the prediction stage. 
In the allocation stage, the initial step involves the utilization of the K-means clustering  algorithm26,27 to cluster 
power load curves from a substantial number of residential users. Subsequently, within each cluster, two residen-
tial users exhibiting comparable power load curves are selected, facilitating the grouping of users for subsequent 
power load forecasting.

During the forecasting stage, a time series is formulated by integrating forthcoming temperature data with 
the historical power load data of the chosen pair of customers. Following this, a Bidirectional Long Short-Term 
Memory (BiLSTM) model processes the amalgamated  sequence28. Ultimately, the outputs of the forward and 

Table 2.  Classification table of sustainable energy.

Type Power generation mode Advantage Common production capacity range

Solar energy
Solar radiation is converted into electricity or heat 
energy by solar panels or solar thermal energy 
systems

The unlimited solar energy supply and low carbon 
emission are suitable for various applications 1–10 kW/m2

Wind energy Through a wind turbine, the blades of the turbine 
are rotated by wind to generate electricity

The unlimited wind energy supply and low carbon 
emission are suitable for large-scale and distributed 
systems

1–5 MW/turbine

Waterpower Power is generated by driving a hydraulic turbine 
by water flow

It is efficient, renewable, reliable, and suitable for 
various terrains and scales 1–100 MW/dam

Geothermal energy resources
It rises from the underground hot rock layer by hot 
water or steam and then generates electricity by 
steam turbine

It is sustainable and low-carbon emission, suitable 
for tropical and volcanic areas in specific areas 1–10 MW/well

Biomass energy Electricity is generated by burning, fermenting, or 
gasifying organic materials

Renewable and widely available raw materials are 
helpful for waste management 1–20 MW/biomass plant
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reverse LSTM networks are consolidated within the BiLSTM network and directed to the designated output 
layers for each of the two tasks, typically involving temperature and power load anticipation. In order to ensure 
the network optimally addresses both tasks concurrently, the network’s loss function is a weighted sum of the 
loss functions associated with the two tasks.

In clustering consumers’ electrical usage, the Pearson correlation coefficient serves as a commonly employed 
metric to ascertain the level of correlation between two variables. Equation (1) illustrates the application of this 
method in calculating the correlation degree between the load curves of two users.

xi and yi refer to the load values of the load curves of two users at the ith hour. x and y refer to the average val-
ues of the load curves of two users, n refers to the total hours of the load curves of two users. Sx and Sy refer to 
the standard deviations of the load curves of two users. In this study, according to the numerical range grade 
of Pearson coefficient used by Beerwinkle et al. (2021)29, the range grade of Pearson coefficient is specified as 
shown in Table 3:

Carbon emission analysis of lifecycle assessment applied to PTTP
Following the allocation of power load based on demand within the PTTP, a subsequent analysis of carbon 
emissions in the PTTP is conducted through the employment of the LCA method. This study delineates the life 
cycle of the PTTP within an intelligent sustainable energy system into four distinct phases: the production stage, 
installation stage, operation and maintenance stage, and demolition stage. The carbon emissions calculation 
framework throughout its life cycle is illustrated in Fig. 3.

In the computation of the carbon emissions of the PTTP employing the LCA method, the production stage 
of power pipeline equipment involves the calculation of  CO2 emissions arising from raw material extraction, 
transportation, and equipment and pipeline manufacturing. This is achieved by applying the  CO2 emission 
intensity derived from unit equipment, as delineated in Eqs. (2)–(4).

(1)rxy =

∑n
i=1

xiyi − nx y

(n− 1)SxSy

(2)Cproduction = Cequipment + Cpipeline

(3)Cequipment =

∑

j

∑

i

(1+ εi)
[

Miωci(1− δi)+Miω
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ciδi
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j

MjE
′

jωe
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Figure 1.  Schematic diagram of PTTP of the intelligent sustainable energy system.
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Figure 2.  Flow chart of short-term user load forecasting scheme based on multi-task learning.

Table 3.  Pearson coefficient numerical domain hierarchy table.

Numerical value rxy > 0.8 0.6 <  rxy ≤ 0.8 0.4 <  rxy ≤ 0.6 0.2 <  rxy ≤ 0.4 0 <  rxy ≤ 0.2

Correlation between 
two curves

Extremely strong cor-
relation Strong correlation Moderate correlation Weak correlation Very weak correlation 

or irrelevance
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Gt.
Cequipment and Cpipeline refer to the total amount of  CO2 emissions in the comprehensive production stage of 

system equipment and pipelines, respectively, in the units of kg. ωci and ωr
ci refer to the  CO2 emissions from the 

original production and recycling process of the i-type component material of the j-type equipment or the j-type 
pipeline per unit mass or volume, respectively. Within the context of material  CO2 emission intensity, the unit 
is expressed in kilograms per unit mass (kg/kg) or kilograms per unit volume (kg/m3). Ej′ refers to the electric 
energy consumed by the second processing of the equipment of type j or the pipeline of type i per unit mass, the 
unit is k Wh/kg. ωe refers to the  CO2 emission factor of electricity, the unit is kg/kWh. kj refers to the number of 
pipes of type j. εi refers to the abandonment coefficient of the i-th component material of the pipeline. Mi refers 
to the mass of the constituent material of the first kind of pipe of the first kind of pipe of the j-th kind, the unit 
is kg. δi refers to the recovery coefficient of the i-component material of the j-type pipeline.

During the installation and construction phase, the primary source of  CO2 emissions stems from the combus-
tion of power energy during the operation of mechanical equipment and the release of materials essential for the 
construction of directly buried  pipelines30–32. The calculation equations for this stage are presented in Eqs. (5–9):

(4)Cpipeline =

∑

j

3
∑

i=1

kj(1+ εi)
[

Miωci(1− δi)+Miω
r
ciδi

]

+

∑

j

kjMjE
′

jωe

(5)Cconstruction = Cct + Cce + Ccp + Ccpm

(6)Cct =

∑
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∑
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MiLijωtjµ1�n(1+ βn)
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Qckωcek�n(1+ βn)
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Life cycle assessment of power transmission

Equipment 
production stage

Installation and 
construction phase

Operation and 
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Figure 3.  Life cycle carbon emission flow chart of PTTP based on LCA.
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�n refers to  CO2 emission per unit fuel n consumed by mechanical operation, and the unit is kg/MJ. βn refers to 
the fuel consumed by mechanical operation, and  CO2 generated by unit fuel in the upstream mining production 
stage. ωtj refers to the energy consumption per unit turnover of the j mode of transportation of equipment i, MJ/t 
km. Lij refers to the transportation distance of the i-type equipment under the j-type transportation mode, km. 
Highway transportation is considered to be multiplied by the no-load factor of µ1 = 1.5. Other transportation 
modes are µ1 = 1, and Qck refers to the engineering quantity of the k-type installation process of the machine 
room or heat exchange station. ωcek refers to the energy consumption per unit quantity of the k installation 
process, MJ. Emn refers to the machine-team consumption of the nth kind of energy consumed by the m kind of 
construction machinery in the construction process of installing a first kind of pipeline, kg/ machine-team. Nmn 
refers to the usage of m-type construction machinery in the process of installing a j-type pipeline. ωen refers to 
the conversion coefficient of the n-th energy source, MJ/kg. Mpi refers to the consumption of material i in the 
construction of a j-type pipeline, in kg or  m3. In the operation and maintenance stage,  CO2 emission is mainly 
generated by energy consumption, as shown in Eq. (10):

A refers to the carbon emission coefficient of energy, kgC/MJ. B refers to the carbon oxidation factor of energy 
combustion. Tl refers to the system life. Qji refers to the consumption of the i-type energy in the operation stage 
of the j-th year of the system life cycle, kWh. ωoi refers to the average low calorific value of the i-th energy source, 
MJ/kg. αi refers to the energy consumed by unit energy in the upstream mining, transportation, production and 
other processes of the i-type energy.

In the demolition treatment stage,  CO2 emission is mainly shown in Eq. (11):

Qdi refers to the engineering quantity when the i-type equipment in the machine room or heat exchange 
station is dismantled. ωdi refers to the energy consumption per unit quantity when the i-type equipment is 
dismantled, MJ.

Therefore, the total carbon emission Call in the life cycle of PTTP is as shown in Eq. (12):

The various stages and steps in the process of carbon emissions are outlined as follows:

 (1)  Power Pipeline Equipment Production Stage: This stage primarily encompasses the manufacturing and 
production of power pipeline equipment required for PTTP. It includes the production of key equipment 
such as transformers, cables, and switchgear. Carbon emissions during production primarily result from 
energy usage, raw material extraction, and processing, as well as emissions during industrial production.

 (2)  Installation and Construction Stage: This phase involves the actual construction and installation processes 
of PTTP, including civil construction, equipment installation, and wiring. Sources of carbon emissions 
during construction include energy consumption, transportation, the use of mechanical equipment, and 
waste disposal.

 (3)  Operation and Maintenance Stage: Once the PTTP is completed and operational, the long-term operation 
and maintenance become the core focus of this stage. Factors contributing to carbon emissions during 
this phase include energy consumption during equipment operation the use of mechanical equipment 
in maintenance processes, repairs, and replacements. The efficiency of equipment operation, regular 
maintenance, and updates are crucial for reducing carbon emissions during the operational period.

 (4)  Dismantling and Disposal Stage: After the end of the lifespan of the PTTP, it enters the dismantling and 
disposal stage. This phase involves the dismantling of equipment and waste disposal, where the disman-
tling process and waste and residue disposal may lead to additional carbon emissions. The technologies 
and methods employed during the dismantling and disposal process directly impact the carbon emissions 
during this stage.

Understanding the carbon emission sources and key factors in each of these stages is crucial for compre-
hending the overall life cycle carbon emissions of PTTP. Considering the emissions sources and control factors 
at each stage is of significant importance in formulating strategies and measures to reduce carbon emissions.

Experimental analysis
In this study, the PTTP within the new energy system of S city is employed as the primary data source. In order 
to assess the efficacy of the short-term user load forecasting scheme based on multi-task learning, the Tensor-
Flow platform is utilized for simulation. Concurrently, various modules in Python are employed. The specific 
superparameter settings encompass a batch size of 100 and 100 iterations. The loss function is optimized using 

(9)Ccpm =

∑

j

∑

i

kj(1+ εi)
[

Mpiωci(1− δi)+Miω
r
ciδi

]
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∑
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∑
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(12)Call = Cproduction + Cconstruction + Coperation + Cdisposal
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the random gradient descent algorithm, with the initial learning rate set at 0.001. The algorithm proposed in 
this study is benchmarked against alternative schemes based on MAE and prediction accuracy. These include:

 (1)  Utilizing  BiLSTM33, historical load, and future temperature data are input into forward and reverse net-
works separately.

 (2)  Employing  LSTM134, historical load and future temperature data are input into the LSTM network simul-
taneously.

 (3)  Using  LSTM235, only historical load data is input into the LSTM network.
 (4)  Implementing the hybrid LSTM optimization algorithm proposed by Bacanin et al. (2023) for predicting 

the load of multi-energy consumption in power engineering. Furthermore, the carbon emissions of PTTP, 
based on LCA, are calculated in this study from three perspectives: total carbon emissions, annual carbon 
emissions per unit area, and the percentage of the total life cycle.

Results and discussion
In this section, the performance of the constructed model and the experimental results are analyzed in depth 
and detail. This section will explain the effectiveness and applicability of the model, as well as the significance 
of the experimental results. The discussion of these results will help to better understand the advantages and 
potential improvement space of the model.

Prediction performance analysis of different model algorithms
The algorithm presented in this study is juxtaposed with the algorithms proposed by BiLSTM, LSTM1, LSTM2, 
and Bacanin et al. (2023), evaluating their performance in terms of MAE and prediction accuracy. The compara-
tive results are illustrated in Figs. 4, 5. The summary results of the prediction performance of each algorithm 
are shown in Table 4.

In Figs. 4, 5, and Table 4, a comprehensive analysis of MAE and accuracy metrics is conducted to assess the 
performance of the algorithm model introduced in this study in comparison to models proposed by BiLSTM, 
LSTM1, LSTM2, and Bacanin et al. (2023). The results reveal a distinct advantage for the model algorithm pre-
sented herein, with a significantly lower average MAE of 3.62, as opposed to the higher average MAE exceeding 
3.71 associated with algorithms devised by other researchers. The hierarchy of recognition errors, in terms of 
MAE, follows the order: model algorithm < Bacanin et al. (2023) < BiLSTM < LSTM1 < LSTM2. Furthermore, the 
power load forecasting accuracy of the model algorithm in this study notably outperforms other model algo-
rithms, reaching 94.34%. Simultaneously, the comparative analysis of the F1-value reveals that the power load 
forecasting results achieved by the model algorithm presented in this study have attained 90.71%, surpassing 
the predictions of other model algorithms, all of which fall below 87%. Consequently, in comparison to algo-
rithms proposed by other scholars, the short-term user load forecasting scheme based on multi-task learning 
outlined in this study exhibits heightened accuracy in power load forecasting. This enhancement contributes to 
the improved distribution of power load within the PTTP, providing more precise support for the low-carbon 
intelligent development of intelligent sustainable energy systems.

Analysis of carbon emissions at different stages
The carbon emissions of the four stages are analyzed, as shown in Figs. 6, 7.

In Fig. 6, the outcomes pertaining to total carbon emissions across the four stages of power pipeline equipment 
production, installation and construction, operation and maintenance, and demolition treatment indicate that 
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Figure 4.  MAE results of different algorithms.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3812  | https://doi.org/10.1038/s41598-024-54317-0

www.nature.com/scientificreports/

the highest total carbon emissions occur during the operation and maintenance stage, amounting to 1.29 ×  104 t 
 CO2 eq. Subsequently, the total carbon emissions during the equipment production stage are 6.52 ×  103 t  CO2 eq. 
Notably, the installation and construction stage registers the lowest total carbon emissions, standing at 3.95 ×  102 
t  CO2 eq. Upon examining the results in Fig. 7, it becomes evident that the annual carbon emission per unit 
area is highest during the operation and maintenance stage, followed by the total carbon emissions during the 
equipment production stage. The installation and construction stage exhibits the lowest total carbon emissions, 
with a minimum value of 0.42 kg  CO2 eq/ (a  m2). Additionally, the summation of the percentages across the 
four stages in the total life cycle attains 100%. Consequently, with the adoption of a unified calculation method, 
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Figure 5.  Power load forecasting accuracy results of different algorithms.

Table 4.  Comparison of prediction performance of each algorithm.

Index The proposed algorithm Bacanin et al BiLSTM LSTM1 LSTM2

Accuracy (%) 94.34 90.22 83.64 79.04 71.14

MAE 3.62 3.96 3.71 3.94 4.44

F1-value (%) 90.71 86.93 82.32 76.40 70.81

Figure 6.  Results of total carbon emissions at each stage.
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an analysis of various influencing factors is undertaken, employing the concept of controlling variables in each 
stage. This analytical approach aims to identify the primary influencing factors of carbon emissions in power 
engineering, facilitating the control of these factors and the derivation of an optimized, energy-efficient intel-
ligent power load scheme.

Discussion
This study employs methodologies such as data collection, LCA, and model construction to validate the hypoth-
eses presented. By collecting actual carbon emission data from different stages, conducting a LCA to analyze 
carbon emissions at each stage, and utilizing models to predict power loads, the proposed model algorithm in this 
study is compared with algorithms proposed by other scholars (BiLSTM, LSTM1, LSTM2, and Bacanin, among 
others) in terms of Mean Absolute Error (MAE) and prediction accuracy. The results indicate that the average 
MAE of the proposed algorithm in this study is significantly lower, at 3.62, compared to other algorithms with 
an average MAE higher than 3.71. Furthermore, the power load prediction accuracy of the model algorithm in 
this study is notably higher, reaching 94.34%. This suggests that the short-term user load forecasting scheme 
based on multi-task learning proposed in this study can provide more accurate support for the low-carbon intel-
ligent development of intelligent sustainable energy systems. This aligns with the perspective of Morais et al.36, 
emphasizing the potential to enhance reliable energy distribution and achieve low-carbon intelligent development 
goals through the proposed forecasting scheme.

Additionally, an analysis of carbon emissions at different stages reveals that in the four stages of power pipeline 
equipment production, operation, and maintenance exhibit the highest total carbon emissions, followed by the 
equipment production stage, while the installation and construction stage shows the lowest total carbon emis-
sions. This finding supports the hypothesis and identifies key factors in reducing carbon emissions in energy 
systems, aiding in the formulation of control strategies to minimize environmental impact and guiding the 
decarbonization of intelligent energy systems. Consistent with the views of Hamid et al.37, Fetisov et al.38 and 
Wang et al.39,this emphasizes the critical role of controlling and reducing carbon emissions in the operation and 
maintenance stage, necessitating the introduction of more energy-efficient and environmentally friendly methods 
and technologies during maintenance processes.

These findings can also serve as a reference for other fields, such as industrial production and the construc-
tion industry. The methodology presented is applicable to power load forecasting and can be extended to other 
domains requiring accurate prediction and control of energy consumption. By adopting similar models and 
algorithms, other industries can optimize energy utilization, reduce carbon emissions, and promote more sus-
tainable development.

Conclusions and prospects
This study commences by introducing the BiLSTM algorithm for intelligent power load prediction, establishing 
a short-term user load forecasting scheme grounded in multi-task learning. Employing the K-means clustering 
algorithm facilitates the classification of power load curves among a substantial number of residential users. 
Employing the LCA method, the life cycle of PTTP is meticulously delineated into four phases: equipment 
production, installation and construction, operation and maintenance, and demolition. Rigorous experimental 
evaluation reveals a significantly reduced average MAE of the model algorithm (3.62%) and markedly enhanced 
power load forecasting accuracy (94.34%). Additionally, the model demonstrates efficacy in quantifying carbon 
emissions across each life cycle stage, offering valuable insights for the prospective low-carbon intelligent devel-
opment of sustainable energy systems.
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Figure 7.  Results of total carbon emissions at each stage.
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However, this study still has some limitations. The acquisition of carbon emission data may be constrained by 
data availability or completeness, and certain assumptions within the model may not cover all scenarios, leading 
to a degree of limitation in the results. These constraints hinder a comprehensive understanding of the overall 
carbon emissions landscape in PTTP. Therefore, future studies could seek more comprehensive data sources, 
including additional on-site data and long-term monitoring. Moreover, refining the model and considering more 
factors may be focal points for future improvements. This could involve validating the model’s accuracy and 
reliability by including more on-site case studies. Additionally, exploring low-carbon intelligent development 
requires considering more factors, such as the interactive influences of intelligent energy systems with social, 
economic, and policy aspects. Looking ahead, by comprehensively considering additional factors and data, the 
study can be further enhanced to provide more effective strategies and solutions for sustainable development.

Data availability
The data presented in this study are available on request from the corresponding author.
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