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The minimum energy required 
to build a cell
Edwin Ortega‑Arzola 1*, Peter M. Higgins 1,2 & Charles S. Cockell 1

Understanding the energy requirements for cell synthesis accurately and comprehensively has been 
a longstanding challenge. We introduce a computational model that estimates the minimum energy 
necessary to build any cell from its constituent parts. This method combines omics and internal cell 
compositions from various sources to calculate the Gibbs Free Energy of biosynthesis independently of 
specific metabolic pathways. Our public tool, Synercell, can be used with other models for minumum 
species‑specific energy estimations in any well‑sequenced species. The energy for synthesising the 
genome, transcriptome, proteome, and lipid bilayer of four cell types: Escherichia coli, Saccharomyces 
cerevisiae, an average mammalian cell and JCVI‑syn3A were estimated. Their modelled minimum 
synthesis energies at 298 K were 9.54× 10

−11 J/cell, 4.99× 10
−9 J/cell, 3.71× 10

−7 J/cell and 
3.69× 10

−12 respectively. Gram‑for‑gram synthesis of lipid bilayers requires the most energy, followed 
by the proteome, genome, and transcriptome. The average per gram cost of biomass synthesis 
is in the 300s of J/g for all four cells. Implications for the generalisability of cell construction and 
applications to biogeosciences, cellular biology, biotechnology, and astrobiology are discussed.
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Liquid water is one of the key requirements for life because it is the only known solvent that allows biochemical 
reactions to  occur1. However, for an aqueous system to be habitable, the energy available to an organism must 
equal or exceed the energetic costs associated with its  maintenance2,3, among other  requirements1. Life utilises 
different energy sources, commonly involving chemical redox and/or radiation pathways, the yield of which is 
then used to build and/or repair  biomass2–4. Precisely how much energy is required to synthesise this biomass 
is highly organism- and environment-dependent, and an open and crucial question is how to generalise this 
energetic cost across cell types. Existing models have estimated the energy required for biomass synthesis by 
calculating ATP (Adenosine tri-phosphate is the energy ‘currency’ used by many forms of life) requirements of 
specific synthesis  pathways5, generalising across species via energy consumption in steady-state  ecosystems6,7, 
or by approximating the energy requirement as that to build only  proteins8. However, with the increasing abun-
dance and availability of omics data, it should be possible, by extending this latter technique, to estimate the 
minimum energy required to build all the biomacromolecules of a single cell of any sequenced species. Such a 
technique will advance these existing methods by providing fast environment- and organism-specific minimal 
energy requirements to build biomass for growth or maintenance with applications across the biogeosciences 
and biotechnology.

Biosynthesis is intrinsically linked to metabolic pathways as an energy uptake process. While specific pathways 
vary among organisms based on their context, the laws of thermodynamics can provide a universal framework 
to understand the minimum energy required for reactions that convert precursor molecules, or building blocks, 
into  biomolecules8–13. The minimum energy obtained by the change in Gibbs free energy, �Gr , can help reveal 
metabolic pathways that are efficient enough to use this amount of  energy14,15.

This calculation process requires the standard Gibbs free energy of formation ( �G◦
f  ) for the compounds 

involved and the cell composition. However, the thermodynamic data set available for complex bio-polymers 
is relatively sparse. One way to make the most of the available data is to utilise a group contribution algorithm 
(GCA). This method estimates �G◦

f  for large molecules by approximating it as the sum of the �G◦
f  of its con-

stituent  parts13,16–18. GCAs have been previously used to compute the standard molar thermodynamic proper-
ties of unfolded proteins at elevated temperatures and  pressure4,19, to estimate minimal costs of biosynthesis 
in extraterrestrial  environments20,21, and to calculate the energetic cost of synthesising the building blocks of 
biomolecules from inorganic compounds in extreme environments—such as oxic and anoxic deep-sea hydro-
thermal  systems6,8,22.
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In this work, we present a model that leverages the ongoing explosion in omics data availability to extend such 
calculations, assembling all of the biochemical building blocks of a cell into biomacromolecules. This includes 
not just proteins but also DNA, RNA, phospholipids and carbohydrates. This approach is independent of specific 
metabolic pathways, which vary from organism to organism, and variation in the chemical environment. This 
independence from conventional metabolic considerations represents considerable advantages over traditional 
approaches. Specifically, it can be generalised for settings where the full microbial community and associated 
biogeochemistry is incomplete or yet to be defined, or be applied to investigate the prospective habitability space 
for any well-sequenced species under the in situ thermodynamic conditions in more detail than was previously 
possible. This model, therefore, can serve as a means to sidestep frequently encountered bottlenecks in fields 
where considerable biouncertainty exists, such as cellular biology, biotechnology, the biogeosciences and, in 
particular, astrobiology.

Here we examine the case studies of Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), an aver-
age mammalian cell, and JCVI-syn3A. The JCVI-syn3A cell is a synthetic organism characterised by its minimal-
istic genome, transcriptome, and  proteome23,24. It represents a streamlined cellular model with the bare minimum 
genetic and proteomic content required for life. This minimalistic design makes JCVI-syn3A an ideal subject for 
examining the fundamental lower energy boundaries required for cellular synthesis. This approach is especially 
crucial in fields such as astrobiology, where understanding the minimal energetic thresholds for life is essential 
in exploring the potential habitability of extraterrestrial environments and the prospects for synthetic life forms.

Results
The minimum energy necessary to build a cell
The minimum energy needed to build a cell as defined here is the sum of the energy required to assemble all 
its components into their biomolecules. Based on the cell composition and biomolecule structure, we tailored 
group-contribution models which estimate the energy required to build a cell’s genome, proteome, transcrip-
tome and lipid bilayer (See “Methods” section). These algorithms build a virtual cell by reading a DNA and 
protein sequence associated with the cell type. A visual representation of the results can be found in Fig. 1, 
cell-specific values for E. coli in Table 1 and a comparison with other cell types and studies in Table 2. For the 
present study, these calculations were made at temperatures from 275 to 400 K for four different model cells: 
E. coli (Table 1), S. cerevisiae, an average mammalian cell and JCVI-syn3A (Table 2). At 298 K, the energy 
required to synthesise one single E. coli cell is 9.54× 10−11 J/cell (331 J/g) and 3.69× 10−12 J/cell (329 J/g) 
for JCVI-syn3A. For S. cerevisiae and a mammalian cell, the energy required is 5× 10−9 J/cell (311 J/g) and 
3.71× 10

−7 J/cell (354 J/g), respectively. A summary of the algorithm’s workflow can be found in Fig. 2 and 
the units of the calculations in Table 3.

Preliminary results indicate, as has been noted  previously25, that minimal energy expenditure in life generally 
scales with mass by (1) the different contributions of the different cell constituents and (2) different concentra-
tions of the metabolites. However, the synthesis cost of a gram of biomass of each of the four species is remark-
ably similar indicating a consistent fundamental floor in per-gram cost of biomass synthesis. On a per gram 
basis, synthesising DNA at 298 K requires 0.12 kJ/g, which is higher than the 0.10 kJ/g needed for RNA in E. 
coli. However, when we consider the cell’s mass fraction, RNA, which constitutes a larger fraction of mass, has a 
higher net energy requirement when building each cell (0.019 kJ/ g cells) compared to DNA (0.0037 kJ/ g cells), 
accounting for 5.7% and 1.1% , respectively, as detailed in Table 1. On the other hand, despite the lipid bilayer 
accounting for only 9 % of the cell’s mass fraction, it is the second most energy-intensive component, requiring 
21% of the cell’s total synthesis energy ( 2.099× 10−11 J/cell), as shown in Table 1. Table 2 also shows estimates 
of the energetic cost of biomass synthesis from other studies. Our results are lower, suggesting we have identi-
fied a thermondynamic minimum, but there are important caveats to consider when comparing these estimates 
(“Discussion” section).

For all models at all temperatures, we estimated �G◦
f  for the respective biomolecules, which allowed us to 

obtain the standard Gibbs free energy of reaction �G◦
r  . We computed the mean molar Gibbs free energy ( �Gr ; 

Eq. (1)), correcting for the absolute intracellular concentrations of products and reactants reported in different 
studies (Supplementary Tables S1–S4)26,27. The results suggest that the higher the temperature, the more expensive 
it is to synthesise a cell regardless of the organism Fig. 1, although fully testing this universality would require 
repeated calculations over many more organisms and variations in internal cell composition with temperature. 
The energetic requirements across the temperature scale (275–400 K) vary by approximately 16% for E. coli 
( 9.20× 10−11 J/cell to 1.097× 10−10 J/cell), 15% for S. cerevisiae ( 4.87× 10−9 J/cell to 5.73× 10−9 J/cell), 8.8% 
( 3.65× 10−7 J/cell to 4× 10−7 J/cell) for an average mammalian cell and 12% ( 3.58× 10−12 J/cell to 4.1× 10−12 
J/cell) for JCVI-syn3A. This temperature range was chosen to cover known non-freezing habitable temperatures 
for low salinity fluids. The current maximum temperature observed for life is 395  K28.

The minimum energy necessary to build a proteome
We used the GCA approach described in Higgins and  Cockell4 and Amend and  Hegelson19 to calculate the for-
mation energy of every protein in the cell. The amino acid composition can be obtained from an input sequence 
for any organism. However, we do not consider the concentration of each protein in the cell and instead use an 
average value for proteins, consistent with these previous studies. To calculate the energy required to synthesise 
the proteome of a single cell, we first multiply this value by the fraction of the cell’s dry mass made up by the 
proteome (which for E. coli is 0.5522,29). We then divide the resulting energetic fraction by the number of cells 
( 3.51× 1012 ) in 1 g. The energy needed to synthesise the proteome of one E. coli cell is 5.86× 10−11 J at 298 K 
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or 204.67 J per g of cells as seen in Tables 1 and 2, respectively. The energy necessary to assemble the proteome 
of S. cerevisiae is 2.37× 10−9 , for an average mammalian cell is 2.24× 10−7 and for JCVI-syn3A is 1.73× 10−12.

The molar Gibbs free energy of synthesising one gram of proteins remains similar throughout the temperature 
scale (0.37 kJ/g at 275 K and 0.40 kJ/g at 400 K), varying only 10% . Of all the biomolecular components, the 
�Gr needed to synthesise proteins is the second most stable throughout the temperature scale after the the lipid 
bilayer, which varies by only 3 % . The mean �Gr for protein polymerisation is of a similar order of magnitude to 
other estimates ( ∼0.5 kJ/g from Higgins and  Cockell4; 0.347 kJ/g from Amend et al.8).

The minimum energy necessary to build a genome and a transcriptome
We extended the approach used for the proteome in this work and other previous  studies6,13,19,19,22,30 to calculate 
the energy required to synthesise a genome and transcriptome, thus capturing a larger and more representative 
percentage of the total cell mass. Details of the calculations can be seen in the “Methods” section.

The �Gr needed to synthesise the genome and transcriptome at 298 K is 1.06× 10−12 J and 5.44× 10−12 
J respectively for an E. coli cell (Table 1), 6.71× 10−12 and 1.56× 10−10 for S. cerevisiae, 1.44× 10−9 and 

Figure 1.  Comparative analysis of minimum energetic costs for cellular synthesis across different organisms 
at different temperatures calculated using synercell. The panels display the energy cost (horizontal axes) vs. 
temperature (vertical axes). Values noted below are at 298 K: (A) E. coli Mass-Specific Synthesis Displays the 
energetic cost in Joules per gram for E. coli’s DNA, RNA, proteins, and phospholipids. The energy to synthesise 
one gram of E. coli cells is 331 Joules. (B) E. coli Cell-Specific Synthesis Shows the synthesis energy of one E. 
coli cell, including the contributions from its genome, transcriptome, proteome, and lipid bilayer. The energy 
necessary to synthesise one E. coli cell is 9.54× 10

−11 J. (C) E. coli approximate millimolar amount of ATP 
required for syntheses in Panel B, assuming 35,000 J per mole of ATP. (D) S. cerevisiae Cell-Specific Synthesis 
The energetic costs in building S. cerevisiae and its cellular components. The energy necessary to synthesise 
one cell is 4.99× 10

−9 J. (E) Average Mammalian Cell Synthesis The energetic costs in building an average 
mammalian cell and its cellular components. The energy necessary to synthesise one average mammalian cell is 
3.71× 10

−7 J. (F) JCVI-syn3A Cell Synthesis The energetic costs in building a JCVI-syn3A cell and its cellular 
components. The energy necessary to synthesise one JCVI-syn3A cell is 3.69× 10

−12 J. Cell compositions 
represent averaged values derived from various sources (Supplementary Table S1), aiming to capture a general 
representation across diverse growth phases. The average composition represents a generalised perspective of 
cell energetics, mainly reflecting conditions akin to the natural environmental lag phase.
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5.08× 10−9 for a mammalian cell and 6.28× 10−14 and 1.32× 10−13 for JCVI-syn3A. Compared to proteins, the 
energetic variability caused by temperature is greater for the transcriptome and genome throughout our tempera-
ture scale, estimating that the transcriptome becomes 63% more expensive to synthesise at 400 K ( 1.15× 10−11 
kJ/g) than at 275 K ( 4.29× 10−12 kJ/g) and the genome by 60% ( 2.15× 10−12 kJ/g vs 8.6× 10−13 kJ/g) for E. coli.

Because the energetic contribution of intramolecular bonds can significantly influence a biomolecule’s overall 
�G◦

f  , we also employed the GCA to calculate the energy requirement of the critical ester bond involved in DNA 
binding. Removing the standard free energy of formation of the ribose and a phosphate from ribose-5-phosphate 

Table 1.  E. coli composition and the energy necessary to synthesise its components at 298 K. The per gram 
values in this table are not adjusted to the respective fraction of mass. *The Carbohydrates’ energy was 
calculated from the average energy value of the computed biomolecules in order to adjust the energy necessary 
to synthesise one full cell or one gram of cells. (See Supplementary information). We assume that any energy 
required to synthesise metabolites and ions is negligible.

Cell component Amount (g/100 g Cells) Energy per gram (kJ/g) Energy per cell (J/Cell) Energy fraction

Genome 3.13 0.12 1.07× 10
−12 1.1%

Transcriptome 19.25 0.10 5.54× 10
−12 5.7%

Proteome 55 0.37 5.86× 10
−11 60.8%

Lipid bilayer 9.31 0.79 2.099× 10
−11 21.8%

Carbohydrates* 10.21 0.34 1.009× 10
−11 10.4%

Metabolites and ions 3.10 – – 0.0%

One E. coli cell 1.73 9.54× 10
−11

Table 2.  Cell synthesis cost comparison in J (g cell)−1 and ATP mmol (g cell)−1 at 298 K. See footnotes 
for details on unit conversion. Significant values are in bold. The per gram values in this table, are adjusted 
to their respective fraction of mass. a The genome energy was calculated per Ref.33 considering a genome 
size of 4,608,319  bp35 and a cost of 101 ATP per  bp33. b The transcriptome’s energy was calculated per Ref.33 
considering a cost of 46 ATP per  nucleotide33, an average RNA size of 1000  nts36 and 9.73×10

4 RNAs. c The 
proteome’s energy was calculated per Ref.33 considering 2.68×10

6 proteins with an average of 320 amino  acids37 
and an average cost of 26 ATPs per  AA38. d The phospholipids energy was calculated per Ref.33 considering a 
surface area of 4.42 µm239 and an average cost of glycerophospholipids of 367 ATP  molecules34 for a total of 
1.72×10

10 molecules of ATP. We also calculated the number of phospholipids based on the mass fraction of dry 
weight (9.3%) and the average molecular weight of a phospholipid (740 Da) for a total of 4.45×10

10 molecules 
of ATP. The value in the table is the average between both calculations.The values of ATP were obtained 
assuming that each molecule of ATP yields 35 kJ/mol. e Stouthamer 1975 reported values in mol ATP (g cell)−1 . 
Conversion to J (g cell)−1 was done assuming 1 mole of ATP yields 35 kJ, as above. f McCollom & Amend 2005 
reported values in J (g cell)−1 . Conversion to mmol ATP (g cell)−1 was done assuming 1 mole of ATP yields 35 
kJ, as above.

Joules (g cell)−1

This work Lynch and  Marinov33,34 McCollom and  Amend6 Stouthamer5e

Mammalian S. cerevisiae JCVI-Syn3A E. coli E. coli E. coli (Anoxic) E. coli

DNA 1.37 0.42 5.61 3.77 90.01 542.00 20.16

RNA 4.84 9.7 11.85 19.37 867.24 80.50

Proteins 211.59 147.13 154.82 204.63 4322.50 690.00 669.90

Phospholipids 113.01 35.48 127.21 73.31 2157.92 89.00 4.90

Carbohydrates 22.77 117.86 29.62 29.60 0.00 83.00 71.82

Cell 353.58 310.59 329.11 330.67 7437.67 1404.00 847.28

ATP mmol (g cell)−1

This work Lynch and  Marinov33,34 McCollom and  Amend6f Stouthamer5

Mammalian S. cerevisiae JCVI-Syn3A E. coli E. coli E. coli (Anoxic) E. coli

DNA 0.04 0.01 0.16 0.10 2.57a 15.49 0.58

RNA 0.14 0.28 0.34 0.53 24.78b 2.30

Proteins 6.05 4.27 4.42 5.58 123.50c 19.71 19.14

Phospholipids 3.23 1.03 3.63 2.00 61.65d 2.54 0.14

Carbohydrates 0.65 3.42 0.85 0.96 0.00 2.37 2.05

Cell 10.11 9.02 9.40 9.17 212.50 40.11 24.21
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gives a value of 23.14 kJ/mol (Supplementary Fig. S2) which approximately matches the hydrolysis value obtained 
experimentally by Dickson et al.31 ( −22.175 kJ/mol) at 25 C and pH 7.

The minimum energy necessary to build a lipid bilayer
We developed a straightforward model to calculate the energy of a cell lipid bilayer composed entirely of pal-
mitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). This model was created with the assistance of the GCA 
and is based on the direct assembly of its building  blocks32 and a balanced reaction from metabolites available in 
the SUPCRT slop07 database (Table S4). As seen in Fig. 1, the energy to synthesise one gram of POPC at 298 K 
is 0.764 kJ/g, making it the most expensive component of the cell. However, this might be due to the simplicity 
of this methodology compared to the model for the proteome, genome and transcriptome. For an E. coli-sized 
cell, the energy required is 2.099× 10−11 J, 5.71× 10−10 J (Table 1) for a S. cerevisiae-sized cell, 1.18× 10−7 J for 
a mammalian-sized cell and 1.42× 10−12 for JCVI-syn3A (Fig. 1).

This value is the most stable of all biomolecules considered throughout the temperature range, being only 
3 % more expensive to synthesise a lipid bilayer at 400 K ( 2.08× 10−11 J) than at 275 K ( 2.025× 10−11 J) for E. 
coli. Despite methodological differences, our value (73.31 J/(g cell)) is similar to that calculated by McCollom 
and  Amend6 (89 J/(g cell) in anoxic conditions) as seen in Table 2. See Supplementary Document SD2 for the 
whole data set at different temperature points.

Figure 2.  Workflow summary of Synercell. The tool will first require data input, including the type of cell 
(bacterial, yeast, mammalian or JCVI-syn3A), a genome sequence, a protein sequence and the temperature 
at which the user wants to calculate the energy. The tool creates a virtual cell with the omics data input, 
transcribing the genome and adjusting the concentration pool according to the cell type. Using the GCA, the 
tool uses tailored models for each biomolecule type to estimate its �G◦

f  at the chosen temperature. Next, the tool 
obtains the �G◦

r  following its stoichiometry. Finally, it calculates �Gr combining experimental and theoretical 
concentrations data for each constituent.

Table 3.  Thermodynamic, input and output data parameters and units used in our models.

Thermodynamic Symbol Unit

Standard Gibbs Free Energy of Formation �G◦
f kJ mol

Standard Gibbs Free Energy of Reaction �G◦
r kJ mol

Temperature T K

Reactant concentration [R] mol/L

Product concentration [P] g/cell

Cellular Gibbs Free Energy of synthesis �Gr

J/cell

ATP/ (g cells)

Input data

   DNA sequence Bp

   Protein sequence AA

   Biomolecule concentration g/cell

Ouput data

   Gibbs Free Energy �Gr J/g
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The minimum energy necessary to build Carbohydrates
Finally, it is worth noting that developing a universal thermodynamic model for carbohydrate synthesis is a 
significant challenge due to the inherent structural diversity and isomerism found in carbohydrates. The limited 
experimental data for complex polysaccharides adds to this challenge; as such, we used the mean from the other 
biomolecule models to simplify the calculations to 1 g as disclosed in Table 1.

Discussion
Establishing a standardised methodology to calculate the minimum energetic requirements for cellular 
biosynthesis that defines the most efficient metabolic pathways across diverse cell types can provide insights 
into the energetic constraints of life in different environments and guide research in astrobiology, cellular 
biology, and biotechnology. This work offers a comprehensive, data-driven approach to elucidate the minimum 
energetic requirements of cellular biosynthesis. The model calculates organism and environment-specific energy 
requirements, elaborating on other approaches which rely on model organisms, highly specific applications, or 
generalising across microbial communities. We have shown that per gram of dry weight, mammalian cells, S. 
cereviscea, E. coli, and even the ‘minmial cell’ JCVI-syn3 have similar minimum energetic costs of biosynthesis.

It is important to note that the “energy required for cellular synthesis” and the “minimum energy necessary 
for cellular synthesis” should be interpreted differently. The former refers to the typical energy expended in-
practice, accounting for specific metabolic pathways, environmental influences and biological inefficiencies. The 
latter, this study’s focus, represents optimal conditions, yielding the lowest possible energy required to build a 
cell. While the in-practice energy reflects typical cellular operations and can be influenced by possible metabolic 
heterotrophic inefficiencies or the availability of partially constructed carbon sources, the minimum energy is 
a foundational, agnostic reference for highly efficient metabolisms. One method of quantifying the efficiency 
of metabolism is by calculating a Gibbs energy dissipation rate (in kJ (g cells)−1 h −1 ). This paramaterises the 
energy which is not utilized in metabolism, and is lost as entropy, heat, or through other inefficiencies. It varies 
with growth rate and appears to plateau at high growth  rates40. As Synercell is integrated into microbial growth 
models, it may be used in the future to examine how much dissipation is caused by the difference between the 
two synthesis energies described above.

Historical research on biosynthesis has predominantly centred on the cell maintenance energy, biomass 
synthesis energy from metabolic  models41, exploring ATP requirements for specific synthesis  pathways5, 
energy dynamics within chemolithotrophic  communities6, or generalising biomass synthesis from inorganic 
precursors based on fixed  stoichiometries7. The approach presented here instead provides insights into a lower 
thermodynamic floor of energy required to build a cell, which could shed light on the ultimate biophysical limit 
of efficiency for microbial growth. This approach uses a wider variety of omics data than those listed above. It 
plays a vital role in lending specificity and variability to the biomolecules under consideration. The variablity in 
composition and size given by input sequences is adjusted to fix reactants and products’ concentration pools. 
Thus, the model can be deployed for any well-sequenced species, yielding cell-specific biosynthesis energy 
requirements for application in biogeosciences, cellular biology, biotechnology, or astrobiology.

Our minimum energy necessary for cellular synthesis can be tentatively compared with other estimates that 
used the various approaches above. Some comparisons for E. coli are listed in Table 2. The synthesis energies com-
puted in this work for E. coli are significantly lower than these other estimates. This owes to the methodological 
differences between the studies, and our goal in this work to find a fundamental thermodynamic minimum. The 
largest difference is between this work and the estimates from Lynch and  Marinov33,34. For each cell component, 
these estimates are ∼20–40 times larger than our predictions. This most likely owes to the Lynch and Marinov 
estimates including smaller building blocks than Synercell and that model’s association with empirical data. 
For example, the majority of the Lynch and  Marinov33 synthesis energy ATP cost is associated with building 
nucleotides with polymerisation a minor (of order percent)  contributor33, whereas Synercell focuses on build-
ing the helix structure. This likely accounts for one portion of the discrepancy, with the remainder associated 
with alternative inefficiencies such as the residual energy loss described above. McCollom and  Amend6 suggest 
that the actual observed energy expended on growth processes is approximately an order of magnitude larger 
than thermodynamic cost of synthesising the constituent building blocks, and their column in Table 2 only 
characterises that process, not polymerisation. If the McCollom and  Amend6 column reflects the building block 
synthesis then, and Synercell represents the polymerisation cost, the remainder between the sum of these and the 
Lynch and  Marinov33,34 column may represent the cellular inefficiency in biomass production in nature. Higgins 
and  Cockell4 calculated that, for proteins at ≈25 ◦ C, the synthesis of amino acids from organic precursors and 
the cost of polymerisation are approximately 700 and 500 J (g proteins)−1 respectively. However, this begins to 
diverge with elevating temperature and amino acid synthesis becomes more energy intensive ( ≈ 4 times more 
expensive at 100 ◦C)4. The Synercell proteome polymerisation estimate for E. coli at 25 ◦ C is 372 J (g proteins)−1 , 
in broad agreement with Higgins and Cockell ( ≈500 J (g proteins)−1)4 and Amend et al. (347 J (g proteins)−1)8. 
To our knowledge, this is the first application of a GCA for DNA, RNA, and phospholipid polymerisation so it 
is difficult to verify these results against other studies. Similar relationships are observed between the different 
components and the other studies noted above and in Table 2.

In Table 2 synthesis energies are also presented in mmoles of ATP per gram of cells in order to compare with 
other empirically validated  results33,34. However, the ATP energy yield is influenced by internal cell concentrations 
and physicochemical parameters like temperature and pressure, which can vary significantly among different 
 organisms20 and even within the same organism under different growth states. Consequently, while comparing 
ATP costs is a prevalent approach in the literature, this method only sometimes provides a straightforward 
comparison due to these variable internal and environmental factors. Our analysis, therefore, treats these ATP 
cost estimations as part of a broader, context-dependent framework rather than as absolute values for direct 
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comparison. As such, conversion between the units of the studies in Table 2 may account for some of the 
discrepancy in energy synthesis values.

Our approach to estimating the minimal energy requirements for cell synthesis is an alternative to using 
biomass compositions derived from flux balance analysis (FBA). FBA, a well-recognised method for studying 
metabolic networks, often involves challenges in accurately capturing the stoichiometry of biomass reactions, a 
point highlighted by recent  studies42,43. These challenges stem from the difficulty in obtaining detailed experi-
mental data for all major biomass components, compounded by the variability and complexity of metabolic 
networks. To sidestep the inherent uncertainty in the biomass reaction stoichiometry used in FBA models, 
we instead introduce variability in size and composition by reading input sequences. While FBA models are 
critical for understanding cellular metabolism, they often focus on the growth-associated maintenance (GAM) 
demand of ATP, making it hard to understand the minimum energy necessary to synthesise these components. 
Reported values for E. coli cell synthesis calculated with FAB include 23 mmol (g cells)−144, 59.81 mmol (g cells)−1

41, 53.81 mmol (g cells)−145 and 75.38 mmol (g cells)−146, which are larger than our estimates, and, as above, this 
difference likely characterised cellular inefficiencies and complexities such as GAM and energy dissipation. In 
contrast, Synercell aims to provide an energetic baseline while staying flexible to any cell with known genome 
and proteome sequences. This approach is particularly advantageous for analysing cells with less characterised 
metabolic networks, where detailed experimental data for biomass composition are unavailable.

Results for the JCVI-syn3A cell model can also be compared to some other calculations, albeit in a more 
limited way than E. coli. JCVI-syn3A is an interesting case study, because it was engineered to function as a 
‘minimal cell’24. This makes it an ideal example to probe the fundamental minimal energy necessary to synthesise 
a cell. On a per-cell basis, the minimum synthesis energy of JCVI-syn3 was the lowest amongst our sample of 
four—but it was also the smallest cell so that result alone is limited. On a per-gram basis, all four organisms 
examined in this work have a similar minimum synthesis cost, and any differences are likely caused primarily 
by differences in internal cell composition, and secondarily by genome and proteome complexity. Breuer et al.24 
provides some estimates of the ATP requirement to synthesise JCVI-syn3A DNA, RNA, and proteins—0.24, 
0.14, 21.2 mmol ATP respectively—but those are based on E. coli-like synthesis costs so direct applicability to 
this organism is limited. Synercell results were generated with the JCVI-syn3A internal metabolites composition, 
and genome and proteome sequences.

In this work, we have expanded the scope of existing methodologies for peptide  synthesis19,20 to include the 
energy calculations for a cell’s DNA, RNA, and lipid content. This was not possible for carbohydrates owing to 
the extensive diversity in carbohydrate structures, their varied functional roles across different organisms, lack of 
standardised structural  description47 and the limited availability of thermodynamic data. The vast heterogeneity 
in carbohydrates implies that no single structure can adequately capture the essence of all cell types. Instead, we 
adopted an alternative strategy where we adopted an average value approach for the carbohydrate content, as has 
been previously done for all non-proteome  components4,8,19. This approach allowed us to integrate carbohydrates 
into our whole-cell calculations, ensuring a more comprehensive and representative model, albeit with an 
acknowledgement of the simplifications necessitated by the complexity of carbohydrate diversity.

Furthermore, our model employs POPC as a representative phospholipid to approximate the energetic costs 
associated with membrane synthesis. While POPC is a prevalent component in many cell types, this mem-
brane simplification poses limitations in fully capturing the energetic nuances associated with synthesising more 
complex cell membranes. Cell membranes comprise a rich mixture of various lipid species and proteins and in 
this model the latter part is calculated as part of the proteome algorithm. Approximately 30% of proteins in a 
cell are in the  membrane48. To get a closer approximation to the membrane value we need to consider that the 
energetic cost of this protein component would be approximately 30 % of the proteome’s value (58.57 J/(g cells) 
or 1.76×10−11 J/ cell for E. coli). The lipid bilayer cost is 69.95 J/(g cells) or 2.10×10−11 J/cell, giving a total of 
128.53 J/(g cells) or 3.86×10−11 J/cell for an E. coli membrane (values from Table 2). Table 2 also summarises 
similar estimates of the cell constituents of E. coli from other studies using slightly different methods and chemi-
cal environments.

Our model stands out due to its adaptability. It can be refined with additional thermodynamics and omics, 
allowing for species-specific energy estimates. Conversely, since our model’s input requires biomolecule 
sequences to perform the calculations, it can only perform DNA, RNA and protein calculations based on 
omics data. Despite previous efforts to sequence phospholipids and  carbohydrates47,49, there is still a lack of 
standardised methodologies and data for these biomolecules. Therefore, our model only includes one ‘hand-
made’ generic model per biomolecule type. Consequently, since accurately calculating the minimum energy 
needed to synthesise a cell requires more thermodynamic information for phospholipids and carbohydrates, we 
provide an open-source tool for different applications that can be updated as data becomes available.

In the development of this model, we evaluated two key aspects: (1) the accuracy of the GCA in constructing a 
biomolecule’s �G◦

f  , and (2) the use of different �G◦
f  standards for the building blocks (Table 4). First, we built the 

nucleotides in two ways: phosphate + deoxyribose + adenine (block method 1) and phosphate + deoxyadenosine 
(block method 2) (Supplementary Fig. S1). We obtained similar results when comparing the �Gr obtained with 
the different methodologies and the standard nucleotide’s �G◦

f  from the SUPCRT slop07  database50. Furthermore, 
we tested this method for chemical bonds and validated the results with experimental data (Supplementary 
Fig. S2), indicating this is a reliable method. Secondly, we examined thermodynamic and biological standards 
�G◦

f  for the building  blocks18 to ensure consistency in results. Each standard estimated the same �Gr , likely due 
to the lack of  H+ in the overall reaction and our assumption that ionic strength is close to  zero20. Furthermore, 
although the only physicochemical parameter considered here was temperature, the models could be corrected 
for chemical differences by considering the corresponding change in cellular content, if any. Our models show a 
broad floor when compared to results from other studies which examine a variety of chemical  environments4–6,19.
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In the future, our model could benefit from integrating more variables. For example, variations in internal 
pH among organisms can influence cellular composition  stability51,52. Environmental shifts can also affect energy 
consumption in biomacromolecule synthesis. Higgins and  Cockell4 showed that rising temperatures make amino 
acid synthesis a leading energy expense in protein formation. Additionally, McCollom and  Amend6 found that 
anaerobic conditions are more conducive to building block synthesis than aerobic ones due to specific oxidation 
states. In anaerobic settings, the altered oxidation state affects the concentrations of crucial dissolved compounds, 
influencing biomolecule synthesis. Moreover, we have utilised cell compositions from diverse sources to 
approximate an average value, aiming to represent a broad spectrum of growth phases. While this approach 
provides a broad overview, future studies may benefit from analysing cell composition in specific growth phases 
to assess dynamic changes in energetic costs and maintenance requirements. This would enhance the granularity 
of our analysis and allow us to examine how changes in the absolute internal cell composition—both reactants 
and products—impact the overall energetic cost of cell synthesis.

When the model is deployed for analyses of microbial communities in situ, local instantaneous geochemical 
data should be leveraged to correct internal cell concentrations and their effect on the present biosynthesis 
calculations, unlocking faster and more robust biomass turnover calculations than are currently  possible20. 
Typically, the biological data which serves as input parameters for microbial models are inferred from culture-
based studies which themselves are controlled and well-defined but may be time consuming to perform. The 
model presented here only depends on the omics data of any given organism and its internal composition, so 
only requires the latter to be updated using insights into the local geochemistry to generate site-specific energetic 
requirements of biomass synthesis. This could additionally be extended for analyses of habitability and growth 
through deep time, and to model how the energy requirement changes with its  environment53.

This study’s primary goal was determining the minimal energy necessary to assemble a cell, a key metric for 
understanding the basal energy requirements essential for life. The energetic requirement of biomass synthesis 
is a critical component of bioenergetic habitability  models4 and a controlling parameter in estimates of biomass 
turnover, which are pertinent to biosignature production and, by extension, constraining the feasibility of life 
detection on other  worlds20. Additionally, our findings have significant implications in biotechnology, offering 
a pathway to optimise energy efficiency in microbial production systems and synthetic biology applications. By 
establishing a benchmark for the minimum energy needed to construct cellular biomass, our model, Synercell, 
is a tool for identifying and enhancing energy-efficient pathways in various biotechnological  processes54–57. The 
potential integration of our model, Synercell, with other predictive models, (e.g., amide bond  synthesis58), can 
enhance the accuracy of bioenergetic predictions across diverse environmental conditions.

In conclusion, this study introduces a comprehensive, data-driven model to understand the minimum energy 
requirements for cellular biosynthesis. It is a valuable tool for cellular biology, biotechnology, biogeosciences, 
and astrobiology and can be incorporated into other models. We anticipate its flexibility will encourage further 
research and data collection, particularly for thermodynamic data related to organisms other than those studied 
here, and their constituent biomolecules. Ultimately, our research contributes to understanding the energy 
constraints of life and the factors influencing the fundamental thermodynamic minimum energy requirements 
for cell construction. This understanding is crucial for exploring life’s boundaries in extreme environments, 
optimising biotechnological processes, and probing the potential for life beyond Earth.

Methods
The Gibbs Free Energy (Eq. 1) represents the energy available to do work. By quantifying the Gibbs Free Energy 
of synthesis for proteins, DNA, RNA, and lipids, we can determine the work required to build these cellular 
components from their most direct building blocks under given conditions. This value reflects the energetic 
investment to maintain and/or replicate a cell and offers insights into the efficiency of cellular processes. To 
calculate the energy for each cellular component, we developed a model tailored to each biomolecule to calculate 
�G◦

f  and then use internal cell concentrations to calculate the molar Gibbs energy ( �Gr ) of each biomolecule 
type:

where �G◦
r  is the standard reaction Gibbs energy obtained from an average of every biomolecule on the cell, R 

is the ideal gas constant, T is the absolute temperature in kelvin, and lnQ is the natural logarithm of the reaction 
quotient between building blocks (reactants) and biomolecules (products). This equation is used for each value 
produced at different temperatures (Fig. 2).

Cell synthesis energy
The total energy to synthesise a cell ( �G[synthesis] ) is the sum of the energy required to synthesise its components—
the proteome, genome, transcriptome, and other cellular biomolecules. Numerous approaches to calculating the 
maintenance energy have been  proposed4,59,60, and typically depend upon some energy requirement of biomass 
synthesis for replacement. This work aims to compute synthesis or growth energy, using the Gibbs free energy 
to synthesise a cell �G[synthesis] (Eq. 2) from the building blocks of different biomolecule types. For this, we can 
break down a cell into:

This equation encapsulates the comprehensive energy requirement for cell construction where subscripts 
refer to the molecule types being synthesised.

(1)�Gr = �G◦
r + RT lnQ

(2)�G[synthesis] = �G[proteome] +�G[genome] +�G[transcriptome] +�G[...ome]
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Energy for maintenance and growth
Broadly speaking, organisms use their energy supply for either growth or  maintenance2 (Eq. 3). Growth processes 
depend on the energetic cost of biosynthesis (e.g., building proteins or DNA), whereas maintenance processes 
include all those which consume energy but are not necessarily related to  growth2,22. Complete cellular energetic 
calculations can be performed when we gather enough information to calculate the energy to build all the 
structures of a cell with the cell simultaneously remaining  viable22:

This formula provides a view of the cell’s energy budget, incorporating both the energy for biosynthesis 
(building biomolecules like proteins and DNA) and maintenance (energy-consuming processes that do not 
directly contribute to growth).

Model implementation
Because �G◦

f  for large biomolecules is hard to find in the literature, we made an estimation using the group con-
tribution algorithm (GCA) as similarly done by  Mavrovouniotis16,61. We calculated the �G◦

f  of proteins, DNA, 
RNA and a lipid bilayer by summing together the �G◦

f  of their respective building blocks (e.g. amino acids, 
nucleotides, phospholipids, etc.)13. The flowchart in Fig. 2 summarises the procedure of Synercell ’s modules.

The modules obtain the different compounds’ �G◦
f  used for the GCA from the slop07 database and 

 SUPCRT9250. This software package calculates the standard molar thermodynamic properties of minerals, gases, 
aqueous species, and reactions from 1 to 5000 bar and 0–1000 ◦C50. The data was accessed and calculated using 
the reaktoro package for chemical systems, using an implementation of the revised HKF  equations62,63. Once the 
�G◦

f  of each biomolecule is obtained, the Gibbs reaction energy ( �G◦
r  ) is obtained with the following:

where R is the ideal gas constant (8.314 J/mol K), T is the absolute temperature (K), and lnQ is the natural 
logarithm of the reaction quotient. Because �Gr calculations heavily rely on the absolute concentrations within 
a cell, we used the building blocks’ (reactant) concentrations obtained experimentally by Bennet et al.26 and Park 
et al.27, and biomolecules’ (product) concentrations estimated on the fraction of dry mass in the cell Table S1. For 
the latter, the variability is adjusted with the help of the input sequences. For instance, if the input data contains 
five protein sequences, the program will obtain an average from those five protein sequences and adjust it to the 
final protein mass depending on the cell type.

Energy to synthesise the proteins
Synpro is the model within the program that implements the GCA approach from Higgins and  Cockell4 and 
Amend and  Helgeson19 to calculate the formation energy of a protein according to its amino acid composition. 
The �G◦

f  and �G◦
r  of a protein are calculated with:

where AABB represents the amino acid backbone ( H2N − CH − COOH ), NAA is the number of amino acids in 
the protein, NGly number of Glycines, PBB is the protein backbone ( HN − CH − C = 0 ) and R is the non-glycine 
functional group of each amino acid. mi acts as a counter for the number of occurrences of each non-GLY amino 
acid i in the chain such that 

∑19
i=1 mi = NAA

4.
Equation (4) is then used to calculate the Gibbs reaction energy ( �G◦

r):

Synpro calculates the �G◦
f  and �G◦

r  of each protein within the input sequence. Next, the algorithm obtains 
an average �G◦

r  to represent all the proteins in the proteome sequence. This average value is then used to cal-
culate �Gr taking into account the internal absolute amino acids composition and total protein concentration 
reported per cell type.

Energy to synthesise the nucleic acids
Syngen calculates the energy necessary to synthesise DNA and RNA based on a similar approach used in Synpro. 
Respecting its stoichiometry, we obtained the formation energy of a nucleic acid chain ( �G◦

f [NA chain ]
 ) using the 

GCA, which can be summarised with:

We obtained �G◦
r  with:

(3)�G[cell] = �G[synthesis] +�G[maintenance]

(4)�G◦
r =

∑

�G◦
f ( products )−

∑

�G◦
f ( reactants )

(5)�G◦
f [ Protein ] =�G◦

f [AABB] +
(

NAA − NGly − 1
)

�G◦
f [PBB] +

19
∑

i=1

mi�G◦
f [Ri]

+ NGly�G◦
f [Gly]

(6)�G◦
r[ Protein ] =(n− 1)�G◦

f [H2O]
+�G◦

f [ Protein ] −

20
∑

i=1

ni�G◦
f [AAi]

(7)�G◦
f [NA chain ]

=(Nn − 1)
{

�G◦
f [ Ester bond ] −�G◦

f [OH] } +

4
∑

i=1

mi�G◦
f [ Nucleotide ion i]
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The model calculates the energy for the double strand genome according to the input sequence. In parallel, 
the tool transcribes the sequence by analysing available open reading frames (ORFs) that the program detects 
between the first available start codon (ATG) and the immediate next stop codon (either TAA, TAG, TGA in this 
order) transcribing each ORF until the end of the sequence without considering transcription factors or other 
transcription criteria other than the length of the potential transcript.

Energy to synthesise the phospholipids
This model assumes all cell membranes are made of phosphatidylcholine (POPC), one of the most abundant 
phospholipids across cell  types32,64–66, arranged in a lipid bilayer that does not take into account proteins as the 
membrane proteins are considered within the proteome calculations. We obtained the �G◦

f  of POPC adding up 
the formation energies of its building blocks:

Due to the lack of thermodynamic data available for this biomolecule, we used a different approach to 
calculate �G◦

r  from metabolites as seen in Henry et al.67 and Jankowski et al.68. The �G◦
f  of the metabolites 

involved were available in the slop07 database and used to balance a theoretical condensation reaction to estimate 
the reaction energy:

NPL is the number of phospholipids in the lipid bilayer estimated by comparing the weight of POPC and the 
weight of the lipids in a cell. �Gr was calculated using internal compositions of the metabolites The stoichiometry 
of this reaction can be found in the Supplementary material Table S4.

Assessment and validation of the GCA 
To test the accuracy of the GCA up to the nucleotide scale, we broke down the nucleotides of E. coli’s genome 
in three different ways when calculating the cost of synthesis (Supplementary Fig. S1). Using thermodynamic 
values available in the  slop0769 database for the different building blocks, we calculated the energy to synthesise 
the E. coli genome. Despite minor discrepancies between the two alternative methods (0.12 kJ/g vs. 0.152 kJ/g), 
results were generally consistent. The synthesis energy for dAMP varied by about 10 kJ/mol between methods, 
hinting at potential intramolecular interactions. Additionally, the energy requirements for critical DNA-binding 
bonds, such as the ester bond in ribose-5-phosphate, resolved by this testing closely matched experimental 
values (approx. 22.17 kJ/mol)31. These results reinforce the reliability of our approach for determining the �G◦

f  
of nucleotides.

Additional notes and standardisation
The thermodynamic standard for �G◦

f  used in this work should not be confused with the alternative biological 
standard �G‘◦

f  . The thermodynamic standard represents conditions at pH value of 0 (i.e., a concentration of 
 H+ equal to 1 M) and ionic strength of zero. In biological standard conditions, pH is set to 7 and ionic strength 
usually 0.1, but is often less rigorously defined (Table 4). Standards are converted to actual molal quantities as 
outlined above.

In this study, we used values for E. coli at 37 ◦ C in aerobic glucose containing minimal medium at a doubling 
time of 40 min and Values for S. cerevisiae grown at 30 ◦ C in aerobic 0.5% glucose containing minimal medium 
at a doubling time of 160 min. Values represent an average of reported values for various growth conditions. 
Energies of all building blocks used in our calculations, derived from thermodynamic and biological standards, 

(8)�G◦
r[NA chain ]

=(Nn − 1) �G◦
f [H2O]

+�G◦
f [NA chain ]

−

4
∑

i=1

ni�G◦
f [ Nucleotide i]

(9)
�G◦

f [ POPC ] = �G◦
f [Pi] +�G◦

f [ Choline ] +�G◦
f [ Glycerol ] +�G◦

f [ Palmitate ] +�G◦
f [ Oleate ] − 4�G◦

f [H2O]

(10)

�G◦
r[ lipid bilayer ] = NPL

[

�G◦
f [POPC] +�G◦

f [ADP]+ �G◦
f [H2O]

+�G◦
f [CO2]

]

− NPL

[

�G◦
f [ Glucose ] +�G◦

f [ Serine ] +�G◦
f [ATP] +�G◦

f [ Pyruvate ] +�G◦
f [Malonate ])

]

Table 4.  Conditions for each type of standard condition. The (thermodynamic) standard conditions refer to 
those typically used in chemistry and physics while the biological recreates those found in typical intracellular 
physiological environments.

Standard ( �G
◦) Biological ( �G

‘◦)

Pressure 1 bar 1 bar

pH – 7

Ionic strength 0 M 0.1 M

Net charge – Variable

Temperature 298K Variable

Reactant concentrations 1 mol Variable
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are sourced from the SUPCRT92 slop07  database50. This is a comprehensive repository for these critical thermo-
dynamic data, ensuring the accuracy and consistency of our thermodynamic calculations across the temperature 
range studied.

Data availability
The data used in this study are classified as follows: (A) Input data: (1) E. coli str. K-12 substr. MG1655, com-
plete Genome (GenBank: U00096.3) and Prote ome (UniProt ID: UP000000625). (2) S. cerevisiae Strain: S288C. 
Genome (RefSeq:GCF 000146045.2) and Prote ome (UniProt ID: UP000002311). (3) Homo Sapiens reference 
Genome (Sequence GRCh37) and Prote ome (UniProt ID UP000005640). (4) The fraction of Mass data for each 
cell type is disclosed in the supplementary document. (5) The thermodynamic dataset used for calculating the 
Gibbs free energy of formation of large biomolecules was derived from the SUPCRT slop07  dataset50. This pub-
licly available dataset can be accessed through 10. 1016/ 0098- 3004(92) 90029-Q. (6) The dataset containing inter-
nal cell concentrations for various cell types was sourced from the study by Bennet et al.26. This dataset is publicly 
available and can be accessed through the 10. 1038/ nchem bio. 186. (B) Models: (1) Synercell can be accessed to 
calculate the energy of the genome, transcriptome, proteome and cell lipid bilayer in the GitHub repository of 
Syner cell. As new data becomes available, new dictionaries can be added for different cell types. (C) Output data 
(1) The dataset generated in this study includes the Gibbs Energy of Reaction for each biomolecule, adjusted 
to its internal concentration at different temperatures. This dataset is available in the Supplementary material.
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