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New role of fat‑free mass 
in cancer risk linked with genetic 
predisposition
Benjamin H. L. Harris 1,10,11*, Matteo Di Giovannantonio 1,11, Ping Zhang 2, David A. Harris 3, 
Simon R. Lord 1,4, Naomi E. Allen 5, Tim S. Maughan 1, Richard J. Bryant 6, Adrian L. Harris 1, 
Gareth L. Bond 7,12 & Francesca M. Buffa 1,8,9,12*

Cancer risk is associated with the widely debated measure body mass index (BMI). Fat mass and fat‑
free mass measurements from bioelectrical impedance may further clarify this association. The UK 
Biobank is a rare resource in which bioelectrical impedance and BMI data was collected on ~ 500,000 
individuals. Using this dataset, a comprehensive analysis using regression, principal component and 
genome‑wide genetic association, provided multiple levels of evidence that increasing whole body 
fat (WBFM) and fat‑free mass (WBFFM) are both associated with increased post‑menopausal breast 
cancer risk, and colorectal cancer risk in men. WBFM was inversely associated with prostate cancer. We 
also identified rs615029[T] and rs1485995[G] as associated in independent analyses with both PMBC 
(p = 1.56E–17 and 1.78E–11) and WBFFM (p = 2.88E–08 and 8.24E–12), highlighting splice variants of 
the intriguing long non‑coding RNA CUPID1 (LINC01488) as a potential link between PMBC risk and 
fat‑free mass.

Obesity is widespread across the  globe1,2. Studies have identified high body mass index (BMI, weight in kilograms 
divided by the square of height in metres), a surrogate for adiposity, as a risk factor for cardiovascular disease, 
diabetes mellitus, chronic kidney disease and a number of cancer  types3–6.

Although BMI has been described as a good proxy for assessing overall body  fatness6, evidence from recent 
studies highlight its  shortcomings7,8. Indeed, the well-described association of atrial fibrillation (AF) with obesity, 
as established mainly through BMI-based  studies9,10, appears to be driven predominantly by lean rather than fat 
mass, challenging the role played by fat in the AF  aetiology11. This finding opens up questions surrounding the 
use of BMI as a surrogate for obesity.

Currently, 13 cancer types are widely accepted to have sufficient evidence to be linked with “excess body 
fatness”, including post-menopausal breast cancer (PMBC), and malignancies of the bowel, endometrium, 
oesophagus, ovary, liver, gastric cardia, gallbladder, pancreas, kidney, meningioma, multiple myeloma and 
 thyroid6. The majority of epidemiological studies have used BMI to identify links between cancer and  obesity12, 
partly due to the ease of its measurement in large-scale population-based studies. Other researchers have studied 
changes in BMI or weight over time, and/or based their research on other indicators of adiposity, such as waist 
circumference and waist-hip ratio. A few studies have used more direct measures of fat mass, such as bioelectrical 
impedance, dual-energy X-ray absorptiometry or  hydrodensitometry13–16.

Adipose and muscle tissue both have autocrine, paracrine and endocrine  actions17,18, and these tissues have 
different physiological effects on whole body metabolism, inflammation, and insulin  resistance19,20. Individuals 
with the same BMI can have very different body compositions of muscle and adipose  tissue21–23. This concept has 
been used to explain the obesity/BMI paradox. This paradox refers to a number of studies demonstrating that 
overweight and early obese states are associated with improved survival in various cancers despite those with 
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higher BMI being at increased risk of developing  cancer24–28. This paradoxical observation has been attributed 
to individuals in overweight and early obese states having proportionally higher muscle mass contribution to 
BMI, but not having adiposity levels high enough to increase  mortality21.

When considering cancer prevention, although there is a clear signal suggesting higher BMI individuals are at 
increased cancer risk for many cancer types, it is not evident where this signal originates within those individuals 
and/or whether this is the same across all tumour types. As in AF, it is possible that lean body mass (fat-free mass) 
is a risk factor for some cancer types, or perhaps signals from fat and lean body mass both culminate to increase 
cancer risk. It is crucial to resolve this issue, as it may change assessment of adiposity in future clinical trials, and 
refocus efforts to investigate the biological underpinnings of the observed links between obesity and cancer risk.

The UK Biobank presents an ideal opportunity to investigate the risk associated with BMI, fat mass and fat-
free mass across a number of tumour types. This biobank is one of the world’s largest cohort studies of ~ 500,000 
UK residents who volunteered to have their clinical, lifestyle, anthropometric and genetic data collected for 
health-related research. Notably, the vast majority of participants had bioelectrical impedance measurements 
taken at recruitment. This provides information on fat and lean body mass amounts and distribution. Further, 
participants have linked cancer incidence data from national health administrative datasets. Herein we report a 
study of three cancers in the UK Biobank, which were the most common in participants following anthropometric 
assessment (> 2000 cases), enabling robust phenotypic and genetic analyses. This includes two cancers that have 
been associated with high BMI (PMBC and colorectal cancer), and one cancer that has shown mixed results 
with BMI over a number of studies (prostate cancer). To date, most studies in the UK Biobank have focussed on 
measures of adiposity without assessing the relative contribution of lean body  mass29–31. Here, we aim to address 
this gap in the literature by investigating what is the risk conferred by fat mass, fat-free mass and body mass 
index respectively in these three cancers.

Genetics play a crucial role in determining anthropometric measures and cancer risk, and help explain the 
mechanisms behind epidemiological associations. Over the past 10 years, genome-wide association studies 
(GWASs) have successfully identified loci that are associated with either cancer risk or anthropometric measures. 
While this has led to a greater understanding of the biology of these phenotypes, these studies focused on 
associations with only cancer types or anthropometric measures. The UK Biobank provides a unique opportunity 
to uncover the biological pathways linking some of these phenotypes. For instance, one may expect that if the 
link between fat mass and cancer risk is direct there will be loci associated with both traits (pleiotropy). We 
have previously demonstrated that single nucleotide polymorphisms (SNPs) affecting expression of key cancer 
genes associate with both cancer risk and anthropometric  measures32. In this study, three regulatory SNPs for 
three important cancer genes, FANCA (rs1805007 C > T), MAP3K1 (rs889312, C > A) and TP53 (rs78378222, 
A > C) were found to associate with both anthropometric traits and cancer in a European population. The 
FANCA and MAP3K1 SNPs associated with height (standing height: rs1805007: beta =  − 0.02 ± 0.002, adjusted 
p = 9.20E − 15, MAP3K1: standing height beta =  − 0.02 ± 0.004, adjusted p = 6.11E − 14) and the TP53 SNP showed 
associations with 10 different anthropometric traits (rs78378222: multiple measures of height, fat-free mass and 
basal metabolic rate). Building on this work, we now search the entire genome for both fat and anthropometric-
related genes linked to major malignancies.

Methods
The UK Biobank
The UK Biobank is a cohort of ~ 500,000 UK residents who volunteered to have their clinical, lifestyle, 
anthropometric and genetic data collected for research. Data for these analyses were collected at an assessment 
clinic at recruitment (2006–2010), and participants’ health was followed through linkage to electronic health 
records and centralised clinical registers, such as the Cancer register and Death register. Participants were aged 
between 40 and 69 years at recruitment. UK Biobank obtained informed consent from all participants. This 
study was conducted under the UK Biobank approved application (#43313, PI Francesca Buffa) and carried out 
in accordance with the Declaration of Helsinki. The National Research Ethics Service Committee approved all 
protocols.

Anthropometric data
During the baseline assessment, participants had various anthropometric traits measured manually or by 
bioelectrical impedance. Standing height measurement was collected from participants using a Seca 240 cm height 
measure. Weight and bioimpedance data was measured using a Tanita BC418MA body composition analyser. 
Participants stood barefoot on the analyser and held the metal handles. This device produced measurements of 
weight, fat mass, and fat-free mass for the whole body and individual body segments (e.g. trunk fat mass), as 
detailed  elsewhere29. The standing height measurement and weight was used in the calculation of BMI.

Cancer data
Cancer occurrences were defined by the presence of a cancer international classification of diseases (ICD) code in 
the UK Cancer register or the UK Death register. To maximise the number of individual cancer cases, ICD9 and 
ICD10 codes were combined. The following ICD codes were used to identify patients with breast cancer (ICD-
10: C50 (Malignant neoplasm of breast), D05 (Carcinoma in situ of breast), ICD-9: 174 (Malignant neoplasm 
of female breast), 2330 (Carcinoma in situ of breast)), colorectal cancer (ICD-10: C18 (Malignant neoplasm 
of colon), D010 (Carcinoma in situ of colon), 2303 (Carcinoma in situ of colon), C19 (Malignant neoplasm 
of rectosigmoid junction), C20 (Malignant neoplasm of rectum), D011 (Carcinoma in situ of rectosigmoid 
junction), D012 (Carcinoma in situ of rectum), 2304 (Carcinoma in situ of rectum), ICD-9: 153 (Malignant 
neoplasm of colon), 1540 (Malignant neoplasm of rectosigmoid junction), 1541 (Malignant neoplasm of 
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rectum)) and prostate cancer (C61 (Malignant neoplasm of prostate), 185 (Malignant neoplasm of prostate), 
D075 (Carcinoma in situ of prostate)). Association analyses involving cancer data were repeated also without 
the in situ codes and results were similar.

Epidemiological analysis
Analysis
Participants were removed from the analysis if there were missing data on anthropometric measurements, sex, 
age or had a recorded diagnosis of cancer before the assessment centre. This way only cancer incidence whilst on 
study was considered in the analyses, as the interest is in understanding the risk of developing a disease based on 
certain exposures or risk factors. Inclusion of prevalent cases can introduce bias, thus those with a prior diagnosis 
of cancer were excluded. For variables with missing data, to maximise statistical power we encoded all missing 
values in categorical and binary covariates with a new variable. Anthropometric measures were investigated as 
continuous and categorical variables. Baseline anthropometric measurements of the study participants were 
divided into quintiles. Correlations between anthropometric measures were calculated using Spearman’s rank 
correlation coefficient, which removes the need for reliance on a normal distribution of the underlying data.

Principal component analysis (PCA) was employed to study the relationship between different components 
of body composition and cancer risk. This approach overcomes the potential issues of overcorrection which can 
occur when intercorrelated parameters are used together in the same model. PCA is an adaptive exploratory 
method that serves as a descriptive tool that can be applied to a variety of data types. PCA needs no distributional 
 assumptions33 and is commonly used to explore genomic datasets (e.g. microarray and RNA-Seq). Investigating 
associations with principal components themselves has yielded new biological  insights34 but, as yet, PCA is 
rarely used in epidemiological studies particularly in this context. Here, PCA was carried out using Python 
(v.3.7). Principal components were created from 12 body composition variables related to fat mass and fat free 
mass: WBFM, WBFFM, trunk fat mass, trunk fat-free mass, Leg fat mass (right), Leg fat-free mass (right), Leg 
fat mass (left), Leg fat-free mass (left), Arm fat mass (right), Arm fat-free mass (right), Arm fat mass (left), Arm 
fat-free mass (left). PCA was carried out prior to the logistic regression and the principal components were also 
explored in logistic regression models.

Risk estimates for the association between the outcome and independent variables were calculated using 
reductionist models and multivariable-adjusted logistic regression models, adjusted for covariates. Odds ratios 
(ORs) and 95% confidence intervals (CIs) for the associations with anthropometric traits, notably Body Mass 
Index (BMI), Whole Body Fat-Free Mass (WBFFM) and Whole Body Fat Mass (WBFM) were estimated. In the 
multiply-adjusted models, cancer occurrence was examined using either BMI/WBFFM/WBFM accounting for 
only age of attendance to the assessment centre (5 year age group). Within the multivariable-adjusted models we 
accounted for well-accepted confounders selected a priori. PMBC models were adjusted for age of attendance 
to assessment centre (5 year age group), Townsend Deprivation Index, ethnicity, alcohol intake, smoking status, 
family history of breast cancer, diabetes mellitus, parity, oral contraceptive use, use of hormone replacement 
therapy, age at menarche, age at first full-term birth, physical activity (Metabolic equivalents in hours per week, 
METs) and age at menopause. Townsend Deprivation Index scores were derived from national census data about 
car ownership, household overcrowding, owner occupation, and unemployment aggregated for postcodes of 
residence. Higher Townsend scores equate to higher levels of socioeconomic deprivation. Data about household 
income were self-reported. Further, METs were used to quantify self-reported physical activity. This standard 
unit estimates the amount of energy expended while performing physical activities. One MET represents the 
amount of energy (calories) expended while sitting quietly. Multivariable prostate cancer models were adjusted 
for age of attendance to assessment centre (5 year age group), Townsend Deprivation Index, ethnicity, alcohol 
intake, smoking status, family history of prostate cancer, red meat intake (beef, lamb and mutton), fish intake 
(oily fish), diabetes mellitus, physical activity (METs), history of prostatitis, and regular use of aspirin, statins, 
saw palmetto, metformin, selenium supplements, Vitamin D supplements, Vitamin E supplements, testosterone 
supplements, use of anabolic steroids and 5 alpha-reductase inhibitors. Multivariable colorectal cancer models 
were adjusted for age of attendance to assessment centre (5 year age group), Townsend Deprivation Index, 
ethnicity, alcohol intake, smoking status, family history of bowel cancer, red meat intake (beef/lamb/mutton), 
physical activity (METs), diabetes mellitus, regular use of aspirin, statins, metformin, Vitamin D supplements 
in men. The same covariates were used in women plus menopausal status and use of hormone replacement 
therapy. Further information on the covariates is detailed in the UK Biobank showcase (https:// bioba nk. ndph. 
ox. ac. uk/ showc ase/). Statistical tests for trend were calculated using the ordinal quintiles of each anthropometric 
measure entered into the model as a continuous variable. Statistical tests were all two-sided and a P-value < 0.05 
was considered statistically significant. Logistic regression analyses were carried out using R (version 3.5.3).

Genetic data
Blood samples were collected when participants were recruited, and DNA extracted. DNA was genotyped 
on either the Affymetrix UK BiLEVE Axiom array or the Affymetrix UK Biobank Axiom array (Santa Clara, 
CA, USA). Imputation was based upon a merged reference panel of ~ 90 million biallelic variants, from the 
1000 Genomes Phase  335 and the  UK10K36 haplotype panels. Imputation was performed using IMPUTE2 as 
 described37,38.

Sample quality control and SNP quality check
In addition to the standard quality control, further quality control steps were carried out to ensure robustness 
of the analyses using data fields in the UK Biobank dataset. Individuals were excluded based on: a mismatched 
value between self-reported and genetic sex (data-field: 22,001 and 31), level of genotype missingness of > 0.05 

https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/showcase/
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(data-field: 22,005), genetic relatedness factor (kinship coefficient of > 0.0442, further details available at https:// 
bioba nk. ctsu. ox. ac. uk/ cryst al/ refer. cgi? id= 531), sex chromosome aneuploidy (data-field 22,019), outliers for 
heterozygosity or missing rate (detailed in data-field: 22,027, outliers had heterozygosity > 0.1903). The European 
population was selected based on self-reported ethnicity (data-field: 21,000) by excluding non-white ethnic 
background. This left a study population of 379,453 suitable genotyped individuals.

SNP exclusions occured when at least one of the following conditions were met: Hardy–Weinberg equilibrium 
with p-value less than 1E-10, a minor allele frequency less than 0.0001, level of missingness more than 0.05 or 
an imputation score less than 0.8.

Genomic association analyses
SNP-only based genetic association analysis of quantitative (anthropometric traits) and dichotomous (cancer 
occurrence) variables were carried out under an additive model using linear and logistic statistical framework, 
respectively, in PLINK v2.00a2LM. Age and genetic principal components (1–10 PCs) were used as covariates 
to control for hidden population structure in the genome-wide association study (GWAS). Sex was included as 
a covariate where appropriate, namely when testing anthropometric traits and colorectal cancer. All participants 
who had been diagnosed with cancer before the assessment centre were excluded from the analysis. Pleiotropic 
associations were selected following the steps below:

1. Anthropometric associations: SNPs significantly associated with BMI, WBFFM and WBFM were selected 
using a GWAS threshold-p of 5E-8.

2. Haplotype calculation for anthropometric associated SNPs: Haplotypes were calculated for the significant SNPs 
identified in step 1 (16,210 haplotypes) based on SNP pruning using PLINK v1.9  (R2 > 0.8 in Europeans of 
the 1000 Genomes Project phase 3 data). All UK Biobank SNPs without attributed rsID were excluded from 
the analysis.

3. Search for cancer pleiotropic associations: SNPs within haplotypes that significantly associated with 
anthropometric measures were assessed for association with cancers. Associations with post-menopausal 
breast, colorectal or prostate cancer were deemed significant if a SNP’s association-p was below a Bonferroni 
corrected threshold. The threshold was calculated by correcting 0.05 by the number of haplotypes calculated 
in step 2. The resultant threshold-p was 3.08E-6. Although sometimes deemed as conservative, the Bonferroni 
correction has several desirable  properties39.

This workflow is summarised in Fig. 1.

Expression quantitative trait loci
SNPs associated with differential gene expression were identified from expression quantitative trait loci (eQTL) 
databases: GTEX, NESDA/NTR and  PancanQTL40–42.

AssociationsIdentify

HaplotypesIdentify

BMI WBFM WBFFM

PMBC Prostate CRC

Step 1:

Step 2:

Step 3:

SNPs associated with 
anthropometric 

measures

Pleiotropic SNPs
in UKB with cancers

GWAS of traits 
in the UKB Arbitrary GWAS 

threshold

Haplotype corrected 
threshold (Bonferroni)

p= 5E-8

p=  3.08E-6

Figure 1.  Workflow used to identify pleiotropic SNPs for anthropometric traits and cancer risk in the UK 
Biobank. In Step 1, SNP associations with BMI, WBFM and WBFFM were deemed significant if a SNP’s 
association-p was below an arbitrary GWAS threshold of 5E-8 (Bonferroni corrected). In Step 2, the resulting 
SNPs were then grouped into haplotypes (16,210). In Step 3, SNPs within the haplotypes were adjudged to have 
significant cancer associations according to a haplotype-adjusted Bonferroni corrected threshold (3.08E-6).

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=531
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=531
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Results
Association between cancer risk and measures of lean and fat body mass
Firstly, we selected common cancer types with at least 2000 cases from the UK Biobank cohorts to reduce false 
positives associations and increase the robustness of our findings. These identified PMBC, prostate and colorectal 
cancer as candidate cancer types. Using logistic regression models we investigated the relationship between the 
risk of these cancer types and each of BMI, WBFFM and WBFM. Quintiles were compared to the lowest (1st 
quintile) to give odds ratios for cancer risk. Reductionist and multivariable models yielded similar results and 
so the multivariable analysis is presented below. Number of cancer cases and cut points for each quintile are 
shown in Supplementary Tables S1 and S2. Using continuous age or categorial age did not materially affect the 
results. This analysis was complemented with PCA to investigate the relationships between different components 
of body composition and cancer.

Risk of post‑menopausal breast cancer is associated with BMI, WBFM and WBFFM
BMI, WBFFM and WBFM were each positively associated with an increased risk of PMBC to a similar extent 
(BMI quintile 5 = 1.45 (1.30–1.61) [BMI p trend = 2.86E–12], WBFM quintile 5 = 1.55 (1.40–1.73) [WBFM p 
trend = 1.19E–17], WBFFM quintile 5 = 1.60 (1.45–1.79) [WBFFM p trend = 2.52E–19], Fig. 2). BMI, WBFM 
and WBFFM were significantly correlated (p < 0.001) using Spearman’s rank correlation coefficient, with details 
shown in Supplementary Table S3a and illustrated in Supplementary Fig. S1. Notably, BMI and WBFM had an 
r value of 0.92, whereas BMI and WBFFM had an r value of 0.62.

PCA allowed identification of the main sources of signal affecting cancer risk. In PMBC, the first two 
PCs explained ~ 95% of variance (Supplementary Fig. S2a). Interestingly, the highest quintile of principal 
component 1 (PC1) was associated with an increased risk of PMBC compared to BMI, WBFM or WBFFM alone 
(Supplementary Fig. S2b). Most of the contribution of PC1 is given by whole body fat mass, trunk fat mass and 
whole body fat-free mass (Supplementary Fig. S2c).

Figure 2.  Association anthropometric traits with cancer risk. Odds ratio (95% CI) across quintiles of BMI, 
WBFM and WBFFM with post-menopausal breast, prostate and colorectal cancer (men and women are shown 
separately). Covariates for each model are detailed in the methods section. Quintile 1 is the reference category, 
with the 5th quintile denoting individuals in the highest fifth of each measurement. BMI body mass index, 
WBFM whole body fat mass, WBFFM whole body fat-free mass, PMBC post-menopausal breast cancer, PC 
prostate cancer, CRC  (F) colorectal cancer in women, CRC  (M) colorectal cancer in men. **p trend < 0.01, ***p 
trend < 0.001.
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Risk of prostate cancer is inversely related with measures of body fat
Compared to the lowest category of BMI and WBFM, men in the highest category had a lower risk of prostate 
cancer (BMI quintile 5 = 0.83 (0.76–0.91) [BMI p trend = 1.82E–04], WBFM quintile 5 = 0.83 (0.76–0.91) [WBFM 
p trend = 4.27E–05], Fig. 2). WBFM and BMI had a slightly less positive coefficient than in the PMBC, r = 0.89 
(Supplementary Table S3b), and the correlation coefficient between WBFM and WBFFM was 0.53 (p < 0.001), 
Supplementary Fig. S3).

The first two PCs explained > 93% of variance (Supplementary Fig. S4a). Looking at PC1, the 5th quintile 
just reached significance as being associated with a reduced risk, but the confidence intervals around the OR 
almost included 1 (Supplementary Fig. S4b). PC2 (~ 18% of explained variance) showed differential directional 
relationships with WBFM and WBFFM. Interestingly, the highest quintile in PC2 was associated with similarly 
reduced risk as the highest quintile of whole body fat mass. Most of the contribution of the PC2 was given by 
WBFM (Supplementary Fig. S4c).

Risk of colorectal cancer is associated with BMI, WBFM and WBFFM in males but not females
Colorectal cancer was investigated in a sex-specific analysis, as previous work has demonstrated different 
associations in men and  women43. In women, all confidence intervals included 1 or were very close to including 
1 for all anthropometric measures (Fig. 2). As seen in the post-menopausal cohort correlation analysis, BMI 
and WBFM were strongly correlated (r value of 0.93) while BMI and WBFFM were less so (r value of 0.63) 
(Supplementary Table S3c and Supplementary Fig. S5).

The first two PCs in colorectal cancer in women explained ~ 95% of variance (Supplementary Fig. S6a). 
Different quintiles of PC1 did not appear to carry significantly different risks of colorectal cancer. The last quintile 
of PC2 was associated with a small increased risk for colorectal cancer, which is difficult to interpret alone 
(Supplementary Fig. S6b). Most of the contribution of the PC1 in women was given by WBFM and WBFFM, 
with WBFM showing a larger loading value (0.809, Supplementary Fig. S6c) compared to its contribution to 
PCA1 in men (0.641).

When considering colorectal cancer in men, BMI and WBFM were positively associated with colorectal 
cancer risk (BMI quintile 5 = 1.32 (1.14–1.54) [p trend = 2.95E–06], WBFM quintile 5 = 1.36 (1.17–1.58) [WBFM 
p trend = 7.41E–06], Fig. 2). The trend of WBFFM was also significant (WBFFM quintile 5 = 1.26 (1.09–1.46) 
[WBFFM p trend = 6.28E–03]). Correlation coefficients were very similar to the prostate cancer analysis cohort 
(Table S1d and Supplementary Fig. S7).

Here, the first two PCs explained ~ 92% of variance (Supplementary Fig. S8a/b). Increasing quintiles of PC1 
were associated with increased risk. Most of the contribution of the PC1 was given by WBFM and WBFFM, 
perhaps pointing to both having some element of risk (Supplementary Fig. S8c).

Identification of pleiotropic SNPs through genomic association analyses
Having demonstrated that: (i) increasing BMI, WBFM and WBFFM were associated with increased PMBC risk, 
(ii) increasing WBFM was associated with reduced prostate cancer risk and (iii) increasing WBFFM and WBFM 
were associated with colorectal cancer in men, we hypothesised that genetic loci would show similar pleiotropic 
associations. To test this hypothesis, we explored the genetic data in the UK Biobank and performed GWASs on 
BMI, WBFFM, WBFM, PMBC, prostate and colorectal cancer.

This revealed 46,825 SNPs significantly associating with BMI (lowest p: 2.17E–213, beta = 0.076, 
rs11642015[T]), 85,378 SNPs significantly associating with WBFFM (lowest p: 5.10E–143, beta = 0.040, 
rs6567160[C]) and 41,053 SNPs significantly associating with WBFM (lowest p: 2.88E-163, beta = 0.065, 
rs11642015[T]) (Manhattan plots in Fig. 3 and further details in Supplementary Tables S4–6).

In the PMBC analysis, 11 haplotypes were identified to be associated with both PMBC and anthropometric 
traits (Fig. 4, Supplementary Table S7). Three of these haplotypes were positively associated with PMBC risk 
and anthropometric measures, with the same directions as our epidemiological models. One of these three 
haplotypes was associated with increased BMI and WBFM, and increased risk of PMBC. The solitary SNP within 
this haplotype, rs370354743[TA], a 3’UTR Variant in SKI/DACH Domain-Containing Protein 1 (SKIDA1), was 
associated with PMBC (p = 4.68E–07, OR: 1.09), BMI (p = 4.86E–13, beta = 0.02) and WBFM (p = 1.61E–12, 
beta = 0.02). This SNP has not been described to associate with these traits in the GWAS catalog. Further, it does 
not appear to influence gene expression when interrogating the eQTL databases.

The other two haplotypes were positively associated with WBFFM and increased PMBC risk. The lead SNP in 
one haplotype, rs1485995[G], was associated with PMBC (p = 1.78E–11, OR: 1.11) and WBFFM (p = 8.24E–12, 
beta = 0.01) while the lead SNP in the other haplotype, rs615029[T], was associated with PMBC (p = 1.56E–17,OR 
1.19) and WBFFM (p = 2.88E–08, beta = 0.01). We were able to validate a breast cancer association of a SNP in 
this haplotype, rs537626[C], previously identified in a case–control study of 15,170 individuals with 6993 cases 
(p = 1.8E–15, OR: 1.29) by other  workers44. Interrogation of eQTL databases showed SNPs in these haplotypes are 
not recorded to be associated with changes in gene expression. This is expected as rs537626[C] is a non-coding 
transcript exon variant related to long intergenic non-protein coding RNA 1488 (LINC01488) otherwise known 
as CUPID1 (CCND1 Upstream intergenic DNA Repair 1, non-coding). This would not be covered by standard 
eQTL analyses.

We identified one haplotype where some SNPs associated positively and some negatively with PMBC, BMI, 
WBFM and WBFFM within the same haplotype. The SNP with the strongest association with BMI, WBFFM 
and WBFM, rs17817288[G], is an intron variant mapped to the fat mass and obesity-associated (FTO) gene. 
SNPs in this haplotype have not been seen to associate with cancer risk or anthropometric traits in the GWAS 
catalog. However, various other FTO intron variants have been associated with these phenotypes, including 
rs7193144[T] with  BMI45 and rs11075995[A] with breast  cancer46. The other seven haplotypes are found in a 
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similar chromosomal region to the FTO haplotype SNPs and are associated with anthropometric measures and 
PMBC risk in opposing directions (Supplementary Table S7).

In the prostate cancer analysis, 17 haplotypes were identified that associated with anthropometric measures. 
All 17 were associated with WBFFM, two of these also associated with WBFM and one with BMI (Supplementary 
Table S8). However, these haplotypes showed discordant directional associations between prostate cancer and 
anthropometric measures to our epidemiological models. The pleiotropic SNP that was closest to mirroring 
the associations was rs377763[A], which was negatively associated with prostate cancer (p = 7.58E–07, odds 
ratio = 0.90), and positively associated with BMI (p = 9.34E–10, beta = 0.02), WBFM (p = 9.79E–12, beta = 0.02), 
and WBFFM (p = 3.30E–33, beta = 0.02). This SNP is an intergenic variant close to notch receptor 4 (NOTCH4) 
and is an eQTL for various genes in multiple tissues in the GTEX database, including NOTCH4, Cytochrome 

BMI

WBFM

WBFFM

Figure 3.  SNPs associated with BMI, WBFFM and WBFM in the UK Biobank. Genetic association analyses 
were carried out using the UK Biobank genomic data through PLINK. Results are displayed here as Manhattan 
plots. Horizontal axes show chromosome loci and vertical axes show –  log10(p) value of association. A high 
vertical distance indicates a more significant association. The broken horizontal line represents an arbitrary 
GWAS threshold of 5E-8 which was used to denote a significant association.
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P450 Family 21 Subfamily A Member 2 (CYP21A2, which codes for 21-hydroxylase enzyme) and Complement 
C4A (C4A).

No SNPs exhibited pleiotropic associations with colorectal cancer and the anthropometric measures 
tested. Further, the lists of SNPs associated with colorectal cancer, prostate cancer and PMBC are found in 
Supplementary Tables S9–11.

Discussion
In this study we aim to address an important knowledge gap on the link between the different components of 
body mass and cancer risk. We describe different associations of BMI, WBFFM and WBFM within three cancer 
types in the UK Biobank using comprehensive multivariable models. We demonstrate that pleiotropy exists on a 
genome-wide scale with SNPs being simultaneously associated with differential cancer risk and anthropometric 
measures in the same large cohort. Importantly, we identify loci exhibiting pleiotropic associations that may shed 
light on potential mechanisms behind our epidemiological observations.

In our initial analyses, we show that the associations between anthropometric traits and cancer risk are 
specific to the cancer types. For example, we show that increasing BMI, WBFFM and WBFM are each associated 
with increasing PMBC risk and principal component analysis shows that both WBFFM and WBFM contribute 
to PMBC risk. In contrast, men with higher BMI and WBFM had a lower risk of prostate cancer, with the 
relationship of WBFFM being less clear. For colorectal cancer, there was no clear relationship with WBFM 
or WBFFM in women, whereas in men, the highest quintiles of WBFM and WBFFM are both significantly 
associated with increased risk with principal component analysis suggesting both factors may contribute to this 
increased risk.

Various hypotheses have been proposed to explain the increased risk for PMBC and male colorectal cancer 
with increased fat-mass (WBFM), as described here. These include adipocyte hypertrophy and death leading to 
systemic chronic, subclinical inflammation of adipose  tissue47. Also, leptin and oestrogen from adipocytes and 
increased circulating insulin caused by insulin resistance may act as growth  factors48–50. Further discussions on 
mechanisms relating cancer and obesity is found in the following  references51,52. Additionally, we comprehensively 
show a link between WBFFM and PMBC risk, as has been shown previously in smaller  cohorts16,53. The causal 
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Figure 4.  Pleiotropic haplotypes associated with both post-menopausal breast cancer and anthropometric 
measures. Genetic association analysis of quantitative (anthropometric measures) and dichotomous (cancer 
occurrence) variables were carried out under an additive model in PLINK using the UK Biobank genetic data. 
Age and genetic principal components (1–10 PCs) were used as covariates to control for hidden population 
structure in the GWAS of all phenotypes investigated. Pleiotropic lead SNPs that have significant associations 
with both post-menopausal breast cancer (PMBC) and anthropometric measures (association p < 3.08E-6 on 
both phenotypes) are shown. WBFFM whole body fat-free mass, WBFM whole body fat mass, BMI body mass 
index.
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mechanism is unknown, but it is possible that insulin-like growth factor 1 (IGF-1) might be involved, as this has 
anabolic effects and has been associated with cancer risk in large-scale observational  studies54.

The reported observation that those with higher BMI have a reduced overall risk of prostate cancer, 
is consistent with some  studies55,56. However, obesity (as defined by BMI) has been associated with more 
aggressive prostate cancer in previous studies, with the suggestion this might be due to the development of a 
low testosterone/high estradiol  environment57. Opposing effects on cancer risk and progression are suggestive 
of different drivers, and including information on stage and grade of prostate cancer to the UK Biobank resource 
would enable further research into the relationship between more direct measures of adiposity and disease 
aggressiveness.

In the current study, we used GWAS to identify genetic loci with pleiotropic effects on both anthropometric 
traits (notably WBFM and WBFFM) and cancer. Our approach revealed pleiotropic haplotypes (co-inherited 
SNPs) involving prostate and PMBC. The pleiotropic SNP rs377763[A] which was negatively associated with 
prostate cancer (p = 7.58E–07, OR 0.90) and positively associated with BMI (p = 9.34E–10, beta = 0.02), WBFM 
(p = 9.79E–12, beta = 0.02), and WBFFM (p = 3.30E–33, beta = 0.02). This eQTL influences NOTCH4 expression 
in a range of tissues, which may affect downstream pathways affecting proliferation, including Wnt1/ β-catenin 
 signalling58.

SNPs within one haplotype associated with both PMBC (e.g. rs615029G > T, adjusted-p = 1.56E–17, OR 1.19) 
and WBFFM (e.g. rs615029G > T, adjusted-p = 2.88E–08, beta = 0.01) providing a potential mechanistic link. 
Further, one SNP within the same haplotype, rs537626[C], has previously been found to associate with breast 
cancer in a different  cohort44. This polymorphism (rs537626[C]) is a non-coding transcript exon variant related to 
a long non-coding RNA (lncRNA), LINC01488/CUPID1. LncRNAs are present in low copy numbers and do not 
code for polypeptides, although they are extensively processed by splicing (considerably more than mRNA itself) 
and 3’polyadenylated59. Indeed, nearly every non-coding exon is subject to alternative  splicing60. rs537626[C], 
and other SNPs in this haplotype, may well alter the function of this lncRNA.

CUPID1 is induced after oestrogen stimulation, and most likely affects pathway choice for DNA  repair61,62. 
Silencing of CUPID1 inhibits RAD51 recruitment to double-strand breaks, and appears to decrease high-
fidelity homologous recombination through a defect in end resection. This results in the more mutagenic non-
homologous end-joining (NHEJ) becoming the dominant DNA-repair  pathway61. Alternatively, homologous 
recombination might be reduced due to its effects on the cell cycle. CUPID1 is transcribed from DNA within 
the promoter region of cyclin D, acting as a brake on cyclin D production, via effects on histone acetylation. This 
slows cell proliferation, particularly in the S phase where homologous recombination is favoured. In its absence, 
the cells more rapidly progress through S phase and NHEJ becomes the preferred repair pathway. This SNP may 
thus influence breast cancer risk through the creation of new, and persistence of existing, mutations. CUPID1 
also decreases stability of cyclin E, decreasing the production of pro-metastatic agents such as vimentin (via 
increasing the level of inhibitor miRNA species miR124-3p and miR138-5p) and  MMP963. The link between 
increased fat-free mass and rs537626[C] (and other SNPs within its haplotype) is less clear as we were unable 
to confirm alterations in gene expression through interrogation of eQTL databases. This is an area for further 
study. As is looking for interactions between SNPs/haplotypes and anthropometric measures and cancer risk 
using other machine learning methods.

This study has some relevant limitations. Firstly, limited information is currently available on aspects of the 
cancers in the UK Biobank. At the time of writing, no information on stage, grade, histological type and treatment 
status was available. Further, prostate specific antigen (PSA) testing was not carried out as standard on all 
participants. Some cancer types can have a lengthy aetiology, so it is possible some individuals had undiagnosed 
malignancies prior to the assessment centre. This may lead to a protopathic bias which cannot be definitively 
excluded in this study. It should be noted that the accuracy of bioelectrical impedance measurements (relative to 
other techniques) is debated in some circles, as these measurements can be affected by factors such as hydration 
status, impact of exercise and fluid retention (even to the level of the menstrual cycle)64,65. The true impact of these 
factors is unknown in this dataset. In addition, as other large datasets with WBFM and WBFM become available, 
it will be interesting to investigate and attempt to validate interactions between haplotypes and anthropometric 
measures and cancer risk using machine learning approaches.

Our current study is novel and the first in integrating epidemiological clinico-demographic and genome-wide 
approaches and, using bioelectrical impedance to study relationship between BMI, WBFM and WBFFM and 
cancer risk. We demonstrate that these anthropometric measures carry different risk profiles in common cancer 
types, and this underlines the importance of not investigating these elements in isolation in future studies. We 
provide evidence that increasing WBFFM is associated with increased PMBC risk and identify splice variants 
of CUPID1 as a potential link between these two clinical phenotypes.

Data availability
The datasets generated and/or analysed during the current study are not publicly available because the data 
for this study was made available under an application to the UK Biobank consortium. We are not at liberty to 
make their data public. Access is controlled and researchers can apply for this data directly from the UK Biobank 
consortium. Data are available through an application to the UK Biobank (https:// www. ukbio bank. ac. uk/) and 
also are available from the corresponding author with blessing from the UK Biobank consortium on request.
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