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Development of a CD8+ T cell 
associated signature for predicting 
the prognosis and immunological 
characteristics of gastric cancer 
by integrating single‑cell and bulk 
RNA‑sequencing
Jianxin Li 1,2, Ting Han 1,2, Xin Wang 1, Yinchun Wang 1, Rui Yang 1 & Qingqiang Yang 1*

The universally poor clinical outcome makes gastric cancer (GC) still a significant public health threat, 
the main goal of our research is to develop a prognostic signature that can forecast the outcomes 
and immunological characteristics of GC via integrating single‑cell and bulk RNA‑sequencing. The 
CD8+ T cell feature genes were screened out by exploring single‑cell RNA‑sequencing (scRNA‑seq) 
profiles retrieved from the TISCH2 database. Then, Cox and LASSO regressions were exploited for 
constructing a prognostic model in TCGA cohort based on these CD8+ T cell feature genes. Survival 
analysis was conducted to investigate the predictive capability of the signature for the clinical 
outcome of GC patients in TCGA and GEO cohorts. Additionally, we further examined the correlations 
between the risk signature and tumor immunotherapeutic response from the perspectives of 
immune infiltration, tumor mutation burden (TMB), immune checkpoint biomarker (ICB) expression, 
tumor microenvironment (TME), microsatellite instability (MSI), TIDE, and TCIA scores. In total, 703 
CD8+ T cell feature genes were identified, eight of which were selected for constructing a prognostic 
signature. GC patients who possess high‑risk score had significantly poorer survival outcomes than 
those who possess low‑risk score in TCGA and GEO cohorts. Immune infiltration analysis proved 
that the risk score was negatively connected with the infiltration abundance of CD8+ T cells. Then, 
our findings demonstrated that GC patients in the high‑risk subgroup possess a higher proportion of 
MSI‑L/MSS, lower immune checkpoint biomarker expression, lower TMB, higher TIDE scores and lower 
TCIA scores compared to those in the low‑risk subgroup. What’s more, immunotherapy cohort analysis 
confirmed that patients who possess high‑risk score are not sensitive to anti‑cancer immunotherapy. 
Our study developed a reliable prognostic signature for GC that was significantly correlated with the 
immune landscape and immunotherapeutic responsiveness. The risk signature may guide clinicians to 
adopt more accurate and personalized treatment strategies for GC patients.
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IFNγ  Interferon-γ
TNF  Tumor necrosis factor
TISCH2  Tumor Immune Single-cell Hub 2
RNA-seq  RNA sequencing
TCGA   The Cancer Genome Atlas
GEO  Gene Expression Omnibus
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
DAVID  Database for Annotation, Visualization and Integrated Discovery
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
DCA  Decision curve analysis
FDA  Food and Drug Administration
TIIC  Tumor infiltrated immune cell
IPS  Immunophenoscore
TCIA  The Cancer Immunome Atlas
TIDE  Tumor Immune Dysfunction and Exclusion
dMMR  Defective DNA mismatch repair
MSI-H  Microsatellite instability-high
CR  Complete response
PR  Partial response
SD  Stable disease
PD  Progressive disease
ICI  Immune checkpoint inhibitor
MSS  Microsatellite stable
MSI-L  Microsatellite instability-low
Tregs  Regulatory T-cells
CAF  Cancer-associated fibroblast
ICB  Immune checkpoint biomarker
ssGSEA  Single-sample gene set enrichment analysis

Malignant tumors are the most common cause of disease-related deaths worldwide. According to the statistics, 
over 19 million newly diagnosed malignant tumor cases and 10 million disease-associated deaths around the 
world were reported in  20201. Among them, gastric cancer (GC) is responsible for 5.6% of incidence and 7.7% of 
mortality, making it a great threat to public health. Within a few decades, studies focused on comprehending the 
etiology and treatment of GC have gained unprecedented progress, and early-stage patients can be cured using 
comprehensive therapy based on operation. However, due to the deficiency of effective diagnostic markers and 
patients with early stage are generally symptom-free, the majority of GC patients are diagnosed with an aggres-
sive stage on the first visit, and the average 5-year overall survival remains below 30%2. Furthermore, resistance 
to existing treatment modalities worsens the prognosis. Thus, investigating innovative biomarkers capable of 
accurately predicting GC prognosis and therapy response is of great significance.

The tumor microenvironment (TME) is composed of cellular and non-cellular components. The former 
primarily consists of stromal cells such as endothelial cells, fibroblasts, and immune cells, and the latter, nucleic 
acids, cytokines, and growth  factors3. A growing number of researches have indicated that the dynamic crosstalk 
between cellular and non-cellular components in TME contributes to cancer progression, and the TME serves as 
a significant role in cancer initiation, progression, and therapeutic drug  resistance4,5. Among the immune cells in 
TME, CD8+ T cells exhibit important anti-cancer activities and have favourable treatment effects on numerous 
cancers, including GC. CD8+ T cells possess the capability to specifically detect and deracinate cancer cells by 
secreting effector cytokines such as tumor necrosis factor (TNF) and interferon-γ (IFN-γ), and death-inducing 
granules such as granzymes, perforin, cathepsin C and  granulysin6,7. CD8+ T cell dysfunction and exhaustion 
have been recognized as the most important immune characteristics during tumorigenesis, and immunother-
apy strategies such as immune checkpoint blockade that focuses on reactivating the immunological activity of 
CD8+ T cells has achieved great success for many solid  tumors8. Considering the significant role of CD8+ T 
cells in tumor progression and immunotherapeutic response, developing a CD8+ T cell-associated signature for 
forecasting the survival outcome and immunological characteristics of GC is of great worth.

The rapidly developed high-throughput sequencing technology has revolutionized the realm of biology, 
researchers can access and reanalyze sequencing data in a more detailed insight based on public databases. In 
recent decades, many researches have launched to develop prognostic signatures for forecasting the clinical 
outcome and immunological landscapes of diverse cancers based on sequencing data. However, the TME is a 
complex environment with high heterogeneity, conventional transcriptomic investigation may ignore the bio-
logically relevant differences between distinct  cells9. Compared to traditional RNA sequencing, the single-cell 
RNA-sequencing (scRNA-seq) technology enables researchers to determine the heterogenicity of tumor and 
stromal cells from the perspective of cellular level, and discriminate the gene expression characteristics of distinct 
cell types, thereby identifying feature genes for each  cell10. As far as we know, there were no studies focused on 
constructing prognostic signatures for GC from the perspective of CD8+ T cell marker genes. In this study, we 
identified CD8+ T cell feature genes by exploring scRNA-seq profiles and generated a novel risk signature for 
forecasting the clinical outcome and immunotherapeutic responsiveness of GC patients. The flowchart for the 
entire study was displayed in Fig. 1.
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Materials and methods
Data acquisition and processing
Tumor Immune Single-cell Hub 2 (TISCH2, http:// tisch. comp- genom ics. org/ home/) is an online platform that 
supplies detailed scRNA-seq information, enabling researchers to investigate the characteristics of TME at the 
cellular level across multiple types of malignant  tumor11. In this study, detailed cell-type annotation files of 
GSE134520 (including 41,554 GC cells) 12 and GSE167297 (including 22,464 GC cells)13 were retrieved from the 
TISCH2 database. Besides, the bulk RNA-sequencing (RNA-seq) dataset, somatic mutation information, and 
clinicopathological paraments of GC were retrieved from The Cancer Genome Atlas (TCGA, https:// portal. gdc. 
cancer. gov/) project. GSE62254 cohort with 300 GC samples and GSE15459 with 192 samples were downloaded 
from the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) project as validation  cohorts14,15. 
Moreover, the IMvigor210 cohort including RNA-sequencing data and detailed clinical information of urothelial 
cancer patients receiving immunotherapy was utilized to determine whether the risk signature can predict the 
effectiveness of immunotherapy in human  cancer16.

Identification of feature genes associated with CD8+ T cells in GC.
The scRNA-seq data re-analysis and subsequent differential analysis between CD8+ T cells and other cell types 
were processed by the TISCH2 project. Genes showing significantly different expression patterns in CD8+ T 

Figure 1.  The flowchart for the entire study.

http://tisch.comp-genomics.org/home/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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cells were identified as CD8+ T cell feature genes (adjusted p-value < 0.05). Subsequently, we applied the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID, https:// david. ncifc rf. gov/) database for 
performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 
on the marker genes of CD8 + T cell clusters to determine their underlying molecular functions and potential 
 mechanisms17.

Development of the survival related risk signature
We first utilized univariate Cox regression to screen out survival related CD8+ T cell marker genes in TCGA 
cohort. Subsequently, we conducted least absolute shrinkage and selection operator (LASSO) regression to 
minimize the risk of overfitting and compress the number of variables. Afterwards, multivariate Cox regression 
was conducted to select optimal survival-related variables and develop a signature with the following for-
mula:riskScore =

n
∑

k=1

[

Exp
(

genes
)

∗ coef
(

genes
)]

 . Where Exp indicates the gene expression level and coef indi-

cates the coefficients of the gene calculated by multivariate Cox regression. GC patients in TCGA cohort were 
classified into low- and high-risk subgroups according to the median risk score. Then, we performed 
Kaplan–Meier survival and time-dependent receiver operating characteristic (ROC) analyses to investigate the 
predictive efficiency of the signature by “survminer” and “survivalROC” R packages.

Clinical relevance analysis
The differences in clinicopathological parameters (age, gender, grade, and tumor stage) between different sub-
groups were analyzed via chi-square test. Besides, we conducted univariate and multivariate Cox regression 
analyses to clarify whether the signature has the ability to forecast the survival outcome of GC as an independent 
prognostic factor. Similarly, we utilized ROC analysis to assess the predictive efficiency of different indexes in 
predicting patients’ outcomes.

Independent validation of the risk signature
We utilized the same formula and coefficients to determine the generalizability of the signature in independ-
ent validation cohorts GSE62254 and GSE15459. Similarly, the Kaplan–Meier curve of the validation cohorts 
was plotted to investigate the predictive capability of the signature in the validation cohort, and univariate and 
multivariate Cox regression analyses were utilized for the independent survival analysis.

Generation of the predictive nomogram
A nomogram comprised of risk score and other clinical parameters was generated for predicting 1-, 3- and 
5-year survival rates of GC patients. The ROC and calibration plots were conducted to evaluate the consistency 
between actual and predicted outcomes. Moreover, we performed decision curve analysis (DCA) to determine 
the net benefits of the nomogram and other parameters.

Somatic mutation analysis
Tumor mutation burden (TMB) is defined as total number of mutations present in a tumor specimen, and 
multiple lines of research have indicated that patients with higher TMB forecast better clinical outcomes after 
immunotherapy. Therefore, the Food and Drug Administration (FDA) has recently granted the clinical applica-
tion of anti-PD-1 agent pembrolizumab as an alternative immunotherapy strategy for solid tumors with TMB > 10 
mutations/Mb 18. In this study, we evaluated the TMB of each sample and assessed its relationship with the risk 
score. Besides, the genetic mutation landscapes in low- and high-risk subgroups were visualized by “Maftools” 
package.

Tumor microenvironment and infiltrated immune cell analysis
To further investigate the association between the risk signature and TME, “CIBERSORT”, “xCELL”, “EPIC”, 
“TIMER”, “MCP-counter”, and “quanTIseq” algorithms were applied to quantify the density of diverse tumor-
infiltrated immune cells (TIICs) for each  patient19–24. Then, the association between the TIIC density and risk 
score was evaluated using Spearman’s correlation test and Wilcoxon test. Additionally, the ESTIMATE algorithm 
is a new approach to estimating the proportion of stromal and immune cells in TME by performing single-sample 
gene set enrichment analysis (ssGSEA) on the basis of specific gene expression  patterns25. In this study, we utilized 
the Wilcoxon test to analyze the differences in TME scores between the risk subgroups, including stromal score, 
immune score, and ESTIMATE score.

Immunophenoscore analysis
The Immunophenoscore (IPS) has been identified as a superior predictive index of sensitivity to immunotherapy, 
which has been applied to assess the determinants of tumor  immunogenicity26. The IPS profiles of GC cohort 
were obtained from The Cancer Immunome Atlas (TCIA, https:// tcia. at/). Then, the difference in IPS between 
the risk subgroups was assessed by the Wilcoxon test.

Tumor immune dysfunction and exclusion analysis
Tumor Immune Dysfunction and Exclusion (TIDE, http:// tide. dfci. harva rd. edu/) is a computational algorithm 
to model two primary mechanisms of tumor immune escape: prevention of T cell infiltration and induction of T 
cell exhaustion in  TME27. Patients who possess high TIDE scores are more likely to evade anti-cancer immunity, 
thus achieving unsatisfactory immunotherapeutic efficacy. We thus calculated the TIDE scores of each GC patient 

https://david.ncifcrf.gov/
https://tcia.at/
http://tide.dfci.harvard.edu/
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by applying the TIDE algorithm and determined the relationship between the risk score and the effectiveness 
of immunotherapy.

Microsatellite instability analysis
Microsatellite instability (MSI) is a molecular index of deficient DNA mismatch repair (dMMR), MSI tumors 
exhibit elevated tumor mutation loads and neoantigens, which stimulate the anti-cancer immunity of the host 
and thereby achieving higher immunotherapeutic  efficacy28. Thus, the FDA has recently granted pembrolizumab 
as an essential drug for the treatment of microsatellite instability-high (MSI-H) tumors, including  GC29. In this 
research, we investigated the relationship between the risk score and the MSI status.

Immune checkpoint biomarker expression analysis
Immune checkpoints are co-inhibitory molecules mainly expressed on the membrane of T cells to restrain the 
T cell-induced host immunological activity, thereby inducing T cell exhaustion and tumor  tolerance30. Immu-
notherapeutic agents targeting ICBs, such as PD-L1, PD1 and CTLA-4, have obtained unprecedented progress 
in anti-tumor therapy in the last decade. In this study, we further determined the relationship between the risk 
score and immune landscapes of GC by comparing the differences in ICBs’ expression between these two risk 
subgroups.

Exploring the predictive capability of the risk signature in immunotherapy cohort
The RNA-sequencing profile and clinical parameters of urothelial cancer patients being treated with anti-PD-
L1 agent were retrieved from the immunotherapeutic cohort IMvigor210. According to immunotherapeutic 
efficacy, patients in the immunotherapy cohort were distributed into responder and non-responder subgroups. 
The former includes complete response (CR) and partial response (PR), and the latter, stable disease (SD) and 
progressive disease (PD). The differences in the risk scores between different subgroups were determined by 
the Wilcoxon test.

Statistical analysis
Statistical analysis was conducted using the R software (v4.1.0, https:// www.r- proje ct. org/), and the data pack-
ages utilized for statistical analysis within R were as described above. P-value < 0.05 was considered statistical 
significance.

Results
Identification of feature genes related to CD8+ T cell in GC
The scRNA-seq datasets GSE167297 and GSE134520 were analyzed using the TISCH2 platform. As shown in 
Fig. 2A, nine cell clusters were annotated in GSE167297, and the significant differential feature genes of each 
cell cluster were displayed in Supplementary Table 1. In terms of GSE134520, a total of nine cell clusters were 
annotated (Fig. 2B) and the significant differential marker genes were listed in Supplementary Table 2. Ultimately, 
703 candidate CD8+ T cell feature genes were screened for subsequent analysis after intersecting the marker 
genes obtained from GSE167297 and GSE134520 by Venn (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/) 
platform (Fig. 2C). Then, GO annotation analysis showed that CD8+ T cell feature genes are primarily enriched in 
signal transduction (GO0007165), translation (GO0006412), immune response (GO0006955), apoptotic process 
(GO0006915) and inflammatory response (GO0006954) (Fig. 2D), while KEGG enrichment analysis found that 
CD8+ T cell feature genes are primarily enriched in Pathways of neurodegeneration (hsa05022), Amyotrophic 
lateral sclerosis (hsa05014), Prion disease (hsa05020), and Parkinson disease (hsa05012) (Fig. 2E).

Development of the CD8+ T cell‑correlated risk signature
Firstly, a total of 35 CD8+ T cell marker genes that obviously correlated with clinical outcomes of GC patients 
were identified by univariate Cox regression analysis (Fig. 3A). Then, 19 genes were filtered out via LASSO 
analysis (Fig. 3B and C), and eight of which were eventually selected for constructing a prognostic signature 
through multivariate Cox regression analysis (Fig. 3D). The coefficients of each gene are listed in Table 1. The 
GC patients were assigned into low- and high-risk subgroups according to the risk score of 1.001. Kaplan–Meier 
curve indicated that patients with low-risk score presented a significantly better survival outcome compared 
to those with high-risk score (Fig. 3E). Additionally, we performed time-dependent ROC analysis to verify the 
efficiency of the risk score. As shown in Fig. 3F and G, the predictive capability of the risk score is superior to 
each single gene, and the area under the ROC curve (AUC) values of the 1-, 3-, and 5-year survival rate were 
0.726, 0.734, and 0.859, respectively. Besides, ROC analysis revealing that the risk signature was more accurate 
than other potential biomarkers such as TMB, MSI, TIDE and IPS scores in predicting prognosis (Supplemen-
tary Fig. 1). These findings suggested the significant performance of the CD8+ T cell signature in predicting the 
clinical outcomes of GC.

Relationships between the risk signature and clinical features
The relationships between the risk score and clinical features of GC were investigated via chi-square tests. As 
shown in Fig. 4A, a significant positive relationship between high-risk score and advanced tumor stage was 
observed. Then, we conducted a subgroup analysis according to tumor stage. Except for Stage I, the risk score 
showed significant capability in forecasting the survival outcomes of GC patients in each subgroup (Fig. 4B). 
Subsequently, we evaluated the independent predictive performance of the signature via univariate and multi-
variate Cox regression analyses and found that the risk score can be used as an independent predictor for GC 

https://www.r-project.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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(Fig. 4C and D). Besides, the multi-variable ROC curve suggested that the predictive capability of the risk score 
(AUC = 0.859) in forecasting the prognosis of GC patients was superior to other parameters (Fig. 4E).

External validation confirmed the predictive ability of the risk signature
We estimated the predictive performance of the signature in two external validation cohorts (GSE62254, n = 300; 
GSE15459, n = 192) to further determine whether the signature can be applied in different populations. As a 
result, patients who possess high-risk score showed significantly worse survival outcomes compared to those 
who possess low-risk score in each independent cohort, and the risk score was identified as an independent 
predictor (Fig. 5). These findings further confirmed the widespread applicability of the risk signature among 
different populations.

Development of a nomogram
A nomogram of overall survival was developed by incorporating risk score and other prognostic risk factors such 
as age, gender, grade and tumor stage given by performing the multivariate analysis (Fig. 6A). The calibration 
curve indicated that the probabilities of overall survival forecasted by the nomogram model was closely matched 
the actual survival of GC patients (Fig. 6B). Meanwhile, the ROC curve showed that the nomogram model to 
forecast the prognosis of GC was obviously better than traditional clinical parameters (Fig. 6C). Besides, the 
DCA curve also showed that the nomogram model had superior prognostic value than other variables (Fig. 6D). 
Taken together, our data suggested that the nomogram model has a superior clinical benefit for GC patients.

Somatic mutations in different subgroups
We explored the somatic mutations to achieve further biological comprehension of the immunological char-
acteristics of the risk subgroups. As shown in Fig. 7A, the TMB was remarkably elevated in the low-risk sub-
group compared with the high-risk subgroup. As expected, the Spearman correlation plot also indicated the 
significant negative association between the risk score and TMB in GC (Fig. 7B). Then, these two factors were 
taken into account together, patients in the high-TMB+ low-risk score subgroup showed a significantly better 
clinical outcome compared to those in the other three subgroups (Fig. 7C). The top 20 genes that possess the 

Figure 2.  Identification of CD8+ T cell marker genes. (A) Cell clusters identified with marker genes for each 
cell type generated by TISCH2 in GSE167297. (B) Cell clusters identified with marker genes for each cell type 
generated by TISCH2 in GSE134520. (C) The Venn diagram indicated CD8+ T cell marker genes between 
GSE167297 and GSE134520 datasets. (D) GO analysis of CD8+ T cell marker genes. (E) KEGG analysis of 
CD8+ T cell marker genes.
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Figure 3.  Development of CD8+ T cell-associated risk signature. (A) Forest plot of survival related CD8+ T cell 
marker genes based on univariate Cox regression analysis. (B) Plots of the produced coefficient distributions 
for the logarithmic series for parameter selection (lambda). (C) The trajectory of each independent variable 
with lambda. (D) Forest plot of optimal prognostic genes used for the construction of the risk signature based 
on multivariate Cox regression analysis. (E) Kaplan–Meier survival curve of the risk signature in TCGA cohort. 
(F) ROC analysis of survival status for the risk signature and eight single CD8+ T cell marker genes. (G) Time-
dependent ROC curve of the risk signature in TCGA cohort.

Table 1.  The list of eight prognostic genes. HR, hazard ratio.

Gene Coefficients HR HR.95L HR.95H p-value

CXCR4 0.31068 1.364353 1.058744 1.758177 0.016344

NPC2 0.429302 1.536185 0.974475 2.421678 0.064512

DDX24 1.062122 2.892502 1.237326 6.761813 0.014227

ZFP36 0.229511 1.257985 0.958099 1.651735 0.098558

TGFB1 0.405287 1.499732 1.065393 2.111143 0.020177

PDCD1 -0.90348 0.405158 0.278703 0.588988 2.21E-06

NPDC1 -0.36774 0.692299 0.549216 0.872658 0.001852

SRI 0.437998 1.549601 1.077719 2.228099 0.018083
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highest mutation frequencies in each risk subgroup are showed in Fig. 7D and E. Among them, the mutation 
rates of TTN, TP53, and MUC16 were not only higher than 25% in both subgroups but the most frequent in 
both subgroups.

The association between the risk signature and TME
We utilized distinct algorithms to estimate the infiltration of TIICs in each patient and evaluated their association 
with the risk score. As a result, the risk score was found to be remarkably associated with the infiltration level of 
most of the TIICs, especially CD8+ T cell (Fig. 8A). In terms of TME scores, we found that the stromal score and 
estimate score were remarkably elevated in the high-risk subgroup compared to the low-risk subgroup, whereas 
the difference in immune score between the two risk subgroups was not significant (Fig. 8B).

Prediction of immunotherapeutic responsiveness
We further determined the capability of the risk score for forecasting the clinical immunotherapeutic responsive-
ness in GC. Firstly, our findings suggested that the IPSs were obviously higher in the low-risk subgroup, which 
means more immunogenicity to immune checkpoint inhibitors (ICIs) in the low-risk subgroup (Fig. 9A). For 
the TIDE, the TIDE and Exclusion scores were remarkably elevated in the high-risk subgroup, while the MSI 
score was higher in the low-risk subgroup, implying that immune evasion was more common in the high-risk 
subgroup (Fig. 9B). Subsequently, the differences in ICB expression levels between the two risk subgroups 

Figure 4.  The correlation between the risk signature and clinical parameters. (A) Heat maps of clinical 
parameters between low- and high-risk groups. *P < 0.05; **P < 0.01. (B) The subgroup survival analysis 
according to the tumor stage. (C) Univariate Cox analysis of risk score and clinicopathological parameters. (D) 
Multivariate Cox analysis of risk score and clinicopathological parameters. (E) Multi-index ROC curve of risk 
score and clinicopathological parameters.
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were compared. As shown in Fig. 9C and D, PD-1 and LAG3 were overexpressed in the low-risk subgroup and 
remarkably correlated with better overall survival in GC. Besides, we evaluated the correlation between the risk 
score and MSI status and revealed that a low-risk score was significantly correlated with MSI-H status, whereas 
a high-risk score was correlated with microsatellite stable (MSS) and MSI-low (MSI-L) status (Fig. 9E and F).

Moreover, due to the lack of data on immunotherapy for GC, we determined the performance of the risk sig-
nature in forecasting patients’ sensitivity to immunotherapy based on the IMvigor210 cohort. As a result, urothe-
lial cancer patients possess high-risk score also showed significantly worse overall survival probability, and the 
CR/PR patients possessed significant lower risk score compared to SD/PD patients (Fig. 9G and H). This result 
partially demonstrated that our risk signature has the ability to predict tumor responsiveness to immunotherapy.

Discussion
Developing predictive biomarkers for forecasting the survival outcome and therapy response of tumors is of 
great significance. Considering that performing bulk RNA-seq and scRNA-seq in clinics are time-consuming and 
costly, recent studies are inclined to develop clinically feasible tools based on public databases and burgeoning 
technologies such as bioinformatics, which is convenient and cost-efficient. In the present study, we constructed a 
CD8+ T cell-associated prognostic signature to evaluate the clinical outcomes and anti-cancer immunotherapeu-
tic sensitivity of GC and validated the translatability to the clinical setting via retrospective analysis of specimens 
from multiple distinct populations. Our results highlighted the significance of using pre-clinical signatures to 
generate clinical tools as well as the benefits of applying burgeoning technologies such as bulk RNA-seq and 
scRNA-seq to investigate distinctive immunological landscapes in TME.

The novel risk signature was developed according to the coefficients and expression levels of eight CD8+ T cell 
marker genes: CXCR4, NPC2, DDX24, ZFP36, TGFB1, PDCD1, NPDC1, and SRI. Most of these genes have been 
reported to participate in tumorigenesis. For example, CXCR4 is a member of the G protein-coupled receptor 
family and serves as a receptor for SDF-1. Previously published researches have demonstrated that CXCR4 was 
overexpressed in GC and affects the proliferation, migration and invasion of cancer cells via the activation of 
diverse signaling pathways, such as ERK/Akt, NF-kB, JAK2/STAT3, and Wnt/β-catenin  pathways31. In addition. 
CXCR4 has been demonstrated to serve as a significant part in modulating the differentiation and directional 
migration of immune cells in  TME32. TGFB1 was overexpressed in GC cells and participated in cancer progres-
sion by inducing cell proliferation, metastasis, glycolysis, angiogenesis, and depressing  apoptosis33. The activa-
tion of TGFB signaling depresses the biological activity of cytotoxic T-lymphocytes and natural killer cells by 
promoting the proliferation of regulatory T-cells (Tregs) and cancer-associated fibroblasts (CAFs), thus creating 
an immunosuppressive  TME34. PDCD1 encodes the PD-1 protein, which is an immunosuppressive molecule that 
is widely overexpressed on the tumor-infiltrating lymphocytes. PD-1 mediates T-cell exhaustion and dysfunc-
tion in TME, thereby inducing immune evasion and tumor  progression35,36. PD-1 targeted therapy has gained 
promising efficiency in GC with MSI-H or EBV (+)  tumors37. SRI was overexpressed in GC and has oncogenic 
activity in tumor progression by promoting migration and invasion in vitro38. Besides, highly expressed SRI was 

Figure 5.  External validation of the risk signature in predicting overall survival of GC based on independent 
cohorts. (A) The Kaplan–Meier survival analysis of the risk signature in the GSE62254 cohort (n = 300). (B) 
The univariate and (C) multivariate Cox regression analyses of risk score and clinicopathological parameters 
in GSE62254 cohort. (D) The Kaplan–Meier survival analysis of the risk signature in the GSE15459 cohort 
(n = 192). (E) The univariate and (F) multivariate Cox regression analyses of risk score and clinicopathological 
parameters in GSE15459 cohort.
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involved in poor responses to chemotherapy in GC cells 39. NPC2 is a tumor suppressor by modulating MAPK/
ERK signaling in primary hepatocellular  carcinoma40. DDX24 has been demonstrated to be highly expressed 
in non-small cell lung cancer and associated with unfavourable clinical outcomes, with the silencing of DDX24 
remarkably restraining cell migration and invasion in vitro and in vivo41. In this study, we include these genes 
to generate a prognostic risk signature for forecasting the clinical outcome of GC patients and found that the 
predictive capability of the risk signature is prior to each single gene. In addition, univariate and multivariate Cox 
analysis revealed that the risk signature can be used as an independent predictor for GC patients. Importantly, 
independent validation cohorts further confirmed the universal applicability of our signature in different popu-
lations, patients who possess high-risk score need more frequent follow-ups to monitor the recurrence of GC.

Cancer cells can use multiple strategies to modify the immunity of the immune system in recognizing and 
destructing them. Over the past couple of decades, immunotherapy focused on the reactivation of the host immu-
nity has gained promising progress as an anti-tumor therapy strategy for several solid tumors. Among them, 
ICIs, which relieve restrictions on immune cells to recover anti-cancer immunological activity, have produced 
unprecedented clinical benefits, especially anti-PD-1 and anti-CTLA-4 strategies. In terms of GC, ICI targeting 
PD-1 combined with trastuzumab as the first-line therapy for HER-2 positive patients has received approval by 
the  FDA42. Besides, ICIs combined with chemotherapy also exhibited satisfactory effects in treating advanced 
 GC43. However, it is difficult to predict the clinical efficacy of immunotherapy due to the great heterogeneity in 
individuals. Therefore, exploring potential biomarkers for distinguishing patients who might respond well to 
immunotherapy is of great worth. Currently, potential biomarkers used for evaluating cancer patients who might 
be sensitive to immunotherapy include immune checkpoint  expression30,  TMB18, MSI  status28,  IPS26, and TIDE 

Figure 6.  The development of a prognostic nomogram. (A) Nomogram model integrating the risk score and 
clinical parameters was constructed. (B) Calibration curve of the nomogram to predict the probability of 1-, 3-, 
and 5-year survival. (C) Multi-index ROC curve of nomogram model and other parameters. (D) DCA analysis 
showing the performance of the nomogram for predicting the 1- 3-, and 5-year survival.
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 scores27. We evaluated whether the CD8+ T cell-associated signature could be applied as a predictive index for 
immunotherapy of GC from the above perspectives. As expected, our results demonstrated that high-risk score 
was obviously related to low immune checkpoint expression, low TMB, MSI-L/MSS status, low IPS, and high 
TIDE scores, suggesting that patients possessing high-risk score were less likely to benefit from immunotherapy. 
In addition, we explored our findings in the immunotherapy cohort IMvigor210 and found that patients in the 
PR/CR subgroup possess lower risk scores compared with those in the SD/PD subgroup, implying that high-risk 
patients would gain worse efficacy in response to immunotherapy.

Inevitably, several limitations exist in the present research. Firstly, the prognostic signature was developed 
based on retrospective data retrieved from online platforms, additional multi-center prospective research is 
required to validate its stability. Secondly, since there are no data on immunotherapy for GC, the performance 
of the risk signature in predicting patients’ sensitivity to immunotherapy was validated only using IMvigor210 
cohort, which might inevitably affect the reliability of our findings. Besides, our study was almost descriptive, 
further in vitro and in vivo experiments are required to determine the specific biological functions of the eight 
genes in tumor immune infiltration.

Conclusion
In summary, our study developed a prognostic signature comprised of eight CD8+ T cell feature genes to fore-
cast the clinical outcomes of GC patients by integrating scRNA-seq and bulk RNA-seq technologies. The risk 
signature was found to be remarkably associated with the immunological characteristics and could be used as 
a novel biomarker in predicting immunotherapeutic responses. In the future, the risk signature is expected to 
provide worthwhile information for clinical decision-making and propose novel immunotherapeutic strategies 
for GC treatment.

Figure 7.  Relevance exploration of risk signature with tumor somatic mutation. (A) Difference in TMB 
between low- and high-risk groups. (B) Spearman correlation analysis between risk score and TMB. (C) The 
Kaplan–Meier curve showing overall survival after combining the risk score with TMB. (D) Waterfall plots 
of top 20 mutated genes in the low-risk subgroup. (E) Waterfall plots of top 20 mutated genes in the high-risk 
subgroup.
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Figure 8.  The correlation between the risk signature and tumor immune microenvironment. (A) The lollipop 
plot of the relationship between risk score and TIICs in multiple databases, and the boxplot shows the difference 
of CD8+ T cell infiltration between different risk groups. (B) The boxplot of the differences in stromal score, 
immune score and ESTIMATE score between low- and high-risk groups.
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Data availability
Thedatasets generated and/or analyzed during the current studyare available in the Tumor Immune Single-cell 
Hub 2 (TISCH2, http:// tisch. comp- genom ics. org/), Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. 
nih. gov/ geo/), and The Cancer Genome Atlas (TCGA, https:// www. cancer. gov/ tcga) projects.
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