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Deep learning predicts prevalent 
and incident Parkinson’s disease 
from UK Biobank fundus imaging
Charlie Tran 1, Kai Shen 1, Kang Liu 2, Akshay Ashok 3, Adolfo Ramirez‑Zamora 4, 
Jinghua Chen 5, Yulin Li 6 & Ruogu Fang 1,7,8*

Parkinson’s disease is the world’s fastest‑growing neurological disorder. Research to elucidate the 
mechanisms of Parkinson’s disease and automate diagnostics would greatly improve the treatment 
of patients with Parkinson’s disease. Current diagnostic methods are expensive and have limited 
availability. Considering the insidious and preclinical onset and progression of the disease, a 
desirable screening should be diagnostically accurate even before the onset of symptoms to allow 
medical interventions. We highlight retinal fundus imaging, often termed a window to the brain, as 
a diagnostic screening modality for Parkinson’s disease. We conducted a systematic evaluation of 
conventional machine learning and deep learning techniques to classify Parkinson’s disease from UK 
Biobank fundus imaging. Our results suggest Parkinson’s disease individuals can be differentiated 
from age and gender‑matched healthy subjects with 68% accuracy. This accuracy is maintained 
when predicting either prevalent or incident Parkinson’s disease. Explainability and trustworthiness 
are enhanced by visual attribution maps of localized biomarkers and quantified metrics of model 
robustness to data perturbations.

Parkinson’s disease (PD) is one of the world’s fastest-growing neurological disorders, characterized by progres-
sive impairment in motor control and multiple non-motor  symptoms1–3. The manifestation of these symptoms 
is pathologically characterized by the significant loss of dopaminergic neurons in the substantia  nigra4. An 
estimated one million individuals in the United States have PD, leading to nearly $50 billion a year in economic 
 burden1. Notably, this financial burden consists not only of direct medical costs but also indirect influences such 
as necessitated family care and social welfare. The World Health Organization estimates the prevalence of PD 
has doubled in the last 25 years, while the number of deaths caused by PD increased by over 100% since 2000, 
largely due to the lack of effective intervention under the rising growth of the elderly  population2. Innovations 
to our understanding of the pathology of PD and the development of early diagnostic systems are desired to 
address the global concerns arising from PD.

Systematic diagnostic evaluation of PD currently struggles due to the lack of early biomarkers and balance 
between both specificity and  sensitivity3. Indeed, cardinal motor symptoms fall within the umbrella of Parkin-
sonism, while non-motor indicators are symptomatic of numerous neurodegenerative  diseases5. Risk factors 
such as age, gender, and environmental toxin exposure are not specific to PD. Differential diagnosis frameworks 
established by the UK’s Parkinson’s Disease Society Brain Bank and the International Parkinson and Move-
ment Disorder  Society6 are the current standards for evaluation. However, these checklists require increasing 
amounts of exclusion and evidence, including response to dopaminergic therapy (levodopa)7, the occurrence 
of  dyskinesia8, and even DaTscan  imaging9 to conclude a definitive PD diagnosis. A biological definition neces-
sitating additional testing is being entertained. Moreover, early or atypical PD complicates the observability of 
cardinal signs, leading to significantly reduced diagnostic  accuracy10,11. Thus, current diagnostic indicators lack 
solid predictive power, straining diagnostic expenses, time, availability, enrollment in therapeutic or disease-
modifying trials, and subjectivity.
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The retina provides a routine, inexpensive, and non-invasive modality for studying brain-related pathologi-
cal processes of neurodegenerative diseases, often referred to as a window to the brain12–15. Dopamine plays a 
complex role in visual pathway processing, justifying visual dysfunction findings in PD  individuals16. Moreo-
ver, substantial evidence has revealed large temporal gaps between the onset of PD and observable symptoms, 
inspiring the retina as a prodromal PD  biomarker5. Clinical studies have suggested retinal layer thinning and 
reductions in microvasculature density in PD patients primarily through optical coherence tomography (OCT) 
and optical coherence tomography angiography (OCT-A)17,18. Nonetheless, clinical findings concerning both 
retinal degeneration and disease-specific information (disease duration, disease severity, etc.) are not always 
 consistent19,20, demanding further studies to bolster retinal diagnostic power.

Artificial intelligence (AI) algorithms are efficient diagnostic tools through their ability to identify, localize, 
and quantify pathological features, as evident from their success in diverse retinal disease  tasks21,22. In particular, 
supervised (labeled) algorithms employed in these tasks can generally be divided into two categories: conven-
tional machine learning algorithms and deep learning models. Conventional machine learning models are known 
to create (non)linear decision boundaries by rules of inference. On the other hand, deep learning models have 
risen as powerful models due to their ability to learn meaningful representations and extract subtle features 
in the training process. Learning retinal biomarkers of PD demands an intricate understanding of structural 
degeneration of the retinal vasculature, a task unfeasible for even experienced ophthalmologists and neurologists. 
To address this challenge, we propose the usage of AI algorithms to extract the complex relationships existing 
within the global and local spatial levels of the retina.

We provide one of the first comprehensive artificial intelligence studies of PD classification from fundus 
imaging.

Our key objective is realized by systematically profiling the classification performance across different stages 
of Parkinson’s disease progression, namely incident (consistent with pre-symptomatic and/or prodromal) PD 
and prevalent PD. Improving upon other related works, we maximize the diagnostic capacity of AI algorithms 
by neglecting the usage of any external quantitative measures or feature selection methods. Finally, we assess 
diagnostic consistency and robustness through extensive experimentation of both conventional machine learning 
and deep learning approaches together with a post-hoc spatial feature attribution analysis. Overall, this work 
enables future research in the development of efficient diagnostic technology and early disease intervention.

Results
Study design and clinical characteristics
This study draws from the UK Biobank, a biomedical database containing over 500,000 participants aged 40–69 
from 2006 to  201023. As of 2019 October, 175,824 fundus images from 85,848 participants were available along 
with broad clinical health measures. Most subjects have two retinal photographs (left and right eye) with a 
minority having an additional follow-up imaging session. From this population, we identified 585 fundus images 
from 296 unique subjects. Following image quality selection guidelines, we determined 123 fundus images from 
84 unique participants. To carry out an unbiased binary classification framework, we matched each PD image 
according to the subjects’ age and gender, that is, a healthy control cohort of 123 fundus images from 84 subjects. 
This constitutes our binary-labeled overall dataset of 246 fundus images (123 PD, 123 HC) from 168 subjects (84 
PD, 91 HC). Lastly, we form two subsets of the data corresponding to a prevalent dataset of 154 fundus images 
(77 PD, 77 HC) from 110 subjects (55 PD, 55 HC) and an incident dataset of 92 fundus images (46 PD, 46 HC) 
from 58 subjects (29 PD, 29 HC). Notably, we define the diagnostic gap as the difference between the date of 
image acquisition minus the date of diagnosis, where a negative value is interpreted as having a PD diagnosis 
before fundus image acquisition (prevalent PD), and a positive value is interpreted as having a PD diagnosis post 
fundus image acquisition. The data collection pipeline is summarized in Fig. 1.

Risk factors of Parkinson’s disease have been extensively  studied24–26, including age, gender, ethnicity, 
Townsend deprivation indices, alcohol consumption, history of obesity-diabetes, history of stroke, and psycho-
tropic medication usage. Moreover, the effects of Parkinson’s Disease have been associated with visual symptoms, 
from which, we acquire a history of diagnostic eye problems and visual acuity measures. We detail the statistical 
analyses of subject demographics, visual measures, and covariates of our study population in Table 1.

Model design
Conventional machine learning and deep learning models were systemically studied for their performance in PD 
diagnosis, a binary classification task. We evaluate the performance of each AI model by five randomized repeti-
tions of stratified five-fold cross validation (at the subject level) based on several classification metrics (AUC, 
accuracy, PPV, NPV, sensitivity, specificity, and F1-score). Given the insufficient amount of longitudinal data, 
we treat each image separately as a sample without data leakage, rather than performing a longitudinal analysis. 
The conventional machine learning models provide a classification performance baseline, from which we utilize 
Logistic Regression, Elastic-Net, Linear SVM, and Radial Basis Function SVM kernels. On the other hand, we 
evaluate the performance of popular deep learning frameworks including AlexNet, VGG-16, GoogleNet, Incep-
tion-V3, and ResNet-50. We follow traditional guidelines such as image normalization to the training data for 
our machine learning models, ImageNet normalization, spatial augmentations, and early stopping for our deep 
learning models. The detailed guidelines are outlined in “Methods” (“Artificial Intelligence and Model Training”).

Model performance in overall PD groups
The best deep learning model was AlexNet with an average AUC of 0.77 (95% CI 0.74–0.81), accuracy of 0.68 
(95% CI 0.65–0.72), PPV of 0.69 (95% CI 0.64–0.74), NPV of 0.79 (95% CI 0.72–0.86), sensitivity of 0.76 (95% CI 
0.66–0.87), specificity of 0.60 (95% CI 0.51–0.70), and F1-score of 0.68 (95% CI 0.62–0.75). The best conventional 
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machine learning model was the RBF support vector machine with an optimal AUC of 0.71 (95% CI 0.69–0.74), 
accuracy of 0.67 (95% CI 0.65–0.70), PPV of 0.65 (0.63–0.67), NPV of 0.71 (0.68–0.74), sensitivity of 0.76 (95% CI 
0.72–0.80), specificity of 0.58 (95% CI 0.54–0.63), and F1-score of 0.70 (95% CI 0.68–0.72). The VGG-16, Goog-
leNet, SVM (Linear), Logistic Regression, and ElasticNet perform similarly, while Inception-V3 and ResNet-50 
perform significantly worse (Fig. 2 and Table 2).

Model performance in prevalent PD groups
The best performing deep learning was the AlexNet model with an average AUC of 0.73 (95% CI 0.68–0.77), 
accuracy of 0.65 (95% CI 0.62–0.68), PPV of 0.62 (95% CI 0.55–0.68), NPV of 0.69 (95% CI 0.61–0.77), sensitiv-
ity of 0.74 (95% CI 0.65–0.83), specificity of 0.56 (95% CI 0.47–0.65), and F1-score of 0.66 (95% CI 0.60–0.72). 
The best performing conventional machine learning model was the SVM (Linear) with an AUC of 0.73 (95% 
CI 0.69–0.77), accuracy of 0.67 (95% CI 0.64–0.70), PPV of 0.67 (95% CI 0.63–0.72), NPV of 0.68 (95% CI 
0.64–0.71), sensitivity of 0.69 (95% CI 0.64–0.73), specificity of 0.65 (95% CI 0.58–0.71), and F1-score of 0.67 
(95% CI 0.64–0.70). Note that in contrast to the “Overall PD Groups”, the SVM (Linear) outperformed the SVM 
(RBF). In general, the performance of the artificial intelligence models was relatively slight upon the transition 
between “Overall” to “Prevalent” PD groups. Detailed comparisons can be found in Fig. 2 and Table 2.

Model performance in incident PD groups
The best-performing deep learning model was the AlexNet model with an average AUC of 0.68 (95% CI 
0.60–0.75), accuracy of 0.60% (95% CI 0.54–0.66), PPV of 0.49 (95% CI 0.39–0.60), NPV of 0.66 (95% CI 
0.56–0.77), sensitivity of 0.64 (95% CI 0.48–0.79), specificity of 0.56 (95% CI 0.45–0.68) and F1-score of 0.54 

Figure 1.  Data collection pipeline from the UK Biobank. Instances in parentheses represent an equal balance 
of Parkinson’s disease and healthy control subjects. Multiple quality selection phases were used as additional 
inclusion criteria into our dataset arising from AutoMorph and manual image grading. In total, we have 
the overall dataset of PD subjects matched with age and gender-matched healthy controls, and two subsets 
corresponding to prevalent and incident subjects.
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(95% CI 0.42–0.67). The performance of the AlexNet and VGG-16 remains similar while other deep learning 
models decline with less than 65% accuracy. The best-performing conventional machine learning model was the 
SVM (RBF) with an AUC of 0.64 (95% CI 0.59–0.70), accuracy of 0.62 (95% CI 0.58–0.67), PPV of 0.63 (95% 
CI 0.58–0.68), NPV of 0.63 (95% CI 0.58–0.69), sensitivity of 0.64 (95% CI 0.59–0.69), specificity of 0.60 (95% 
CI 0.53–0.67), and F1-score of 0.63 (95% CI 0.59–0.67). In general, the performance of the machine learning 
classifiers decreased significantly relative to the overall and prevalent groups. A summarized completion of the 
results can be found in Fig. 2 and Table 2.

Visualization and explainability
Qualitative explainability is visualized through guided backpropagation on our deep learning models, revealing 
the models were able to correctly distinguish subtle features on the retinal anatomy (Fig. 3). To highlight that 
the extracted features are consistent with those recognized as retinal biomarkers of neurodegeneration in PD, 
we use the  AutoMorph27 deep learning segmentation module to generate a map of important retinal structures, 
namely the arteries, veins, optic cup, and optic disc, along with a manually marked fovea. The optic cup, optic 
disc, and fovea have been shown to flag progression in PD via observable structural changes in size, thickness, 
and other  features28–30. As such, the overlay of the guided backpropagation map and segmentation map yields a 
visual comparison of the consistency between features used for classification and potential retinal biomarkers 
of PD. Moreover, we reinforce the qualitative explainability by quantifying the robustness of our deep learning 

Table 1.  Baseline characteristics of the study populations. P-values conducted on continuous data are 
computed by the Student’s t-test while categorical (binary) variables are computed by Pearson’s Chi-squared 
test. *Indicates statistically significant (p < 0.01).

Baseline characteristics PD group HC group p-value Prevalent Incident p-value

N 84 84 – 55 29 –

Diagnostic gap, mean (SD), years − 5.7 (4.5) 4.8 (1.4) –

Age, mean (SD), years 61.8 (5.9) 61.8 (5.9) 0.97 61.4 (5.8) 62.7 (6.1) 0.33

Gender, no. (%) 1.0 0.97

 Male 49 (58.3) 49 (58.3) 32 (58.2) 17 (58.6)

 Female 35 (41.7) 35 (41.7) 23 (41.8) 12 (41.4)

Ethnicity, no. (%) 0.56 0.64

 White 82 (97.6) 83 (98.2) 54 (98.2) 28 (96.6)

 Others 2 (2.4) 1 (1.2) 1 (1.8) 1 (3.4)

Eye problems, no. (%) 0.15 0.94

 Yes 9 (10.7) 4.0 (4.8) 6 (10.9) 3 (10.3)

 No 75 (89.3) 80 (95.2) 49 (89.1) 26 (89.7)

 Diabetes-related 0 1 0 0

 Glaucoma 2 0 0 2

 Injury/trauma 1 0 1 0

 Cataracts 5 2 4 1

 Macular degeneration 0 1 0 1

 Other 1 0 1 0

Visual acuity, mean (SD) 0.28 (0.38) 0.04 (0.37) * 0.28 (0.37) 0.29 (0.41) 0.92

Townsend index, mean (SD) − 1.48 (2.95) − 2.68 (2.17) 0.73 − 1.59 (3.09) − 1.27 (2.68) 0.64

Smoking status, no. (%) 0.62 0.08

 Former/current 30 (35.7) 27 (32.1) 16 (29.1) 14 (48.3)

 Non-smoker 54 (64.3) 57 (67.9) 39 (70.9) 15 (51.7)

Drinking status, no. (%) 0.73 0.64

 Former/current 80 (95.2) 79 (94.0) 52 (94.5) 30 (97.8)

 Non-smoker 4 (4.8) 5 (6.0) 3 (5.5) 1 (3.2)

Obesity-diabetes, no. (%) 0.46 0.14

 Yes 21 (25.0) 17 (20.2) 11 (20.0) 10 (34.5)

 No 63 (75.0) 67 (79.8) 44 (80.0) 19 (65.5)

History of stroke, no. (%) 0.47 0.23

 Yes 3 (3.6) 5 (6.0) 1 (1.8) 2 (6.9)

 No 81 (96.4) 79 (94.0) 54 (98.2) 27 (93.1)

Psychotropic medication, no. (%) 0.32 –

 Yes 0 (0) 1 (1.2) 0 (0) 0 (0)

 No 84 (100) 83 (98.8) 55 (100) 29 (100)
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models to data perturbations through an infidelity and sensitivity analysis. The definitions of the infidelity and 
sensitivity measures are outlined in “Methods” (‘’Explainability Evaluation’’). In this step, we run the guided 
backpropagation attribution step across N = 50 perturbations at test time with a noise distribution drawn from 
a normal distribution N ∼ (0,0.012). The results of the infidelity and sensitivity analysis are averaged across the 
repeated cross validation protocol and summarized in Fig. 4. Our empirical results suggest that AlexNet is the 
most robust to data perturbations, while simultaneously the most accurate according to lower infidelity and 

Figure 2.  Boxplots and ROC curves of the Parkinson’s Disease Classification Models. The models are evaluated 
over five randomized repetitions of the five-fold stratified cross-validation protocol. The AUC scores are enlisted 
in the legend.
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Table 2.  Classification results of Parkinson disease datasets. For each model, the mean average for each 
performance metric with their 95% confidence interval is provided over 5 randomized repetitions of fivefold 
stratified cross-validation. Highlighted in bold represents the best model and highlighted in italics is the best 
performing conventional machine learning model.

Model AUC ACC PPV NPV SENS SPEC F1

Overall (n = 246 fundus images | 123 PD, 123 HC)

 Logistic regression 0.68 (0.65, 0.71) 0.63 (0.61, 0.66) 0.63 (0.6, 0.66) 0.64 (0.61, 0.67) 0.66 (0.62, 0.70) 0.61 (0.55, 0.66) 0.64 (0.62, 
0.66)

 Elastic Net 0.67 (0.64, 0.69) 0.61 (0.58, 0.64) 0.60 (0.57, 0.62) 0.63 (0.60, 0.67) 0.68 (0.64, 0.72) 0.54 (0.49, 0.58) 0.64 (0.61, 
0.66)

 SVM (linear) 0.69 (0.66, 0.71) 0.63 (0.61, 0.66) 0.64 (0.61, 0.66) 0.64 (0.62, 0.66) 0.65 (0.61, 0.68) 0.62 (0.57, 0.67) 0.64 (0.61, 
0.66)

 SVM (RBF) 0.71 (0.69, 0.74) 0.67 (0.65, 0.70) 0.65 (0.63, 0.67) 0.71 (0.68, 0.74) 0.76 (0.72, 0.80) 0.58 (0.54, 0.63) 0.70 (0.68, 
0.72)

 Alexnet 0.77 (0.74, 0.81) 0.68 (0.65, 0.72) 0.69 (0.64, 0.74) 0.79 (0.72, 0.86) 0.76 (0.66, 0.87) 0.60 (0.51, 0.7) 0.68 (0.62, 
0.75)

 VGG-16 0.71 (0.67, 0.75) 0.66 (0.62, 0.69) 0.61 (0.58, 0.64) 0.81 (0.71, 0.91) 0.85 (0.76, 0.95) 0.46 (0.37, 0.54) 0.70 (0.64, 
0.76)

 GoogleNet 0.69 (0.65, 0.73) 0.63 (0.60, 0.66) 0.62 (0.58, 0.65) 0.70 (0.62, 0.79) 0.77 (0.69, 0.85) 0.49 (0.41, 0.58) 0.67 (0.63, 
0.71)

 Inception-V3 0.56 (0.52, 0.60) 0.54 (0.51, 0.57) 0.54 (0.49, 0.60) 0.59 (0.52, 0.66) 0.68 (0.57, 0.80) 0.40 (0.29, 0.50) 0.57 (0.50, 
0.64)

 ResNet-50 0.57 (0.53, 0.62) 0.54 (0.51, 0.57) 0.52 (0.40, 0.63) 0.55 (0.45, 0.64) 0.52 (0.37, 0.68) 0.55 (0.41, 0.70) 0.45 (0.34, 
0.56)

Prevalent (n = 146 fundus images | 73 PD, 73 HC)

 Logistic regression 0.71 (0.67, 0.76) 0.65 (0.62, 0.69) 0.66 (0.61, 0.70) 0.66 (0.63, 0.70) 0.68 (0.63, 0.73) 0.63 (0.56, 0.69) 0.66 (0.62, 
0.70)

 Elastic Net 0.67 (0.62, 0.71) 0.62 (0.59, 0.66) 0.62 (0.57, 0.66) 0.63 (0.56, 0.70) 0.71 (0.65, 0.78) 0.53 (0.45, 0.61) 0.65 (0.61, 
0.69)

 SVM (Linear) 0.73 (0.69, 0.77) 0.67 (0.64, 0.70) 0.67 (0.63, 0.72) 0.68 (0.64, 0.71) 0.69 (0.64, 0.73) 0.65 (0.58, 0.71) 0.67 (0.64, 
0.70)

 SVM (RBF) 0.70 (0.64, 0.76) 0.66 (0.60, 0.71) 0.64 (0.57, 0.71) 0.69 (0.63, 0.75) 0.70 (0.61, 0.78) 0.62 (0.55, 0.68) 0.66 (0.59, 
0.73)

 Alexnet 0.73 (0.68, 0.77) 0.65 (0.62, 0.68) 0.62 (0.55, 0.68) 0.69 (0.61, 0.77) 0.74 (0.65, 0.83) 0.56 (0.47, 0.65) 0.66 (0.60, 
0.72)

 VGG-16 0.67 (0.61, 0.73) 0.61 (0.57, 0.65) 0.58 (0.51, 0.64) 0.63 (0.55, 0.71) 0.66 (0.55, 0.76) 0.56 (0.47, 0.65) 0.60 (0.52, 
0.67)

 GoogleNet 0.70 (0.66, 0.74) 0.62 (0.59, 0.66) 0.60 (0.54, 0.66) 0.68 (0.63, 0.74) 0.69 (0.60, 0.79) 0.55 (0.46, 0.65) 0.63 (0.56, 
0.69)

 Inception-V3 0.58 (0.52, 0.64) 0.55 (0.51, 0.59) 0.49 (0.40, 0.58) 0.52 (0.44, 0.60) 0.55 (0.42, 0.68) 0.55 (0.43, 0.67) 0.50 (0.40, 
0.59)

 ResNet-50 0.56 (0.50, 0.62) 0.52 (0.48, 0.56) 0.49 (0.42, 0.57) 0.49 (0.39, 0.59) 0.51 (0.38, 0.64) 0.53 (0.39, 0.67) 0.46 (0.38, 
0.55)

Incident (n = 100 fundus images | 50 PD, 50 HC)

 Logistic regression 0.60 (0.54, 0.66) 0.52 (0.47, 0.56) 0.53 (0.48, 0.57) 0.50 (0.44, 0.56) 0.56 (0.52, 0.61) 0.47 (0.39, 0.55) 0.54 (0.50, 
0.58)

 Elastic Net 0.55 (0.50, 0.61) 0.52 (0.48, 0.56) 0.52 (0.48, 0.56) 0.48 (0.40, 0.56) 0.63 (0.55, 0.71) 0.41 (0.32, 0.49) 0.56 (0.51, 
0.61)

 SVM (linear) 0.59 (0.53, 0.65) 0.53 (0.48, 0.58) 0.55 (0.50, 0.59) 0.52 (0.46, 0.58) 0.58 (0.52, 0.63) 0.48 (0.40, 0.57) 0.55 (0.51, 
0.59)

 SVM (RBF) 0.64 (0.59, 0.70) 0.62 (0.58, 0.67) 0.63 (0.58, 0.68) 0.63 (0.58, 0.67) 0.64 (0.59, 0.69) 0.60 (0.53, 0.67) 0.63 (0.59, 
0.67)

 Alexnet 0.68 (0.60, 0.75) 0.60 (0.54, 0.66) 0.49 (0.39, 0.60) 0.66 (0.56, 0.77) 0.64 (0.48, 0.79) 0.56 (0.45, 0.68) 0.54 (0.42, 
0.67)

 VGG-16 0.63 (0.54, 0.71) 0.55 (0.50, 0.60) 0.54 (0.47, 0.61) 0.45 (0.31, 0.60) 0.69 (0.57, 0.82) 0.40 (0.26, 0.55) 0.57 (0.50, 
0.65)

 GoogleNet 0.59 (0.52, 0.66) 0.56 (0.52, 0.61) 0.49 (0.41, 0.58) 0.57 (0.47, 0.67) 0.63 (0.51, 0.76) 0.49 (0.38, 0.60) 0.55 (0.45, 
0.64)

 Inception-V3 0.54 (0.47, 0.61) 0.56 (0.51, 0.61) 0.56 (0.51, 0.62) 0.50 (0.39, 0.61) 0.64 (0.54, 0.75) 0.48 (0.36, 0.60) 0.57 (0.51, 
0.64)

 ResNet-50 0.58 (0.50, 0.66) 0.55 (0.52, 0.58) 0.53 (0.43, 0.63) 0.42 (0.30, 0.55) 0.63 (0.48, 0.77) 0.47 (0.31, 0.64) 0.52 (0.43, 
0.62)
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sensitivity measures. Notably, the VGG-16 has similar robustness measurers as AlexNet with less classification 
performance, possibly owing to the large model parameter complexity. Predictions made by other deep learning 
architectures including GoogleNet, Inception-V3, and ResNet-50 were largely influenced by data perturbations.

Feature engineering analysis
Feature engineering approaches are generally devised to enhance AI outcomes, in particular, conventional 
machine learning models, due to the large feature space complexity. On the other hand, deep learning models by 
design can achieve performance with minimal amounts of data pre-preprocessing. We explore the performance 
of feature engineering in conventional machine learning models with two changes to the input fundus images: 
(1) gray-scale color conversion (reducing the dependence of color), and (2) vessel-segmentation via AutoMorph 
(emphasizing the retinal vasculature). The approach adopted in the latter is also a useful comparison with that 
of Tian et al. which utilized the technique for Alzheimer’s Disease detection. The results of this approach are 

Figure 3.  Attribution correspondence of retinal features. In the first column, an artery-vein (red and blue, 
respectively) map is combined with the optic cup (teal) and optic disc (yellow) generated from the AutoMorph 
deep learning segmentation module. A white dashed line is shown as an estimate for the foveal region. In the 
third column, a predicted attribution map is generated using the guided backpropagation algorithm on top of 
the AlexNet model. The intersection of the salient features with the segmentation is shown in the last column. 
The images represent the left (top) and right (bottom) eyes from the same subject, demonstrating distinct feature 
distributions for prediction.

Figure 4.  Explanation of sensitivity and infidelity comparison among different models. The logarithm of the 
infidelity score was applied for visualization due to the large range of scores.
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demonstrated in Supplementary Table 4. Conventional machine learning models are demonstrated to improve 
by simple color conversion, while declining using the retinal vasculature. The reduction in performance using 
the vessel segmentation algorithm hints that essential diagnostic features exist across different regions of the 
eye (e.g. the optic cup and fovea).

Model covariate analysis—diagnostic gap and gender
We investigate the influence of Parkinson’s disease progression on the model performance. The Parkinson’s dis-
ease progression can be expressed by the diagnostic gap and thereby a proxy measure of disease severity. Treating 
each image independently, we divided our Parkinson’s subjects into four quartiles according to the diagnostic 
time (years) and examined the model performance compiled over our repeated five-fold cross validation in our 
best model, AlexNet. Sensitivity measures in the Parkinson’s group did not exhibit monotonic relationships based 
on the diagnostic gap or consistencies in dataset subtypes (see Supplementary Table 1). One such explanation 
for this result is discrepancies in the diagnostic gap, that is, the dates of diagnosis do not co-align with the true 
dates of disease acquisition as Parkinson’s disease is a progressive disease. Otherwise, a claim could be made 
that the model performance is not contingent strictly on the diagnostic gap, but rather, an individual basis of 
existing imaging biomarkers.

Gender is a known risk factor of Parkinson’s  disease31,32. We investigated a potential bias in our deep learning 
models due to gender differences in the retina. We categorized the model performances of our AlexNet model 
compiled over all subjects, Parkinson’s-specific, and healthy-control specific data, and conducted a series of Chi-
Square Test of Independence (see Supplementary Table 2). In cases where the frequency of observations was 
found to be less than or equal to five, we conducted a Fisher’s Exact test. We discover no statistical significance 
(p < 0.05) for any experiment or data-subtype.

Discussion
This work demonstrates that deep neural networks can be trained to detect Parkinson’s disease in retinal fundus 
images with decent performance. Our model can predict the incidence of Parkinson’s disease ahead of formal 
diagnosis at demonstrated sensitivity levels of 80.0% from 0 to 3.93 years, 80.0% from 3.93 to 5.07 years, 93.33% 
from 5.07 to 5.57 years, and 81.67% from 5.57 to 7.38 years. These results indicate a potential pathway for early 
disease intervention. Automated deep neural networks show strong promises to assist and complement ophthal-
mologists in terms of biomarker identification and high-throughput evaluation.

Artificial intelligence evaluation of Parkinson’s disease through the retina has been rarely applied. Hu et al.33 
trained a deep learning model to evaluate the retinal age gap as one predictive marker for incident Parkinson’s 
Disease using fundus images from the UK Biobank, showcasing statistical significance and predictive AUC of 
0.71. Nunes et al.34 used optical coherence tomography data to compute retinal texture markers and trained a 
deep learning model with a median sensitivity of 88.7%, 79.5%, and 77.8% concerning healthy controls, Parkin-
son’s disease, and Alzheimer’s disease. However, all these works did not provide a comprehensive comparison 
of conventional machine learning and deep learning methods on this problem and lacked insights into the 
explainability of their models. We extend upon these works by treating the entire fundus image as a diagnostic 
modality, and comprehensively evaluate a broad spectrum of conventional machine learning and deep learning 
methods, as well as shedding light on the explainability in both image space and on the algorithm level. Our 
work will lay a solid foundation for future exploration in this direction and serve as a reference for algorithm 
selection in terms of both performance and explainability. Related works have been accomplished focusing spe-
cifically on Alzheimer’s disease, e.g., Tian et al.35 and Wisely et al.36 but not Parkinson’s disease. Clinical studies 
in the field have yielded statistical differences in the retinal layers between PD and HC subjects, lacking evidence 
for diagnostic power. Further work is necessitated in the field of deep learning to build stronger classification 
performance and understanding of retinal biomarkers. In the future, a multi-modal model utilizing optical 
coherence tomography, fundus autofluorescence, and/or electronic health records is a considerable direction 
for Parkinson’s disease analysis.

This study has some limitations. First, the size of our dataset could be enlarged to further capture the wide 
presentations of Parkinson’s disease. Moreover, the data is derived from the UK population and therefore future 
studies are needed to evaluate whether these models can generalize to other populations. So far, public datasets 
containing both Parkinson’s disease subjects and fundus images (as well as patient health records) apart from 
the UK Biobank are not available, thus new datasets including both retinal images and PD diagnosis in a larger 
population will be helpful. A deeper study would hope to investigate the severity of Parkinson’s disease, e.g. by 
the MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), wherein the severity was (weakly) substi-
tuted by the diagnostic gap in this work. Furthermore, this current research has been restricted to Parkinson’s 
disease, and it remains questionable whether different eye diseases or neurogenerative diseases (e.g., Alzheimer’s 
Disease) share identical biomarkers or degeneration patterns. The next major research question is whether such 
model explanations are consistent and/or able to guide the grading of ophthalmologists, which is a major goal 
of clinical translational research. This matter is further complicated as the visual biomarkers for Parkinson’s 
disease are less well-understood than common eye diseases such as glaucoma. Prospective assessments of retina 
imaging coupled with biological details and clinical phenotyping are needed to provide insight into the use and 
implementation of these techniques. These limitations necessitate future work to ensure the trustworthiness of 
artificial intelligence models in a clinical setting.

Deep learning models outperformed conventional machine learning models to accurately predict Parkinson’s 
disease from retinal fundus images. We demonstrate deep learning models can nearly equally diagnose both 
prevalent and incident PD subjects with robustness to image perturbations, paving the way for early treatment 
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and intervention. Further studies are warranted to verify the consistency of Parkinson’s disease evaluation, to 
enhance our understanding of retinal biomarkers, and to incorporate automated models into clinical settings.

Methods
UK Biobank participants
The UK Biobank (UKB) is one of the largest biomedical databases, recruiting over 500,000 individuals aged 
40–69 years old at baseline throughout assessment centers in the United Kingdom in 2006–2010. The methods 
by which this data was acquired have been described  elsewhere23. Diverse patient health records include demo-
graphic, genetic, lifestyle, and health information. Comprehensive physical examinations as well as ophthalmic 
examinations were conducted for further analysis. Health-related events were determined using data linkage to 
the Health Episode Statistics (HES), Scottish Morbidity Record (SMR01), Patient Episode Database for Wales 
(PEDW), and death registers.

Parkinson’s disease and definitions
Parkinson’s disease was determined by hospital administration data in the United Kingdom, national death reg-
ister data, and self-reported data. We consider prevalent PD subjects diagnosed prior to baseline assessment and 
incident PD subjects diagnosed following baseline assessment. Prevalent PD subjects were labeled according to 
hospital admission electronic health records based on the International Classification of Diseases (ICD9, ICD10) 
codes or self-reports. Incident PD subjects were labeled according to either the ICD codes or the death registry. 
The earliest recorded diagnostic dates take priority in case of multiple records. If PD was recorded in the death 
register only (diagnosed post-mortem), the date of death is used for the date of diagnosis. We define the diag-
nostic gap as the difference between the date of image acquisition minus the date of diagnosis, where a negative 
value is interpreted as having a PD diagnosis prior to fundus image acquisition (prevalent PD), and a positive 
value is interpreted as having a PD diagnosis post fundus image acquisition (incident PD). We acquire our PD 
labels according to the UKB Field 42032. Further details may be inquired upon from the UKB  documentation37.

Ophthalmic measures
In the UKB eye and vision consortium, the ophthalmic assessment included (1) questionnaires of past ophthalmic 
and family history, (2) quantitative measures of visual acuity, refractive error, and keratometry, and (3) imaging 
acquisition including spectral domain optical coherence tomography (SD-OCT) of the macula and a disc-macula 
fundus photograph. In our study, we acquire diagnostic fields of eye problems (glaucoma, cataracts, diabetes-
related, injury/trauma, macular, degeneration, etc.), visual acuity measured as the logarithm of the minimum 
angle of resolution (LogMar), and fundus photographs. Fundus photographs were acquired using a Topcon 3D 
OCT-1000 Mark II system. The system has a 45° field angle, scanning range of 6 mm × 6 mm centered on the 
fovea, acquisition speed of 18,000 A-scans per second, and 6 µm axial resolution. The details of the eye and vision 
consortium have been described in other  studies38.

Study population and summary statistics
A total of 175,824 fundus images from 85,848 subjects were discovered in the UKB (as of 2019 October, UKB). 
Among this population, we found 585 fundus images from 296 subjects with PD. Image quality selection was 
held in multiple phases: (1) the deep learning image quality selection module of  AutoMorph27 pretrained on 
Eye-PACS-Q39, (2) subjectivity to the quality of the vessel and optic cup and disc AutoMorph segmentation, 
and (3) manual grading borderline images according to external  guidelines21, including artifacts, clarity, and 
field definition defects. Each phase is held in sequence with the additional rounds held to justify borderline 
candidates for inclusion or exclusion into the dataset. In these guidelines, an image quality score is determined 
from the total of artifacts (− 10 to 0), clarity (0 to + 10), and field definition (0 to + 10) where an optimal score 
is + 20 and a score less than or equal to 12 is rejectable. The artifacts component evaluates the broad proportion 
of visibility incurred by artifacts in the image, clarity evaluates the relative visibility of veins and lesions in the 
image, and field definition evaluates the broad field of view of key retinal structures (e.g. the optic cup and disc, 
and fovea). Of note, three images categorized as ungradable by AutoMorph, were moved into our dataset on the 
basis of sufficient manual grading and viewing of the retinal vasculature. Following manual selection, a total of 
123 usable Parkinson’s disease images from 84 subjects were found to have met our criteria for inclusion. For 
each PD image, a healthy control (HC) with no history of PD was matched according to their age and gender to 
prevent covariate bias using the aforementioned image quality selection guidelines. All other fundus images and 
corresponding subjects were excluded. This constitutes our binary-labeled overall dataset of 246 fundus images 
(123 PD, 123 HC) from 168 subjects (84 PD, 84 HC). Lastly, we form two subsets of the data corresponding to a 
prevalent dataset of 154 fundus images (77 PD, 77 HC) from 110 subjects (55 PD, 55 HC) and an incident dataset 
of 92 fundus images (46 PD, 46 HC) from 58 subjects (29 PD, 29 HC).

Data pre‑processing and model training
This study explores both deep learning and conventional machine learning models. Specifically, our deep learning 
models are convolutional neural networks (CNN) including  AlexNet40, VGG-1641,  GoogleNet42, Inception-V343, 
and ResNet-5044. Our conventional machine learning models include Logistic Regression, Elastic Net (regular-
ized with hyperparameters λL1 = 1, λL2 = 0.5, where L1 and L2 designate the respective norms), and support vector 
machines (linear and radial basis function kernels).

Each of our models is purposed for binary classification with ground-truth labels of 0 (HC) or 1 (PD). A 
square crop preprocessing around the fundus image was employed to remove the external border. All fundus 
images are set to the left-eye view orientation to remove bias in the spatial orientation. To increase the diversity 
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of our dataset, we apply spatial rotations, horizontal, and vertical augmentations with a probability of 0.4. Images 
are inputted as a tensor for deep learning models (e.g. an RGB volume) and as a flattened array for conventional 
machine learning models. For computational efficiency, images are resized to 256 × 256 with 3 RGB channels or 
1 channel (for gray-scale conversion and vessel segmented images).

Our deep learning models are initialized with ImageNet classification weights, with the input data normal-
ized to the mean and standard deviation of ImageNet. The input of our conventional machine learning models 
is standardized to unit variance according to the training set’s mean and standard deviation. Our testing evalua-
tion is designed using a five-fold stratified cross-validation, wherein each Parkinson’s subject is exactly matched 
to its corresponding age and gender matched control to remove bias of age and gender within the training and 
evaluation of our models. To further emphasize our training procedure, one-fold is selected as a test set, while 
the remaining four folds are delegated for allowable training. Of the four folds, one is selected as an internal 
validation set for hyper-parameter tuning while the model is initially trained using three of the training folds. 
For our conventional machine learning models, the regularization C-parameter in the set [0.1, 0.01, 1, 10, 100] 
is optimized. On the other hand, we fine-tune our deep learning models pre-trained on ImageNet using a binary 
cross-entropy loss, Adam  optimizer45, learning rate of 1e−4, batch size of 64, and 100 epochs with early stop-
ping. The choice of the learning rate was chosen to be roughly optimal and stable upon early experimentation 
of learning rates ranging from 1e−1 to 1e−4. After the discovery of the optimal hyper-parameters, the model 
re-consolidates the training set as the collection of all four training folds, and evaluated on the final test-set.

Performance evaluation
The performance of our PD classifiers is averaged over five randomized repetitions of five-fold stratified cross-
validation, for a total of 25 testing evaluations. We consider the area under the receiver operating characteristic 
curve (AUC), accuracy, positive predictive value (PPV), negative predictive value (NPV), sensitivity (true posi-
tive rate), specificity (true negative rate), and the F1-score. Due to the lack of longitudinal data for the same 
subject, the metrics are evaluated on a per-image basis, treating each sample independently without data leakage 
(subject-level cross validation-level split). For reference, the training time, testing time, and number of model 
parameters are recorded (Supplementary Table 4).

Explainability evaluation
Qualitative visual explanations for our deep learning model predictions are accomplished by the Guided 
 Backpropagation46 algorithm, allowing an interpretable heat map of significant features. Quantitative explana-
tions are provided by the explanation infidelity (INFD) and explanation sensitivity (SENS) metrics (to be dis-
tinguished from the classification performance metric sensitivity), where a lower result for both INFD and SENS 
provides evidence for better-robust models. The explanation infidelity and explanation sensitivity are computed 
at test-time over 50 perturbations drawn from a probability distribution N ∼ (0,0.012), the definitions of which 
are shown below, and the details discussed in the corresponding  paper47.

where φ is an explanation function (e.g., Guided Backpropagation), f is a black-box model (e.g., CNN), x is in 
the input (e.g., fundus image), r is the input neighborhood radius, and I is the perturbation, here drawn from 
the noise distribution N ∼ (0,0.012).

Data availability
This research has been conducted using the UK Biobank, a publicly accessible database, under Application 
Number 48388. The datasets are available to researchers through an open application via https:// www. ukbio 
bank. ac. uk/ regis ter- apply/.

Code availability
The underlying code for this study may be given permission by the authors from the GitHub repository https:// 
github. com/ lab- smile/ Retin aPD but permission to the data is restricted to UKB applicants.
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