
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4049  | https://doi.org/10.1038/s41598-024-54240-4

www.nature.com/scientificreports

Multi‑level index construction 
method based on master–slave 
blockchains
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Master–slave blockchain is a novel information processing technology that is domain-oriented 
and uses efficient cryptography principles for trustworthy communication and storage of big data. 
Existing indexing methods primarily target the creation of a single-structured blockchain, resulting 
in extensive time and memory requirements. As the scale of domain data continues to grow 
exponentially, master–slave blockchain systems face increasingly severe challenges with regards 
to low query efficiency and extended traceback times. To address these issues, this paper propose a 
multi-level index construction method for the master–slave blockchain (MLI). Firstly, MLI introduces a 
weight matrix and partitions the entire master–slave blockchain based on the master chain structure, 
the weight of each partition is assigned. Secondly, for the master blockchain in each partition, a 
master chain index construction method based on jump consistent hash (JHMI) is proposed, which 
takes the key value of the nodes and the number of index slots as input and outputs the master chain 
index. Finally, a bloom filter is introduced to improve the column-based selection function and build 
a secondary composite index on the subordinate blockchain corresponding to each master block. 
Experimental results on three constraint conditions and two types of datasets demonstrate that the 
proposed method reduce the index construction time by an average of 9.28%, improve the query 
efficiency by 12.07%, and reduce the memory overhead by 24.4%.
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The blockchain technology utilizes a blockchain data structure to store and verify data, ensuring secure trans-
mission and access through cryptography1. It possesses the characteristics of high credibility2, traceability, and 
decentralization3, effectively addressing the issue of trust in third-party data storage4. However, as blockchain 
technology advances and various industries accumulate vast amounts of data, the traditional single chain block-
chain system proves inadequate for increasingly complex application scenarios. Consequently, master–slave 
blockchains (MSBC) structures such as Spark Chain have garnered attention from experts and scholars alike, 
finding extensive applications in security5,6, fog computing7, industrial internet of things8. Master–slave block-
chains typically consist of a master chain comprising master blocks connected to slave chains composed of slave 
blocks. The connection between each master block and slave block is established using their respective hash 
values from previous blocks. Furthermore, unique hash values are employed to map the master chain with its 
corresponding slave chain.

This MSBC structure enables effective handling of intricate classification scenarios. For instance, within the 
financial sector, MSBCs facilitate the construction of company-specific blockchain systems that record financial 
activities. The master chain stores information pertaining to financial institutions while their transaction events, 
financial activities, and other relevant data are stored in corresponding slave chains. Through consensus mecha-
nisms like HotStuff9and Algorand10, tampering with this data becomes impossible.

However, with the advancement of blockchain technology and the continuous accumulation and expansion 
of data in various industries, there is a constant need to update information on the chain. This results in disor-
derly storage of updated information at the same location, leading to low query efficiency11 and long traceability 
time12 in master–slave blockchain systems. Therefore, establishing an efficient and dynamically maintainable 
index structure for master–slave blockchains still poses challenges.

Firstly, existing blockchain index structures are primarily optimized for single-chain structures, which 
enhances query efficiency in such systems. Consequently, single-chain structured blockchains with optimized 
indexes exhibit better traceability13. Although applying these optimized index structures significantly improves 
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query efficiency compared to original blockchain systems, their application to master–slave blockchains reduces 
the speed of indexing as demonstrated in subsequent experimental sections of this paper.

Secondly, constructing indexes consumes considerable time that directly impacts the query efficiency of 
master–slave blockchain systems14. For instance, if unoptimized, a master–slave blockchain with N additional 
child chains compared to a single-chain structured blockchain will require at least (N + 1) times more time for 
index construction. Furthermore, as the structure of a master–slave blockchain changes over time, its memory 
overhead for building traditional indexes increases when compared to single-chain structures.

To solve the above issues, this paper proposes a multi-level indexing method based on master–slave block-
chains (MLI). The main contributions of this paper include the following:

1.	 This paper proposes a multilevel index structure, for the master–slave blockchain architecture to address 
the issues of significant time overhead and high memory consumption associated with traditional indexing 
research. It aims to enhance the query efficiency of the master–slave blockchain system.

2.	 To achieve index structure, this paper introduces a slicing algorithm that efficiently constructs the multilevel 
index for the master–slave blockchain structure and accelerates query processing speed. Prior to constructing 
the multilevel index, preprocessing is performed on the entire master–slave blockchain structure to reduce 
time overhead.

3.	 In response to low query efficiency and lengthy traceability time in existing blockchain indexes, this paper 
leverages both the structure of a master–slave blockchain and designs a jump consistency hash algorithm 
on the master chain. Additionally, an improved Bloom filter-based index construction method is proposed 
for optimizing column-based selection function on slave chains while providing an index query approach.

4.	 Compared with the existing methods on different constraints and data sets, the effectiveness of the proposed 
method is verified. After verification, it can be known that the MLI method proposed in this paper has the 
index construction time optimized by about 10.71% compared with the existing methods.

Related work
At present, many scholars have conducted in-depth research on the index construction problem of blockchain 
and achieved certain research results.

Vikram Nathan et al.15 introduces Flood, a multi-dimensional memory read-optimized indexing method that 
dynamically adjusts to specific datasets and workloads by optimizing both the index structure and data storage 
layout. However, it lacks the capability to detect significant changes in query distribution, necessitating periodic 
evaluation of query costs for layout adjustments.

Huang et al.16 presents EBTree, a Level B Tree-based indexing method designed for real-time top-k, range, and 
equivalence searches on Ethernet blockchain data. However, its drawback lies in storing index nodes separately 
in Level DB, adversely affecting query efficiency due to node size considerations.

Andreas Kipf et al.17 proposes RS, a single-pass learning index method that efficiently constructs indexes in a 
single pass of sorted data using only two datasets. While friendly to most datasets, RS experiences performance 
degradation as the dataset size increases.

Xing et al.18 introduces SCATC, a subchain account transaction chain-based indexing method that divides 
the transaction chain into subchains with hash pointers connecting each subchain to the account branch node 
in the last block. It optimizes query efficiency for long account transaction chains but falls short in ensuring data 
privacy as it only addresses plaintext queries.

Noualhamdi et al.19 presents ChainLink, a scalable distributed index method for large time series data featur-
ing a 2-tier distributed index structure and single-channel signature hashing. However, its limitation lies in the 
need for local data reorganization, compromising data security.

Gao Yuanning et al.20 proposes Dabble, a scalable learning index model based on the middle layer that utilizes 
the K-means clustering algorithm to divide dataset regions. It employs neural network learning for predicting 
data locations. However, Dabble exhibits poor timeliness in dataset updates, and the choice of K significantly 
impacts model accuracy.

In conclusion, this paper conducts a comprehensive investigation into the index construction of master–slave 
blockchains. Addressing the limitations of current indexing methods and taking into account the space–time 
complexity and data security associated with index construction, a multi-level index construction method for 
master–slave blockchains is introduced.

Blockchain slice method based on master–slave structure
To achieve efficient index construction and query processing of the structure of the master–slave blockchains, 
firstly, the whole master–slave blockchains are sliced based on the characteristics of the master chain, and each 
segment is given a weight. Based on this, the segmentation weight matrix of the whole master–slave blockchains 
structure is constructed, and the number of nodes in the slice is determined based on the weight matrix, which 
provides support for the indexing of the master chain and slave blockchain.

Construction of weight matrix
Let x represent the number of nodes in the master–slave blockchains. The master–slave blockchains are seg-
mented into y (y ≪ x) slices, where the i-th slice is denoted as fi(i = 0, 1, 2, · · · , y − 1) , and each slice is assigned 
a weight ωi . The determination of slice weight is contingent upon three dimensions: node load, node credit, and 
network quality. Specifically, node credit and network quality exhibit a positive correlation with slice weight, 
while node load demonstrates a negative correlation. The weights associated with each dimension are established 
based on the optimal experimental results ratio.
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Definition 3.1  (Node Load): Node load is the amount of work L = {l1, l2, . . . , li , . . . , ln}, li ∈ R that the blockchain 
system assigns to any node. Where li is the number of tasks assigned to the node and n is the number of nodes.

Definition 3.2  (Node Credit): Node credit is the accumulation of contribution value Ci and damage value Hi of 
nodes in the blockchain system when nodes participate in block generation, verification and synchronization 
activities in the system. Here, Hi is a negative value and i denotes the number of nodes.

Definition 3.3  (Network Quality): Network quality is the evaluation metric of the network layer when nodes 
in the blockchain system participate in block generation, verification, and synchronization activities. Among 
them, node credit and network quality are positively correlated with fragment weight, node load is negatively 
correlated with fragment weight, and the weight of each dimension is determined by the proportion with the 
best experimental effect.

Before calculating the slice weight, the units of the above three dimensions are not uniform, so normalization 
is needed. Among them, the normalization formula of node load is:

The normalization formula of node credit and network quality is:

The weight of the i-th slice is ωi , and the calculation formula is shown in formula (3).

d′ij in formulas (1) and (2) represents the original values of node credit and network quality, dij is the normalized 
value, max and min are the maximum and minimum values of this component, respectively. The ωij in formula 
(3) represents the weight of each component.

Let each element of the two-dimensional weight matrix M be composed of slice weights. After the weight 
of each slice is obtained, a two-dimensional weight matrix Mp×q is constructed by using each slice’s weight ωi 
(where p ≤ √

y , p and q are integers). For any slice f, there is M[f
/

p][f%q] = ωf  , and the empty position in 
the matrix is set to 0.
Determining the number of nodes in a slice based on weight matrix
Determine the number of nodes in each slice based on the weight matrix in Sect. 3.1. Firstly, the slice weights in 
the matrix are linearly normalized. Secondly, all normalized slice weights are dispersed in proportion, and the 
interval of discrete proportional weights is set as [1, Q]. The final slice proportional weight Q-1 is obtained, that 
is, the slice will correspond to Q-1 nodes.

Number the nodes in the order of {0, 1, 2, …, 
x−1
∑

i
ωi − 1 }, and the node number corresponding to the kth 

slice is [ 
k
∑

i=0
ωi , 

k+1
∑

i=0
ωi − 1 ]. After obtaining the node number, the slice number can be obtained by looking up 

the table. Assuming that the proportional weight of the slice obtained after normalization and discretization is 
7, the slice will correspond to 7 nodes, and the nodes will be numbered in the order of {0, 1, 2, …, 6}.

Among them, the linear normalization formula is:

ωmin in formula (4) is the minimum value of all slice weights, ωmax is the maximum value, and ω′
i is the 

normalized slice weight.
Based on the weight matrix, a weighting matrix-based slice algorithm (WMBS) is proposed, which can quickly 

map the blockchain slice to nodes through the Jump Search algorithm and realize the slice of the structure of 
the master–slave blockchain. Enter the key value of the node key, random number r, and weight matrix, and 
call the jump search algorithm to map the nodes and slices one by one. The key is the key value of a 32-bit node, 
which is the unique identifier of the node. It is created when the node joins the blockchain and consists of an 
8-bit fragment address code and a 24-bit node random code. r is a random number evenly distributed in the 
interval of [0, 1], which is generated by calling a linear congruence random number generator. WMBS algorithm 
is shown in algorithm 1.

(1)dij =

⌊

1
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×
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WMBS (key,r,M[p][q]){ 
int i, j; 
for i = 0 to p-1 

for j = 0 to q-1 
num_row = sum(M[i][j]) 

row = jumpSearch(key, r,num_row); 
row = row*q; 
for i = 0 to q-1 

num_col = sum(M[i][j]) 
colmun = jumpSearch (key, r,col); 
return (row, colmun); 

}

Algorithm 1. WMBS Algorithm
To optimize the path of searching nodes in a slice, which is lower than the time complexity of a linear search 

algorithm, this paper proposes a Jump Search algorithm, as shown in algorithm 2.

jumpSearch(key r num){  
int b = 0 j = 0
random.seed(key r)
while(j num){ 

b = j
j = floor((b+1)/random())
} 

return find_in_table(b)
}

Algorithm 2. JumpSearch Algorithm
Where num is the number of rows or columns in the two-dimensional weight matrix. WMBS algorithm 

counts the number of columns in the weight matrix. First, it searches the key values of nodes in each row with the 
Jump Search algorithm to obtain the row number, then counts the number of columns in this row, and calls the 
Jump Search algorithm in each column to determine the column where the node is located, and finally returns 
the row and column number of the node.

Methods for constructing multi‑level index
Due to the variance in data scale and information types stored within the master chain and slave chain of mas-
ter–slave blockchains, the application of the Weight Matrix-Based Slicing (WMBS) algorithm results in the need 
for a multi-level index construction method. This proposed method is based on the combination of the Jump 
Consistency Hash algorithm and an improved Bloom filter, tailored to meet the distinct query requirements 
of both the master chain and slave chain. The schematic representation of the multi-level index construction 
process is depicted in Fig. 1.
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Figure 1.   Multi-level index construction schematic.
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Construction of master chain index based on jump consistency hash
Based on the characteristics of data stored in the master chain, this paper introduces the jump consistent hash 
algorithm and proposes a Jump Consistent Hashing-based Master Chain Index Construction method (JHPI) to 
expedite the construction of the master chain index. The process involves determining the number of index slots 
based on the nodes in each master chain slice. Subsequently, the key value of each node is established using the 
hash value of the master chain stored data. Finally, inputting the key value of each node along with the number 
of index slots yields the master chain index as output.

In the event of a change in the number of nodes within a slice, nodes undergo a jump in the index, result-
ing in the remapping of certain nodes. Let the hash mapping function responsible for this jump be denoted as 
ch(key, num_buckets), where key represents the key value of nodes and num_buckets is the number of slots. The 
following mappings occur:

1.	 When num_buckets = 1, indicating a single slot, all keys map to this slot, i.e., ch(key, num_buckets) = 0, and 
all nodes are allocated to slot number 0.

2.	 When num_buckets = 2, 1/2 nodes reside at ch(key, num_buckets) = 0, while K/2 keys undergo remapping to 
ch(key, num_buckets) = 1, resulting in a jump to slot 1.

3.	 When the number of slots changes from n to n + 1, the slot for the node with n/(n + 1) remains constant, 
denoted as ch(key, num_buckets) = n-1, and 1/(n + 1) keys necessitate remapping to ch(key, num_buckets) = n.

The variable ’b’ signifies the result of the last jump of the node, and ’j’ represents the outcome of the subse-
quent jump. A schematic illustration of node remapping in response to changes in the number of nodes within 
a slice is presented in Fig. 2.

According to the analysis of Fig. 2, for any i(i ∈ [b+ 1, j − 1]) , the probability that the number of nodes does 
not jump is shown in formula (5).

Take a uniformly distributed random number r in the interval of [0,1], and get it from formula (5). When 
r < (b+ 1)

/

r , the node will jump to j the upper bound of i is (b+ 1)
/

r . Since there is j ≥ i for any i, then 
j = floor((b+ 1)

/

r) . The construction method of the master chain index based on jump consistent hash is 
shown in algorithm 3.

int JumpHashIndex(int key, int num_buckets,int[] s) {  
int b = ¬1, j = 0;
while (j < num_buckets) {  

b = j;
key = key * 2862933555777941757ULL + 1;

j = (b + 1) * (double(1LL << 31) / double((key >> 
33) + 1));

} 
return b;

}

Algorithm 3. JHPI Algorithm
The JPHI algorithm takes the node key, the number of slots num_buckets, and the empty main chain index 

(s) as inputs. Initially, a while loop is executed, and as long as the number of slots in the last slot expansion before 
the jump is less than the total number of slots, the algorithm proceeds. During this process, the number of slots 
in the last slot expansion before the jump is assigned to variable b. Subsequently, the node key, combined with 
a pseudo-random number, generates the node key for the next operation. The combination of b and the node 
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b+ 1
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Figure 2.   Diagram of node remapping.
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key undergoes an operation followed by rounding down to determine the node’s position number, which is then 
input into the main chain index ’s’. This process is repeated, generating a new node key value for subsequent 
operations. ’b’ and the node key value undergo a similar operation to derive the node’s position number, which 
is once again input into the main chain index s. This iterative process continues until the desired number of 
slots is achieved. Finally, the completed main chain index is output, concluding the index construction process.

Construction of slave chain index based on improved bloom filter
In the process of constructing the slave chain index, the data stored in the dependent chain has the characteris-
tics of large-scale and heterogeneous sources. Therefore, this paper reconstructs the data structure of the Bloom 
filter, proposes a column-based selection function, and realizes the slave chain index construction method (IBF) 
based on the improved Bloom filter.

Firstly, the data structure of the slave chain index based on the improved Bloom filter is constructed as a 
two-dimensional array A[p][q], where p = 2n, n ∈ N , and the data length in q is lq , assuming that lq = 32/64 bits. 
The value is determined by the cache line length of general registers in the CPU to reduce memory access and 
improve query performance. Let the K hash functions of the improved Bloom filter be Hash(key), where the key 
is the key value of the node, and let the length of the elements that can be stored in an improved Bloom filter be 
len, and the calculation result of len is shown in formula (6).

After the data structure of the index is constructed, the index of the slave chain corresponding to each main 
block is constructed, and the specific steps are as follows:

Step1: Use the function of selecting columns, first map the element to the corresponding column, and the 
element will be at the position of the corresponding column;
Step2, obtaining the locus through K hash functions;
Step3: Set the corresponding site to 1, and the rest sites to 0.

Within this process, the column selection function in Step 1 introduces additional computational overhead. 
To mitigate this overhead, optimization of the hash function is pursued, and the transaction hash value stored 
in the slave chain is derived using the SHA256 hash function. Consequently, the column selection function in 
Step 1 undergoes optimization based on the SHA256 hash function, and it can be obtained through a modular 
operation. The selection column function in Step1 can be expressed as:

In Step2, the K hash functions are composed of K bitwise AND operations, which can be expressed as:

The v in formula (7) is the element in the Bloom filter and qv is the column number obtained after column 
selection. After obtaining the column in which the element is located, it is determined that the element will be 
limited to the corresponding column during construction and query. The pvi in formula (8) is the row number 
obtained by K times of operation of formula (8) in the column after the column number is obtained, that is, the 
corresponding position, and k′ is the array length in the general Bloom filter. The slave chain index construction 
algorithm based on the improved Bloom filter is shown in Algorithm 4.

Algorithm 4. IBF_Construction
After constructing the index of the slave chain, an index query algorithm of the slave chain based on an 

improved Bloom filter is proposed according to the key values of nodes on the slave chain and the selected 
column function, as shown in algorithm 5.

(6)len = p× q = 2n × lq

(7)qv = v%2n

(8)pvi = v&

i× k′
k −1

∑

j

2i−1(0 < i ≤ k)
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Algorithm 5. IBF_Query

Example
Consider the instantiation of master–slave blockchain indexing within the financial domain. In financial applica-
tions, a master–slave blockchain is employed to establish an enterprise blockchain system dedicated to financial 
activities. In this context, the master chain is responsible for storing attribute information pertaining to the 
financial enterprise, while the associated slave chain houses data related to transaction events, financial activi-
ties, and similar elements. The architectural representation of this blockchain structure is depicted in Fig. 3.

Within the financial master–slave blockchain architecture, the linkage among blocks occurs through the hash 
value of the preceding block stored within the block body. This linkage is established for both the blocks within 
the master chain, between blocks within the slave chain, and between blocks of the master chain and their cor-
responding counterparts in the slave chain. Figure 4 illustrates the linking structure between the blocks of the 
master chain and their corresponding blocks in the slave chain.

In the initial phase, prior to constructing the multilevel index, preprocessing of the master–slave blockchain 
structure is imperative to enable the efficient establishment of the multilevel index. Leveraging the master chain, 
the entire master–slave blockchain structure undergoes slicing, and slice weights are assigned to formulate the 
slice weight matrix. This matrix, in turn, determines the node count within each slice. The computation of the 
number of nodes in each slice involves constructing a slice weight matrix based on the master chain and apply-
ing slice weights. Subsequently, a blockchain slicing algorithm, named Weight Matrix-Based Slicing (WMBS), 
is proposed.

Following this preprocessing, the modified master–slave blockchain structure is employed to construct mul-
tilevel indexes, adopting distinct approaches based on the unique characteristics of the data stored on the master 
and slave chains. On the master chain side, a Jump Consistency Hash algorithm is introduced, giving rise to a 
method termed Jump Consistency Hash-Based Master Chain Index Construction (JHPI), designed for rapid 
master chain index construction.
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Figure 3.   Financial master–slave blockchain architecture.
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For the construction of the slave chain index, a reconstruction of the Bloom filter data structure is undertaken, 
coupled with the introduction of a column-based selection function. An innovative slave chain index construc-
tion method, denoted Improved Bloom Filter (IBF), is then proposed.

Experiments
The experimental environment of this paper is 16 servers with 1 T storage space, 8G RAM, and a 4-core CPU. 
The servers communicate with each other through a high-speed network, and each server is equipped with an 
ubuntu 18.04 operating system. Two different data sets are used for experimental verification. The first data set 
is the first 3,000,000 blocks in the public Ethereum network, and there are 15,362,853 transactions in the data 
set. The second data set is the Lognormal artificial data set. Lognormal data set samples 5 million pieces of non-
duplicate data according to lognormal distribution (mean value is 0, variance is 2). In this section, this paper 
will verify the high efficiency and low memory advantages of MLI from three aspects: index building time, query 
time, and memory consumption.

Selection of slice weight proportion
In the slice preparation phase, servers are tasked with constructing 10 slices, where each server creates a node 
and assigns it to the corresponding slice. The node capacity within each slice is fixed at 500 nodes. For vary-
ing node quantities (100, 200, 300, 400), the slice weight is determined by the ratios of node load, node credit, 
and network quality across three dimensions, specifically set at 3:3:4, 4:3:3, and 5:2:3. Figure 5 illustrates the 
experimental results.

From the experimental results in Fig. 5, when the number of nodes in the same, the experimental effect of 
case 1 is the best, and as the proportion of node load dimension increases, the slice time increases. With the 
increase of the number of nodes, the time of cases 2 and 3 increases, while the time of case 1 increases little, and 
the time stays at about 5 s. Therefore, when the blockchain is segmented according to the master blockchain, the 
slice weight of node load, node credit, and network quality is 3: 3: 4.

Comparison of index construction time
To verify the efficiency of the MLI method proposed in this paper in terms of index construction time, the 
EBTree method with improved blockchain structure and Dabble model method with the neural network will be 
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compared respectively. In the EBTree method, the capacity of internal nodes is set to 128, and the capacity of leaf 
nodes is set to 16. The value of k in Dabble model is 100, and the number of nodes in a slice of the MLI method 
is set to 100. In this section, the experiment will be divided into three specific situations as shown in Table 1.

As shown in Table 1, the experimental results of index construction time comparison are shown in Figs. 6 
and 7.

As can be seen from Figs. 6 and 7, with the increase in data volume, compared with the existing methods, the 
index construction time of MLI is optimized by average of 9.28%.

Comparison of query time
In this experimental section, both the indexes and data are initially loaded into memory. To assess the query 
performance of the Multilevel Index (MLI) method, this paper conduct a comparative analysis of query response 
times using datasets of varying sizes and under different query conditions.

Query response time comparison for large‑scale datasets
Utilizing the initial 3,000,000 blocks from the large-scale dataset (Dataset I) on the public Ethernet network, this 
paper scrutinize the query response times of the EBTree and Dabble methods. The investigation encompasses 
scenarios where the number of master blocks ranges from 500 to 3,000 k, with a fixed number of slave blocks at 
1,000. The experimental results are illustrated in Fig. 8.
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Table 1.   Index build time comparison.

Dataset one Dataset two

MLI EBTree Dabble MLI EBTree Dabble

Case 1

The slave block data is empty, and the number of slave blocks is 500, 1000, 1500, and 2000 The slave block data is empty, and the master block store 500, 1000, 1500, and 2000 pieces 
of data

Case 2

The master block data is empty, and the number of master blocks is 500 k, 1000 k, 1500 k, 
2000 k, 2500 k, and 3000 k respectively

The master block data is empty, and the slave blocks stores 20 k, 40 k, 60 k, 80 k, and 
100 k pieces of data

Case 3

The data of master and slave blocks are not empty, the number of master blocks is 500, 
1000, 1500, 2000 respectively, and the number of slave blocks is 500 k

The data of master and slave blocks are not empty. The master block stores 500, 1000, 
1500, and 2000 pieces of data, and the slave block stores 20 k pieces of data
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Figure 6.   Index build time comparison 1.
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As depicted in Fig. 8, the Multilevel Index (MLI) method demonstrates a 13.44% optimization in index con-
struction time when compared to existing methods, particularly notable in large-scale datasets. This advantage 
becomes more pronounced as the number of blocks increases, surpassing the performance of the EBTree method.

Utilizing a small-scale dataset, namely Dataset 2: Lognormal artificial dataset, comprising 5 million data 
points with a total size of approximately 24 MB, this paper conducted a comparative analysis of the query 
response times between the EBTree and Dabble methods. Specifically, the comparison was made for scenarios 
involving the storage of 10, 20, 30, 40, and 500,000 pieces of data in the master block, along with 1,000 pieces of 
data in the slave block. The experimental results are presented in Fig. 9.

As depicted in Fig. 9, it is evident that the Multilevel Index (MLI) method achieves an optimization of 
approximately 10.71% in index construction time when compared to existing methods on small-scale datasets. 
The experimental outcomes underscore the superior query performance of the MLI method, particularly in 
scenarios where the data volume is substantial.
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0

5

10

15

20

25

30

35

40

45

50

55

501 1001 1501 2001 2501 3001

R
es

p
o

n
se

 T
im

e 
/ 

m
s

10-3 Number of blocks

MLI EBTree Dabble

Figure 8.   Index query time comparison of large-scale dataset

0

5

10

15

20

25

30

35

40

101 201 301 401 501

Q
u
er

y
 T

im
e 

/ 
m

s

10-3×Data Volume/piece

MLI EBTree Dabble

Figure 9.   Index query time comparison of small-scale dataset.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4049  | https://doi.org/10.1038/s41598-024-54240-4

www.nature.com/scientificreports/

Comparison of memory consumption
The weight matrix constructed by MLI in the slicing stage hardly takes up memory, and the master chain builds 
the index based on the jump consistent hash algorithm. Compared with the classical consistent hash, the jump 
consistent hash has almost no additional memory consumption, so the memory overhead in MLI mainly con-
siders the index construction of the slave blockchain. The false-positive of IBF is set to 0.0137 bits. The EBTree 
method rewrites the blockchain structure, and the memory consumption is mainly blocked data. Therefore, this 
section will compare the Dabble method. The experimental results are shown in Table 2.

As can be seen from Table 2, the Lognormal data set takes up 24 MB of memory, while the neural network 
takes up 4 KB of memory in Dabble method, while the IBF in MLI still only takes up about 2.048 KB of memory 
within the allowable range of false positives. Even if IBF and BF are in the same false positives, these two methods 
can keep the same order of magnitude.

Conclusions
As blockchain technology gains widespread application, the traditional single-chain structure has become inad-
equate to meet evolving demands. The incorporation of slave blockchains alongside a master chain expands the 
applicability of blockchain technology across various domains, such as education and food supply chains. This 
paper introduces a composite index construction method tailored for master–slave blockchains. Specifically, 
the entire master–slave blockchain structure undergoes segmentation based on the master chain, enhancing 
maintainability through the utilization of a weight matrix that supports the index construction. Building upon 
this foundation, index construction methods are proposed, addressing the distinct data scales between the 
master and slave chains. These methods leverage the Jump Consistency Hash algorithm for the master chain 
and an Improved Bloom Filter (IBF) for the slave chain, aiming to enhance query efficiency within master–slave 
blockchains. Experimental results demonstrate significant advantages in construction time, query efficiency, and 
memory consumption compared to existing methods.

This paper delves into an in-depth exploration of constructing multi-level indexes and optimizing consensus 
algorithms for master–slave blockchain structures. Proposed solutions address identified limitations of existing 
methods, yielding noteworthy research outcomes. Nevertheless, the intricate nature of the master–slave block-
chain structure and the dynamic application scenarios present ongoing challenges. The following areas related 
to the paper’s research content warrant further investigation:

1.	 In the index construction process, hash values are utilized for building node key-based indexes, yielding a 
noticeable advantage in construction time. However, to enhance query efficiency, exploring node key selec-
tion, such as incorporating semantic information based on application scenarios, remains a potential avenue 
for further research.

2.	 The node state transition mechanism currently relies solely on the consensus result as the scoring system 
benchmark. Future work will focus on optimizing the evaluation index for node behavior within this mecha-
nism.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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